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Abstract
Modern geo-replicated software serving millions of users across the globe faces the consequences
of the CAP dilemma, i.e., the inevitable conflicts that arise when multiple nodes accept writes on
shared state. The underlying problem is commonly known as fault-tolerant multi-leader replica-
tion; actively researched in the distributed systems and database communities. As a more recent
theoretical framework, Conflict-free Replicated Data Types (CRDTs) propose a solution to this
problem by offering a set of always converging primitives. However, modeling non-trivial system
state with CRDT primitives is a challenging and error-prone task. In this work, we propose a
solution for a geo-replicated online service with fault-tolerant multi-leader replication based on
CRDTs. We chose IMAP as use case due to its prevalence and simplicity. Therefore, we modeled
an IMAP-CRDT and verified its correctness with the interactive theorem prover Isabelle/HOL.
In order to bridge the gap between theory and practice, we implemented an open-source proto-
type pluto and an IMAP benchmark for write-intensive workloads. We evaluated our prototype
against the standard IMAP server Dovecot on a multi-continent public cloud. The results ex-
pose the limitations of Dovecot with respect to response time performance and replication lag.
Our prototype was able to leverage its conceptual advantages and outperformed Dovecot. We
find that our approach is promising when facing the multitude of potential concurrency bugs in
development of systems at planetary scale.
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1 Introduction

When designing and developing a modern online service, researchers and developers are
faced with a large and diverse spectrum of challenges. Due to its ever expanding reach, the
Internet offers the unique while demanding prospect of connecting potentially billions of users
scattered across the planet. The underlying distributed infrastructure requires enormous
consideration on its own, but matters get even more involved when applications on top of it
have state. While potentially possible, the penalties of declaring one cluster to be the single
leader and routing all requests through it, render such a design unfeasible when reliability
and responsiveness are of importance. A geographically-distributed system architecture,
however, eliminates single points of failure and enables low response times on client requests.

Unfortunately, though, network and node failures are a given in large-scale infrastructures
[2] and thus, our applications have to deal with partitions. To safeguard consistent state
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23:2 Designing an IMAP Service with Conflict-free Replicated Data Types

during these, a trade-off between availability and consistency has to be made, commonly
known as the CAP dilemma [11]. Choosing consistency requires minority partitions to reject
client requests – becoming unavailable – while only a majority partition is allowed to make
progress. This has been and still is a viable option, though with the rise of the NoSQL
movement, available architectures have gained traction. They choose to always accept client
requests even though all other nodes of the system might be temporarily unreachable and
try to achieve consistency when connections are re-established. Naturally, in these eventually
consistent [26] systems, conflicting requests arise. Much research has gone into efficient
conflict resolution or even conflict avoidance.

More recently, Conflict-free Replicated Data Types (CRDTs) have been proposed as a
method for avoiding conflicts [24]. If system state is built either on one of the state-based
or operation-based data types, the inherent properties of these ensure that replicated state
will always converge. Certain requirements have to be met in order to be able to use them,
e.g., do we assume an underlying reliable causal-order network and commuting concurrent
updates for the operation-based CRDTs. If we can provide these requirements, CRDTs are
an elegant and efficient way to model available and partition-tolerant systems.

In this work, we set out to model, verify, implement, and evaluate a distributed application
with non-trivial state based on CRDTs. As the provided service we chose to design an IMAP
server. The Internet Message Access Protocol (IMAP) is the standard way to manage mailbox
state and retrieve messages in an email service. IMAP is a simple and rather old standard –
its beginnings date back to the mid-1980s – and as part of the email ecosystem is regularly
proclaimed dead in favor of some supposedly more efficient communication service. Yet,
email remains to be ubiquitous in all our lives and will stay so for the foreseeable future. As
an example, Gmail recently crossed the mark of one billion monthly active users [19].

Even though the provided CRDT primitives [23] are concise and simple, one can fail
in numerous ways when constructing non-trivial system state based on these. We wanted
to be sure of the correctness of our model and thus put effort into proving it correct. To
this end, we extended the CRDT and network model framework by Gomes et. al. [13, 12]
written in the Isabelle/HOL interactive theorem prover to include our IMAP-CRDT. After
being assured that state will always be consistent in our model, we adapted our prototype to
adhere to the theoretical proof. This way, we achieve provable consistency in practice.

In order to evaluate the benefits of our proposed IMAP-CRDT, we developed a prototype
pluto and built a federated Kubernetes1-based test environment on Google’s public container
cloud, Google Container Engine2. We were primarily interested in two characteristics:
response time performance and replication lag [17]. The first one captures the perceived
responsiveness by users while the second describes how long it takes one system to synchronize
and apply updates with the other nodes. With our self-developed IMAP benchmark for
write-intensive workloads, we were able to gather both insights for pluto and Dovecot.

We find, that our approach of designing distributed applications at planetary scale
yields a straightforward flow of modeling, verifying, implementing, and evaluating software
where a proven system model consolidates experimental measurements. The results attest
the advantages of our CRDT-based architecture and draw near reproducibility due to our
automated and open-sourced deployment infrastructure.

1 https://kubernetes.io
2 https://cloud.google.com/container-engine

https://kubernetes.io
https://cloud.google.com/container-engine
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Related Work. Large-scale distributed systems replicating application state in an available
and partition-tolerant way have received academic attention since the advent of the Internet.
Bayou [25] was one of the first distributed storage systems that enabled users to always
submit updates and ensured eventual consistency when network connection was available
again. Inspired by the fundamental concepts captured in Amazon’s Dynamo paper [8], a
new class of distributed data stores was proposed and developed, such as Cassandra [18] and
Riak3. Many of these new developments are also based in parts on the ideas of Google’s
Bigtable concept [5], which Google itself turned into Spanner [6], its planet-scale strongly
consistent and partition-tolerant distributed database. Their solution towards the CAP
dilemma is to run Spanner on an expensive and highly sophisticated private network which
ensures almost no downtimes [4].

Regarding automatic resolution of conflicting writes in any distributed system, the choice
is between discarding all but one update or merging all updates into one. The most common
technique for the first approach is known as last write wins, where the update with the
biggest timestamp is picked as winner and all others are lost. One well-known merge-based
resolution strategy is operational transformation [9], though mostly used for collaborative
text editing and of decreasing performance with increasing number of operations [1].

Conflict-free Replicated Data Types take a different approach as they avoid conflicts
altogether due to their construction properties. Apart from the set of basic data types defined
in the original report [23], constructing further CRDTs has been an active research interest,
for example, sequence CRDTs such as Treedoc [20] and LSEQ [22], and a composable JSON
CRDT [16]. However, integration into production software is only progressing slowly, e.g., as
part of Riak or AntidoteDB4, and we don’t see many approaches for standard IT services
such as our IMAP-CRDT.

As part of this work, we verify the data type we propose within Isabelle/HOL. Formal
verification of CRDTs has been done before, e.g., by Zeller et al. for state-based CRDTs [27].
The framework underlying our formal verification efforts was proposed and implemented
by Gomes et al. [12], including a realistic network model and verification of the Observed-
Removed Set (OR-Set). We base our IMAP-CRDT on the OR-Set and make the extensions
to the framework by Gomes et al. with our data type accessible.

Considering state replication for the most widely used IMAP server, Dovecot, the dsync5
approach is currently the only application-level support for planet-scale deployments. Un-
fortunately, dsync is limited to pair-wise replication, forfeiting the advantages of a cloud
deployment with nodes all over the world. To our knowledge, we propose the first approach
to a truly planetary-scale IMAP service that at the same time achieves low response times.

Finally, this work is based on previous efforts by us into the direction of an IMAP service
based on CRDTs, presented in an earlier workshop paper [14].

Contributions. Our contributions in this work are as follows:
We propose an IMAP-CRDT by modeling IMAP commands as operations on a CRDT.
(Section 4)
We verify the convergence of the IMAP-CRDT with Isabelle/HOL. (Section 4.1)
We propose an open-source prototype pluto that offers IMAP at planetary scale with
multi-leader replication based on CRDTs. (Section 5.1)

3 http://basho.com/products/riak-kv
4 https://syncfree.github.io/antidote/
5 https://wiki.dovecot.org/Replication
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23:4 Designing an IMAP Service with Conflict-free Replicated Data Types

We introduce a benchmark for IMAP services. (Section 5.2)
We propose a Kubernetes-based deployment for planet-scale Dovecot. (Section 6)
We explore response time performance and replication lag of planetary-scale IMAP services
on public clouds by evaluating the developed prototype pluto against state-of-the-art
Dovecot setups. (Section 7)

2 System Model

In a traditional 3-tier system architecture of an IMAP service, a proxy (sometimes called
director) forwards a client’s request to a responsible backend node, where the request is
processed. The service state in form of all users’ mailboxes is typically stored on one or
more storage nodes, traditionally hosting a strongly-consistent shared file system like NFS
or GlusterFS. However, this architecture is no longer feasible in a planetary-scale IMAP
system. To illustrate the pitfalls of this approach in a geo-replicated setting, we installed a
GlusterFS on two virtual machines in different regions (North America and Europe) of the
Google Cloud Platform (GCP). Subsequently, a Dovecot in the recommended setting with
one proxy and three backend nodes was deployed on our Kubernetes cluster in Europe. Our
benchmark revealed, that the response times of write requests exceed the round-trip time
between North America and Europe by almost two orders of magnitude. Hence, applying
a naive replication over two continents can be much more costly than routing all request
through a single location.

The only solution to efficiently apply geo-replication is to relax the consistency require-
ments and allow backends to progress state without prior synchronization with other regions.
This approach introduces the need of conflict management, because concurrent writes from
multiple regions may be conflicting. The architecture underlying our proposed system enables
a more fault-tolerant and responsive geo-replicated online service. In it, a backend node is
authoritatively responsible for a particular range of users and asynchronously connected to
backends in all other regions that are responsible for the same range of users. Furthermore,
a global storage node can be added to the service that might run on single-tenant, high
quality hardware for long-term storage. It can further be used as a failover destination if any
backend node fails. From this distributed system of backends, we derive our system model
which we use in Section 4.1 to reason about the convergence of state.

We obtain an asynchronous network of backend nodes which can be seen as independent
processes. The network can suffer from partitions and can recover after a certain time. The
backends continue to operate, even if the backend is temporarily disconnected from parts of
the network. If a backend crashes, the state of the backend can be recovered. We assume
non-byzantine behavior.

3 Technical Preliminaries

In this section we provide a brief introduction to CRDTs and IMAP. Both will be combined
in Section 4 when we introduce our IMAP-CRDT.

3.1 Conflict-free Replicated Data Types
The theoretical concept of a Conflict-free Replicated Data Type has been formalized by
Shapiro et al. in [24]. In essence, CRDTs enable convergence of replicas without requiring a
central coordination server or even a distributed coordination system based on consensus or
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locking. To achieve this goal, updates on application state based on CRDTs are designed to
be conflict-free in the first place.

CRDTs come in two variants: Convergent Replicated Data Types (CvRDT) and Commu-
tative Replicated Data Types (CmRDT). CvRDTs, often described as state-based CRDTs,
ensure convergence by defining a merge function that is applied on two diverged states in
order to obtain a consistent state again. The merge function calculates the least upper bound
on a join semi-lattice, and therefore must be commutative, idempotent, and associative. A
replica can update its local state and send the updated version to all other replicas which
individually apply the merge function to regain a consistent state. The order in which the
merge function is applied, is irrelevant.

In this work we focus on the operation-based variant, the CmRDT. In contrast to state-
based ones, replicas in this case exchange operations directly, with minimal state information.
A reliable causal-order broadcast ensures that operations ordered by happened-before relation
on the source replica are received and applied accordingly at all other replicas. Updates that
cannot be ordered by happened-before are considered concurrent and required to commute.
The design of a CmRDT is a challenging task, fortunately the technical report offers a variety
of specifications for counters, sets, graphs, and even lists [23].

As mentioned, CmRDTs require a reliable causal-order broadcast to ensure causal consis-
tency. Note, that an implementation of such a broadcast does not require consensus and can
be achieved by use of vector clocks.

With commutativity of concurrent updates and reliable causal-order broadcast, Shapiro
et al. showed that any two replicas that have seen the same set of operations have equivalent
abstract states and therefore eventually converge.

3.2 IMAP
An IMAP service manages mailboxes of registered users. Users are able to interact with
their mailboxes by sending IMAP commands to the server. These commands are defined in
the IMAP4rev1 standard in RFC 3501 [7]. To reduce the complexity of this paper, we focus
on the consistency-critical commands, i.e., commands that change the server’s state. The
commands create and delete respectively add or remove a mailbox (also called mailbox folder,
or simply folder) to or from a user’s account. An append command is used to add a message
to a mailbox folder. With store, the message flags, e.g., Seen, Answered, or Deleted, can be
altered. The expunge command is used to remove all messages with such a Deleted flag from
a particular mailbox folder. Note, that the commands store and expunge are only allowed
once a particular mailbox folder has been selected with the select command.

IMAP servers, like Dovecot, support various formats to represent the mailboxes of the
users on hard disk. Typical formats are mbox and Maildir. The latter is generally preferred
due to its use of individual files per mail message and thus, no locking is required when
messages are appended. The messages are given unique file system names that include any
potential standard flag.

4 IMAP-CRDT

In our scenario, the main challenge is to model the IMAP commands as operations on
a CmRDT. We begin with the decision on the used payload, i.e., the underlying state
representation. We identified a map that projects folder names to the content of a folder to
be best suited. Therefore, the content of a folder is a combination of metadata (tags) and
messages. We model the map as a function u : N → P(ID)× P(M) where N is the set of
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23:6 Designing an IMAP Service with Conflict-free Replicated Data Types

Specification 1 IMAP-CRDT (payload, create, and delete).
1: payload map u : N → P(ID)× P(M) . {foldername f 7→ ({tag t}, {msg m}), . . . }
2: initial (λx.(∅,∅))
3: update create (foldername f)
4: atSource
5: let α = unique()
6: downstream (f, α)
7: u(f) 7→ (u(f)1 ∪ {α}, u(f)2)
8: update delete (foldername f)
9: atSource (f)

10: let R1 = u(f)1
11: let R2 = u(f)2
12: downstream (f,R1, R2)
13: u(f) 7→ (u(f)1 \R1, u(f)2 \R2)

foldernames, ID is the set of tags, andM is a set of messages. We denote P(X) to be the
power set of X.

Because a folder f contains arbitrary items, the result of u(f) is a tuple of two sets. The
first set, denoted as u(f)1, is the set of tags that represent metadata that should not be
visible to a user. The second set, denoted as u(f)2, represents the messages in the folder.

If both sets u(f)1 and u(f)2 are empty, the folder is interpreted as non-existent. Note,
that we distinguish between a non-existent folder and an empty folder. A folder is empty, if
u(f)2 is empty but u(f)1 is not empty, i.e., certain metadata is present. Initially, all folders
are non-existent. Hence, the initial state can be described as a lambda abstraction that
projects the tuple (∅,∅) to every folder name in N .

We present the complete IMAP-CRDT in Spec. 1 and Spec. 2. We adhere to the
presentation style that has been introduced by Shapiro et al. in [24]. Next, we define the
operations that represent the IMAP commands and begin with create and delete in Spec. 1.

The desired result of create is to create an empty folder f . Therefore, a fresh and unique
tag t is generated on the replica that initiates the operation. This initiation phase of the
replica is usually called atSource. Thereafter, the tag t is inserted into u(f)1 and u(f)2
remains untouched. This part of the operation is usually called downstream and is executed
at every replica. We denote an update of the map entry as u(f) 7→ (X,Y ) where X and Y
are the new sets that override the existing sets. Note, that the map entries for the other
folder names remain unchanged.

In contrast to create, the desired result of the delete operation is to make the folder
non-existent. Hence, the content of u(f) is removed at every replica. If we defined the
downstream operation to be u(f) 7→ (∅,∅), then create and delete would no longer be
commutative. Furthermore, the IMAP specification requires any delete(f) to be preceded by
a create(f), aborting on IMAP protocol level if a client tries to remove a non-existing folder.
This eliminates consistency issues when delete(f) and create(f) are issued concurrently. Note,
that the definitions of create and delete are very similar to the add and remove operations
on the op-based Observed-Remove-Set (OR-set), which has been introduced in [24].

The remaining operations append, expunge and store are defined in Spec. 2. The append
operation is very similar to the create operation, except that a messagem is inserted into u(f)2
and u(f)1 remains unchanged. Another important difference is the atSource precondition.
The IMAP specification states, that each message is assigned a unique identifier called
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Specification 2 IMAP-CRDT (append, expunge, and store).
14: update append (foldername f,message m)
15: atSource (m)
16: pre m is globally unique
17: downstream (f,m)
18: u(f) 7→ (u(f)1, u(f)2 ∪ {m})
19: update expunge (foldername f,message m)
20: atSource (f,m)
21: pre m ∈ u(f)2
22: let α = unique()
23: downstream (f,m, α)
24: u(f) 7→ (u(f)1 ∪ {α}, u(f)2 \ {m})
25: update store (foldername f,message mold,message mnew)
26: atSource (f,mold,mnew)
27: pre mold ∈ u(f)2
28: pre mnew is globally unique
29: downstream (f,mold,mnew)
30: u(f) 7→ (u(f)1, (u(f)2 \ {mold}) ∪ {mnew})

UID. We use this requirement to assure that no two identical messages are ever appended
by different replicas, or even the same replica. Note, that identical is not referring to the
message content. In practice, it is still possible to append two messages with identical content,
although the UIDs of the messages are in fact different.

The operation store is implemented in a similar fashion. The main purpose of store is
to change the flags of a message mold. We do not explicitly model the flags of a message.
Instead, we insert the message mold with updated flags as a new message mnew in u(f)2 after
deleting mold from u(f)2.

In contrast to the previous definitions, the expunge operation is rather counter-intuitive.
The deletion of a message, which has been marked with a Deleted flag, is simply done by
removing the message from u(f)2. However, we decided that an additional tag must be
inserted into u(f)1 to avoid unexpected behavior in combination with a concurrent delete
operation. We illustrate this puzzle with the following example.

Two replicas r1 and r2 initially share the following state of a folder: u(f) = (∅, {m1}).
The replica r1 initiates a delete operation, resulting in an update of the local state at r1 to
be u(f) = (∅,∅) and f is interpreted as non-existent, i.e., the complete folder is deleted.
In the meantime, r2 independently initiates an expunge operation that aims to delete m1,
resulting in the local state to be u(f) = ({t42},∅), i.e., an empty folder. At this point, it is
unclear what result is actually desired, after the downstream operations are executed at both
replicas. We decided, that the folder should be present as an empty folder at both replicas.
Hence, according to the presented definitions the resulting state is u(f) = ({t42},∅). In fact,
our definition of the operations gives create, append, store, and expunge a precedence over
delete, i.e., when manipulations of the folder f and a delete(f) are concurrently executed, the
folder is never entirely deleted, only state visible at the initiation time of the delete operation
is removed. Hence, we decided to pursue an add-wins semantic.

Design Decisions and Discussion. The proposed add-wins strategy comes at the price of
increased metadata that needs to be managed. In the presented definition, we create a new
tag for each deleted message of an expunge operation. These tags are currently only removed
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by a delete operation, which is typically not executed as long as the user holds interest in
the folder. To overcome this issue, some metadata could be deleted after a certain stable
state has been reached. For example, Baquero et al. introduced the notion of log compaction
through causal stability information in [3]. An alternative decision would be to give delete
precedence over the other operations. In this case, less metadata would be required to process
state information. However, the application behavior in the presence of concurrent updates
seems undesired. For example, in case of a concurrent append and delete operation on the
same folder, the message that was added by the append operation would be deleted with the
folder and be lost forever. Note, that our IMAP-CRDT requires causal-order delivery and
we omit this precondition in every update operation for the sake of simplicity.

The commands left to achieve full compliance with RFC 3501 are mostly read commands
like search, fetch, or status, and thus not in the scope of this work. Missing write commands
like copy and rename bear many parts from the already implemented write commands but
require further careful thought. However, modeling those commands as operations on the
IMAP-CRDT is an effortful but realizable task.

4.1 Verification
To ensure that all required properties are satisfied and that convergence among replicas is
achieved, we verified our IMAP-CRDT with the interactive theorem prover Isabelle/HOL.
We base our Isabelle/HOL implementation on the recently published CRDT verification
framework by Gomes et al. [12]. Our formalization follows the definitions we presented
in Spec. 1 and Spec. 2 and is available in the Archive of Formal Proofs for Isabelle/HOL
[15]. The only notable difference in the Isabelle/HOL formalization is, that we no longer
distinguish between sets ID andM and that the generated tags of create and expunge are
handled explicitly. This makes the formalization slightly easier, because less type variables are
introduced. Ultimately, we show that our IMAP-CRDT achieves strong eventual consistency
in our proposed system model, i.e., all replicas converge to an identical abstract state when
they share the same history of operations.

5 Prototype

5.1 Pluto
Our prototypical implementation of the presented IMAP server system model, pluto, and
all other software we wrote for this paper, is developed in the Go programming language
and available6 as open-source software under GPLv3 license. The prototype is designed
as a distributed IMAP server, internally comprised of multiple distributor nodes, multiple
worker (backend) nodes, and one storage node, as set out in Section 2. We put emphasis on
application speed, security, reliability, and configurability.

In any pluto deployment, an IMAP request enters the service at a stateless distributor
node. Any request initiated via an unencrypted connection will get dropped, ensuring that
authentication credentials transmitted as part of an ordinary IMAP session are only ever sent
over a TLS connection. The distributor node handles a session as far as the authentication
procedure was successful. For any further request, the worker node responsible for the
partition of users the current user is part of, is determined, and all traffic is proxied to this

6 https://github.com/go-pluto/pluto
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node via a gRPC7 connection. Should the determined worker node be unavailable due to
any number of reasons, a failover to the global storage node is performed, which accepts the
proxied IMAP traffic in place of the worker node.

As soon as requests of a regular IMAP session reach a worker or storage node, they
potentially change the mailbox state of the respective user. To achieve availability even in
case of failures, worker and storage nodes accept these state-changing requests and guarantee
that eventual consistency with the other replicas is reached – an inherent feature of CRDTs.
We say that worker and storage nodes are stateful because they first alter their local states
and afterwards send messages downstream that apply the same operation on all remote
states. This makes pluto a multi-leader replication system.

We verified the correctness of our state replication as part of Section 4 and implemented
the two required components, the IMAP-CRDT and reliable causal-order broadcast of update
messages, as parts of pluto. For the IMAP-CRDT, we assign each user an OR-Set, called
structure, that represents the user’s abstract mailbox state. The main difference to our
theoretical model in Spec. 1 is, that the map u(f) for mailbox folder f is modeled as a
set of value-tag pairs for which the value element is always set to f . As an example, we
consider a mailbox folder uni, on which an append operation was executed. Assume, that
the state according to Spec. 1 looks like u(uni) 7→ ({α}, {m}). We can infer that the create
operation for uni created tag α in u(uni)1 and the append operation put m into u(uni)2. In
our structure OR-Set this is represented as {(uni, α), (uni,m)}. Thus, in pluto we do not
distinguish between metadata and message tags. Any update to structure is followed by a file
system sync operation on an associated log file on stable storage. This ensures that nodes
can precisely reconstruct the internal representation of user mailboxes in case they crash.

An update on a source replica triggers a message to all downstream replicas in order to
reproduce it on their state. In pluto, worker and storage nodes are grouped into subnets
that exchange updates for a particular partition of users. Considering a planetary-scale
deployment with workers in Europe, the US, and Asia, and the storage in Australia, the
subnet for a worker eu1 in Europe might contain us1, asia1, and storage. Each downstream
message from eu1 is sent to all other nodes from its subnet. As the IMAP-CRDT is based on
the operation-based OR-Set, we require these messages to be part of a reliable causal-order
broadcast, ensuring that they are delivered to the application exactly once and with no
causally-preceding ones missing. To this end, we maintain vector clocks [21, 10] for each
subnet. Send queue, receive queue, and vector clock are again sync’ed into associated files
on any update. To reduce replication lag, we do not send messages individually but transfer
the current send log as a whole in a defined interval.

IMAP clients will not notice the replication efforts, as they happen asynchronously. This
is one of the major advantages of a geographically distributed pluto deployment: requests can
be responded to quickly due to authoritative local state on close-by worker and storage nodes
while updates will get applied everywhere eventually due to CRDTs and reliable causal-order
broadcast, thus achieving consistent state. We guide these claims with structured logging,
metrics exposure to Prometheus, and tests for important packages. Further work might go
into file checksum checking for ascertaining data integrity, deeper performance profiling, and
increased RFC 3501 [7] compliance. We welcome contributions from the community.

7 https://grpc.io
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5.2 Benchmark

In order to evaluate pluto and Dovecot in Section 7, we needed a way to apply a large
amount of state-changing IMAP commands to our deployments. We are interested in the
state-changing (“write”) commands of RFC 3501 because only these manipulate mailbox
state and trigger downstream messages that need to be applied at other replicas. “Read”
commands in turn are answered authoritatively on the replica they are received on, without
replica communication. Only state-changing commands potentially unearth consistency
issues by generating edge cases. Thus, we required an IMAP benchmark that is able to
generate large write-intensive workloads involving the write commands that are implemented
in both services: create, delete, append, expunge, and store.

We could not find such tool or data set available, and thus implemented an IMAP
benchmark ourselves8 that generates arbitrary amounts of random data, write-intensive
workloads. Each workload is composed of small and randomly generated sequences of IMAP
commands, called sessions. One session always contains well-matched IMAP commands,
e.g., a mailbox folder is created before a message is appended to it. Session generation is
deterministic and can be reproduced by configuring a benchmark with the same seed.

Before a session is executed, a user is chosen randomly from a provided users file and
logged in. Next, the session commands are applied one after another, a successive one
as soon as the current one has finished and the time between sending it and receiving a
complete answer – the command’s response time – has been stored. The workload’s degree
of parallelism, that is, the number of concurrent active users, can be configured as well. The
results are written to disk and optionally uploaded to a Google Cloud Storage (GCS) bucket.

5.3 Maildir Tools

With the benchmark ready we had almost everything in place required for putting our system
model to a test. One more component was needed, though, for gaining insight into the
replication performance. While the IMAP benchmark provides response time measurements,
replication lag data is at least as important because it tells us how well a service is able to
disseminate and apply updates among its replicas. It complements the user-centric response
time metrics by making visible the asynchronous replication part. Due to different replication
mechanisms in pluto and Dovecot, though, we had to fall back to observing the Maildir file
system in order to see when updates were applied.

We implemented a small utility9 that periodically performs a disk usage calculation of a
configured subset of the Maildirs present on a node (by running ’du -s’). The results are
logged to disk and uploaded to a GCS bucket at the end of the tool’s run. For continuous
monitoring, a duration histogram is exposed to Prometheus. The idea is to integrate one
Maildir dumper into each stateful node deployed in a service to be evaluated. After having
run an IMAP benchmark, timestamped disk usage reports can be collected and the time
difference between the points in time when two observed Maildirs report the same size in
bytes can be calculated. We consider this measure the replication lag. Please note, that the
calculated time differences have to be taken as estimations rather than precise durations as
we rely on synchronized clocks for timestamp elicitation. In Section 7, we will see that the
clock synchronization in Google’s data centers has negligible influence on our results.

8 https://github.com/go-pluto/benchmark
9 https://github.com/go-pluto/maildir_tools

https://github.com/go-pluto/benchmark
https://github.com/go-pluto/maildir_tools


T. Jungnickel, L. Oldenburg, and M. Loibl 23:11

6 Infrastructure

We now introduce the infrastructure setup used in our experiments later on. As guiding
principle, we have chosen a Cloud Native approach, featuring the most advanced cloud
technologies available at the time of developing our prototype. Our infrastructure is mainly
based on two products: Kubernetes, an orchestration platform for containerized applications,
and Prometheus, a powerful monitoring tool.

We provisioned two identical Kubernetes clusters in the us-east1-b and europe-west1-b
regions of the Google Cloud Platform. Each cluster consisted of six n1-standard nodes (1
vCPU, 3.75GB memory). We combined both clusters into a Kubernetes cloud federation,
enabling cross-cluster service discovery and resource synchronization. For persisting data,
we always allocated 100GB SSD volumes. In the following, we will write us or europe in
reference to the respective regions.

We decided to publish our configurations in our infrastructure repository10, so that our
setup can easily be re-created and re-used for further experiments. Hence, all resources,
including the container images of all evaluated systems, are publicly available.

7 Evaluation

To evaluate our approach, we conducted a set of experiments. We started by defining our
baseline, i.e., a reference experiment where we used a standard configuration of Dovecot
without any replication. Thereafter, we conducted two experiments where we compared pluto
against Dovecot with enabled replication. The results of these experiments we will discuss in
the end of this section.

7.1 Baseline Experiment

As introduced in Section 2, we used a Dovecot in a traditional 3-tier architecture as refer-
ence setup. For the storage layer, we deployed a GlusterFS with a replicated volume on
two n1-standard nodes with 100GB SSDs in the europe region. The remaining Dovecot
components, i.e., a proxy and three backends, were installed on our Kubernetes cluster in
the same region as GlusterFS. We used three backend nodes to illustrate the possibility of
partitioning (also known as sharding). In this and all later experiments we maintained a
total number of 120 active users in three static user partitions and the proxy was configured
to redirect users to the backend that was responsible for their partition. In this setup, no
replication was introduced besides the synchronized volume in the GlusterFS cluster.

We configured our IMAP benchmark (see Section 5.2) to execute 5000 IMAP sessions
with a session length between 15 and 40 commands. The degree of parallelism, i.e., the
number of users that are concurrently executing sessions, was set to 20. These 20 concurrent
users were identified to be best suited for our experiments, because the reference setup
reached the best resource utilization at reasonable response times.

We executed our benchmark on our Kubernetes cluster in the us region to simulate a
write-intensive load from a distant location. In other words, we used a workload that required
geo-replication on a system that was not replicated. Thus, high response times were expected
but no replication lag.

10 https://github.com/go-pluto/infrastructure
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Figure 1 Replication lag diagram for Dovecot dsync (left) and our prototype pluto (right) for
requests from us to europe.

We call this experiment our baseline, because all geo-replicated setups must be able to
outperform it. Otherwise, the effort of geo-replication and the introduction of a replication
lag is pointless.

Results. We show the measured response times in the baseline column of Table 1. The
average and median response times in milliseconds are grouped by IMAP command. We
judge the measured values as realistic for this setup. In fact, our findings in [14] confirm the
authenticity of the presented values.

7.2 Experiment 1: Single-Cluster Benchmark
In the remaining experiments, we focused on the systems that offer multi-leader replication,
namely dsync and pluto. We deployed a setup of one proxy (or director) and three backends
(or workers) in the europe and us Kubernetes clusters. Both setups were connected over
a Kubernetes federation and communicated over public IP addresses and TLS-encrypted
channels. In the first experiments, we replayed the settings from our baseline experiment,
except that the traffic from the us region was now directed to the respective proxy in the
same region. In this scenario, the expected behavior is that both systems replicate the
updated application state from us to europe asynchronously. During the run, we collected
the response times and additionally tracked the size of the mailboxes for six selected sample
users in both regions with our Maildir tools (see Section 5.3). The tracking interval was set
to one second, which we found to be the best trade-off between additional overhead by the
du commands and unavoidable loss of precision. With the chosen interval, a possible micro
clock drift between europe and us has no significant influence to our results. Based on the
collected values, we identified the replication lag for both systems. We compare the results
for dsync and pluto in the following two paragraphs.

Results: Dovecot dsync. The measured response times are given in the dsync column
of Table 1. We judge the response times and the resulting throughput, i.e., the processed
IMAP commands per second, as optimal for this setup. Dovecot is – not for nothing – the
state-of-the-art IMAP server software.

For analysis of the replication lag, we compare the growth of the mailboxes in both
regions for the selected sample users. In the left side of Figure 1, we illustrate the average
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Figure 2 Replication lag for dsync (left) and pluto (right). The red areas represent the replication
from europe to us while the blue areas represent the opposite direction.

growth for the selected sample users in what we call a replication lag diagram. On the x-axis
we see the relative time of the experiment in seconds. The y-axis represents the size of the
users’ mailboxes in kilobytes. The red line represents the growth of the mailboxes in us,
i.e., the region where the traffic was injected. The green line represents the growth of the
replicated mailboxes in europe. In this replication lag diagram, a distance between both
curves parallel to the x-axis represents the replication lag in seconds, i.e., the time until the
europe replica catches up. A distance between both curves parallel to the y-axis represents
the replication lag in kilobytes11. In order to quantify the replication lag, we think that it
is feasible to compute the size of the red area between both curves. The computed area
in megabyte*second, alongside with the average and median replication lag in kilobytes, is
presented in the last 3 rows of Table 1.

Results: pluto. For the pluto setup, we additionally deployed the storage node (see Sec-
tion 5.1) in a third region (europe-west2-b). Because we cannot directly compare the
storage node to any Dovecot component, we used a more powerful node (n1-standard-4,
4vCPU, 15GB Memory) and set the resolution of our Maildir tool for this node to 3 seconds
to avoid any negative impact. The remaining parts of the pluto setup is almost identical to
dsync, i.e., we have one director and three worker nodes with 100GB SSDs in each region.

The measured response times are stated in the pluto column of Table 1. We note that
the response times are significantly higher than Dovecot’s, which we discuss in the end of
this section.

The replication lag diagram is shown in the right part of Figure 1. We see that the
difference between the curves is almost invisible, which indicates a very small replication lag.
The quantified replication lag is shown in Table 1.

7.3 Experiment 2: Double-Cluster Benchmark
For our final experiment, we split the workload from the previous experiments and used
our benchmark from both regions us and europe, i.e., we executed 2500 sessions from each
region to simulate a workload that, in fact, requires geo-replication. The measured response
times are stated in the dsync2 and pluto2 columns of Table 1.

11 We note, that these diagrams require a monotone growth of the mailboxes to be meaningful. Our
benchmark generates mostly monotone growth, because create and append commands are more likely
than delete. With the chosen resolution of our Maildir tools, a declining mailbox size is almost invisible.
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Table 1 The combined results of Experiment 1 and 2, showing the response time performance
in milliseconds and the throughput in IMAP commands per second. The average and median
replication lag is stated in kilobytes and the replication lag area is stated in megabyte*second.

baseline dsync pluto dsync2 pluto2

us eu us eu

R
es

po
ns

e
T

im
e

Pe
rf

or
m

an
ce CREATE Average 251.36 16.24 47.77 18.47 23.24 47.56 75.20

Median 224.50 12.52 28.25 14.17 20.33 28.94 29.83

DELETE Average 602.05 30.81 48.85 32.46 37.03 47.12 74.61
Median 539.38 27.84 28.30 29.46 34.31 29.16 29.89

APPEND Average 437.26 43.02 91.96 46.39 55.36 87.23 131.79
Median 400.87 38.37 57.15 42.08 50.34 55.72 58.66

EXPUNGE Average 112.91 13.87 42.74 15.59 21.16 40.94 62.72
Median 97.05 6.18 25.61 9.44 18.91 22.56 23.19

STORE Average 184.16 15.72 52.04 17.48 21.79 46.09 72.84
Median 166.66 11.93 31.80 13.83 19.64 29.73 31.53

Throughput 47.17 480.67 256.03 447.87 367.94 256.26 171.49

Replication
Lag

Average 734.61 39.10 592.87 657.76 18.61 44.98
Median 729.10 34.44 217.83 322.10 6.1 34.33
Area 279.89 17.13 97.92 209.83 5.83 14.32

In order to measure the replication lag, we also split the sample users and configured
our benchmark in a way that the mailboxes of the first half of the users are only accessed
by the us benchmark, and the second half by the europe benchmark. The mailboxes of
the remaining 114 users receive commands from both regions. We present the replication
lag diagram for both systems in Figure 2. The red areas represent the replication lag for
synchronizing state from europe to us, and the blue areas represent the replication lag in
the opposite direction.

7.4 Discussion
The baseline experiment revealed that the absence of geo-replication can be costly with
respect to response time and throughput, when the application is faced with traffic from
distant regions. As we have seen with both compared systems, using multi-leader replication
for traffic from different continents is convincing and necessary. The price for the introduced
replication is relaxation of consistency guarantees and presence of a replication lag.

By comparing the response times of both systems, and in extension to that, the achieved
throughput, we clearly see that our prototype cannot keep up with Dovecot and that further
optimizations are necessary. We acknowledge, that throughput often is a performance metric
that is placed emphasis on in large-scale services and pluto needs to improve in that direction.
However, because pluto is a research prototype with much less development time compared
to the standard IMAP server Dovecot, we nevertheless are satisfied with its response time
performance. We think, that optimizations of the used index structures and file management
can lead to improved response times and throughput.

With respect to the replication lag, our prototype clearly outperforms dsync and we judge
our approach as successful. Replication based on the used op-based CRDT is cheap compared
to the costly replication of dsync. An operation from one replica can almost instantly be
delivered and applied on the other replicas without complex tracking of state information.
The fact that our approach can be applied with an arbitrary number of replicas makes it
even more interesting than dsync, where only a pair-wise replication is possible.
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We note, that our experiments only focus on write-intensive workloads and we purposely
omitted the evaluation of read commands. Building an IMAP server that is able to compete
with Dovecot in all facets is a challenging task, and is, at least for now, not our primary focus.
In our opinion, the improvement of our IMAP-CRDT and exploration of further standard IT
services that can be modeled with CRDTs, is a promising direction for future work.

We would like to point out, that we chose IMAP as the protocol to model with a custom
CRDT not because it is better suited for this purpose than other protocols. We chose
IMAP because of its widespread use and fundamental importance in everyday life – and,
because its relative simplicity allowed for completing work on time. We judge the fact that
application state of an IMAP server is based on relatively simple structures, namely its
tree-like mailbox structure, as particularly advantageous for modeling the commands with
operations on a CRDT. Hence, as long as the structural complexity of application state
to model is manageable, our approach is promising. We expect, that with the recently
introduced JSON CRDT [16], the modeling of more IT services with CRDTs will become
even easier. However, a machine-checked verification of the JSON CRDT is still to be done.

8 Conclusion

The initial exploration of the feasibility of using CRDTs in the multi-leader replication of an
IMAP service can be considered successful. We have made two important contributions: a
verified IMAP-CRDT design and the evaluation of our prototype, where we showed that the
replication lag can be significantly reduced compared to dsync, the replication tool of the
de-facto standard IMAP server Dovecot.

In our work, we consider IMAP as the example to show the benefits of modeling standard
IT services with CRDTs. Offering multi-leader replication without the need of manual conflict
resolution enables not only the possibility of planet-scale distributed applications, but also
more reliability in the presence of failures. To emphasize this further, this work convinced
us that really any stateful IT service should be examined for applicability of multi-leader
replication. Relying on strongly-consistent operations and fault-free infrastructure can get
risky as state becomes ever more shared and clients distributed. CRDTs combined with formal
verification offer the means to achieve confidence in relaxed consistency. Thus, considering
this approach when designing and even upgrading large-scale IT services can be a matter of
securing viability of a particular service – even in a single data center deployment.

Our approach, where we began with the system design and verification followed by the
implementation and evaluation, turned out to be successful in this regard. The resulting
prototype combines theory and practice by leveraging CRDTs in a standard IT service and is
able to play off its conceptual advantages. We encourage fellow system designers to follow in
this path and consider CRDTs for modeling application state.

Future work includes the exploration of CRDTs for other everyday IT services and further
improvement of our prototype.
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