
Solida: A Blockchain Protocol Based on
Reconfigurable Byzantine Consensus∗

Ittai Abraham1, Dahlia Malkhi2, Kartik Nayak3, Ling Ren4, and
Alexander Spiegelman5

1 VMware Research, Palo Alto, USA
iabraham@vmware.com

2 VMware Research, Palo Alto, USA
dmalkhi@vmware.com

3 University of Maryland, College Park, USA
kartik@cs.umd.edu

4 Massachusetts Institute of Technology, Cambridge, USA
renling@mit.edu

5 Technion, Haifa, Israel
sasha.speigelman@gmail.edu

Abstract
The decentralized cryptocurrency Bitcoin has experienced great success but also encountered
many challenges. One of the challenges has been the long confirmation time. Another chal-
lenge is the lack of incentives at certain steps of the protocol, raising concerns for transaction
withholding, selfish mining, etc. To address these challenges, we propose Solida, a decentralized
blockchain protocol based on reconfigurable Byzantine consensus augmented by proof-of-work.
Solida improves on Bitcoin in confirmation time, and provides safety and liveness assuming the
adversary control less than (roughly) one-third of the total mining power.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Cryptocurrency, Blockchain, Byzantine fault tolerance, Reconfiguration

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.25

1 Introduction

Bitcoin is the most successful decentralized cryptocurrency to date. Conceptually, what a
decentralized cryptocurrency needs is consensus in a permissionless setting: Participants
should agree on the history of transactions, and anyone on the network can join or leave at
any time. Bitcoin achieves permissionless consensus using what’s now known as Nakamoto
consensus. In Nakamoto consensus, participants accept the longest proof-of-work (PoW)
chain as the history of transactions, and also contribute to the longest chain by trying to
extend it. Thus, cryptocurrencies are also known as public ledgers or blockchains in the
literature. While enjoying great success, Bitcoin does have several drawbacks. The most
severe one is perhaps its limited throughput and long confirmation time of transactions. For
instance, presently a block can be added every ten minutes on average and it is suggested
that one waits for the transaction to be six blocks deep. This implies a confirmation time of
about an hour. Furthermore, each block can contain about 1500 transactions [7] with the
current 1MB block size limit. This yields a throughput of ∼2.5 transactions per second.

∗ This work is funded in part by NSF award #1518765, and a Google Ph.D. Fellowship award.

© Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

A number of attempts were made to improve the throughput and confirmation time of
Bitcoin. These fall into two broad categories. One category [32, 19, 9] tries to improve
Nakamoto consensus. The other category [8, 15, 21, 26] hopes to replace Nakamoto consensus
with classical Byzantine fault tolerant (BFT) consensus protocols. These proposals envision
a rolling committee that approves transactions efficiently using a Byzantine Fault Tolerant
(BFT) protocol such as PBFT [5].

This second category presents a new approach to blockchain designs and has potential for
significant improvements in performance and scalability over Nakamoto consensus. This is
especially true for transaction confirmation time, since decisions in Byzantine consensus are
final once committed. Pass and Shi [26] formalized the above intuition with responsiveness
notion for permissionless consensus protocols. A protocol is responsive if it commits trans-
actions (possibly probabilistically) at the speed of the actual network delay, without being
bottlenecked by hard-coded system parameters (e.g., 10 minutes for Bitcoin). In the same
paper, Pass and Shi proposed the hybrid consensus protocol, which uses a (slow) Nakamoto
PoW chain to determine the identities of committee members, and let the committee to
approve transactions responsively.

In this work, we present Solida1, a decentralized blockchain protocol based on recon-
figurable Byzantine consensus. We were indeed inspired by the work of Pass and Shi [26].
Yet, Solida is conceptually very different from Bitcoin or hybrid consensus as we do not rely
on Nakamoto consensus for any part of our protocol. Committee election and transaction
processing are both done by a Byzantine consensus protocol in Solida. PoW still plays a
central role in Solida, but we remark that use of PoW does not equate Nakamoto consensus.
The heart of Nakamoto consensus is the idea that “the longest PoW chain wins”. This
creates possibility of temporary “chain forks”. A decision in Nakamoto consensus becomes
committed only if it is “buried” sufficiently deep in the PoW chain, which leads to Bitcoin’s
long confirmation time.

Looking from a different angle, we can think of PoW as a leader election oracle that is
Sybil-proof in the permissionless setting. But this oracle is imperfect as leader contention
can still occur when multiple miners find PoWs around the same time. Nakamoto consensus
can be thought of as a probabilistic method to resolve leader contention in which miners
“vote on” contending leaders using their mining power. A leader (or its block) “wins” the
contention gradually and probabilistically, until an overwhelming majority of miners “adopt”
it by mining on top of it. In Solida, we also use PoW as an imperfect Sybil-proof leader
election oracle. But instead of using Nakamoto consensus, we use a traditional Byzantine
consensus protocol to resolve leader contention with certainty, rather than probabilistically.

Once we have a committee, electing new members using Byzantine consensus (as opposed
to Nakamoto) just seems to be the natural design once we have a closer look at the details
of the protocol. A central challenge of this framework is to reconcile the permissioned
nature of Byzantine consensus protocols and the permissionless requirement of decentralized
blockchains. Byzantine consensus protocols like PBFT assume a static group of committee
members, but to be permissionless and decentralized, committee members must change over
time – a step commonly referred to as reconfiguration. Note that the Nakamoto chain in
hybrid consensus only provides agreement on the identities of the new members and when
reconfiguration should happen. It does not dictate when and how reconfiguration actually
happens. The standard reconfiguration technique requires a consensus decision from the old
committee on the closing state [17, 13, 30, 3, 24, 1]. It is then just natural to include in that
consensus decision the new configuration (i.e., the identity of the new member), at no extra
cost, thereby eliminating the need for Nakamoto chains altogether.

1 Solidus was a gold coin used in the Byzantine Empire. Solida is our way of (mis-)spelling Solidus.



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:3

Not relying on Nakamoto consensus gives Solida a few advantages over hybrid consensus.
First, the identities of committee members are exposed for a shorter duration in Solida
compared to hybrid consensus, because their identities no longer need to be buried in a
Nakamoto chain. (Admittedly, members’ identities are still exposed during their service on the
committee for both Solida and hybrid consensus.) Second, defending selfish mining [10, 23] is
much easier with the help of a committee (cf. Section 4.4). In comparison, hybrid consensus
requires quite a complex variant of Nakamoto consensus in FruitChain [27] to defend against
selfish mining. Third, analysis of our protocol is much simpler. In contrast, although the
Bitcoin protocol is simple and elegant, its formal modeling and analysis turn out to be highly
complex [12, 25]. FruitChain [27] and the interaction between Nakamoto and Byzantine
consensus [26] further complicate the analysis.

Contribution. The high-level idea of designing blockchains protocols using reconfigurable
Byzantine consensus is by no means new. PeerCensus [8] and ByzCoin [15] are two other
works in this framework and they predate hybrid consensus and Solida. Comparing to those
two works is tricky since their protocols were described only at a high level. But no matter
how one interprets their protocols, our paper makes the following new contributions:

Detailed protocol. We present full details of our protocol, and in particular, the
reconfiguration step. Reconfiguration is perhaps the step that deserves the most detailed
treatment, since the protocol between two reconfiguration events is just conventional
Byzantine consensus.
Rigorous proof. We rigorously prove that Solida achieves safety and liveness if the
adversary’s ratio of mining power does not exceed (roughly) 1/3.
Implementation and evaluation. We implement Solida and measure its performance.
Our implementation is fully Byzantine fault tolerant. With a 0.1s network latency and
75 Mbps network bandwidth, Solida with committees of 1000 members can commit a
consensus decision in 23.6 seconds.

1.1 Overview of the Solida Protocol
At a high level, Solida runs a Byzantine consensus protocol among a set of participants, called
a committee, that dynamically change over time. The acting committee commits transactions
into a linearizable log using a modified version of PBFT [5]. The log is comparable to
the Bitcoin blockchain, also called a public ledger. We say each consensus decision fills a
slot in the ledger. A consensus decision can be either (1) a batch of transactions, (2) a
reconfiguration event. The first type of decision is analogous to a block in Bitcoin. The
second type records the membership change in the committee.

We denote the i-th member in chronological order as Mi, and the committee size is
n = 3f + 1. Then, the i-th committee Ci = (Mi,Mi+1,Mi+2, · · · ,Mi+n−1). The first
committee C1 is known as the Genesis committee, and its n members are hard coded. After
that, each new member is elected onto the committee one at a time, by the acting committee
using reconfiguration consensus decisions.

At any time, one committee member serves as the leader. It proposes a batch of
transactions into the next empty slot s in the ledger. Other members validate proposed
transactions (no double spend, etc.) and commit them in two phases. A Byzantine leader
cannot violate safety but may prevent progress. If members detect lack of progress, they elect
the next leader in the round robin order using standard techniques from PBFT view change.
The next leader needs to stop previous leaders, learn the status from 2f + 1 members and
possibly redo consensus for previous slots, before continuing on to future empty slots.

OPODIS 2017



25:4 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

The more interesting part of protocol is reconfiguration. To be elected onto the committee,
a miner needs to present a PoW, i.e., a solution to a moderately hard computational puzzle.
Upon seeing this PoW, the current committee tries to reach a special reconfiguration consensus
decision that commits (1) the identity of the new member, i.e., a public key associated with
the PoW, and (2) the closing state before the reconfiguration. Once this reconfiguration
consensus decision is committed, the system transitions into the new configuration Ci+1.
Starting from the next slot, PoW finder becomes the newest committee member Mi+n, and
the oldest committee member Mi loses its committee membership.

Here, a crucial design choice is: who should be the leader that drives reconfiguration?
The first idea that comes to mind is to keep relying on the round robin leaders. But this
approach presents a challenge on the analysis. The current leader may be Byzantine and
refuse to reconfigure when it should. By doing so, it tries to buy time for other adversarial
miners to find competing PoWs, so that it can nominate a Byzantine new member instead.
Although we can conceive mechanisms to replace this leader, subsequent leaders may also
be Byzantine. The probability of taking in an honest new member now depends on the
pattern of consecutive Byzantine leaders on the current committee. This means we will not
be able to apply the Chernoff inequality to bound the number of Byzantine members on
a committee. It is unclear whether this is merely a mathematical hurdle or the adversary
really has some way to increase its representation on the committee gradually and to go
above n/3 eventually.

Therefore, we will switch to external leaders for reconfiguration. In particular, the
successful miner would act as the leader L for reconfiguration and try to elect itself onto the
committee. When L’s reconfiguration proposal is committed (becomes a consensus decision),
reconfiguration is finished, and the system starts processing transactions under the new
committee with L being the leader. Note that at this point L becomes a committee member,
so the system has seamlessly transitioned back to internal leaders.

By giving all external miners opportunities to become leaders, we introduce a new leader
contention problem. It is possible that before L can finish reconfiguration, another miner L′
also finds a PoW. Moreover, there may be concurrent internal leaders who are still trying to
propose transactions. Solida resolves this type of contention through a Paxos-style leader
election [16] with ranks. Only a higher ranked leader can interrupt lower ranked ones. To
ensure safety, the higher ranked leader may have to honor the proposals from lower ranked
leaders by re-proposing them, if there exists one.

Now the key challenge is to figure out how leaders (internal or external) should be
ranked in our protocol. One idea is to rank external leaders by the output hash of their
PoW, and stipulate that external leaders are higher ranked than all internal leaders in that
configuration. This approach, however, allows the adversary to prevent progress once in a
while. If a Byzantine miner submits a “high ranked” PoW but does not drive reconfiguration,
the system temporarily stalls until some honest miner finds an even higher ranked PoW.
Note that no transactions can be approved in the meantime because internal leaders are all
lower ranked than the Byzantine PoW finder. Our solution to this problem is to “expire”
stalling external leaders, and give the leader role back to current committee members, so
that the committee can resume processing transactions under internal leaders until the next
external leader emerges. Crucially, during this process, we must enforce a total order among
all leaders, internal or external, to ensure safety. The details are presented in Section 4.



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:5

1.2 Overview of the Model and Proof
We adopt the network model of Pass et al. [25]: a bounded message delay of ∆ that is known
apriori to all participants. Note that this is the standard synchronous network model in
distributed computing, though Pass et al. [25] call it “asynchronous networks”. What they
really meant was that Bitcoin does not behave like a conventional synchronous protocol. In
a conventional synchronous protocol, participants move forward in synchronized rounds of
duration ∆, but Bitcoin does nothing of this sort and has no clear notion of rounds. Our
adoption of a synchronous network model may raise a few immediate questions, which we
discuss below.

Is the bounded message delay assumption realistic for the Internet? How realistic this
assumption is depends a lot on the parameter ∆. With a conservative estimate, say ∆ = 5
seconds, and Byzantine fault tolerance, the assumption may be believable. Fault tolerance
also helps here. Participants experiencing slow networks and unable to deliver messages
within ∆ are considered Byzantine. So the assumption we require in Solida is that adversarial
participants and “slow” participants collectively control no more than (roughly) 1/3 of the
mining power.

More importantly, the bounded network delay assumption seems necessary for all PoW-
based protocols. Otherwise, imagine that whenever an honest member finds a PoW, its
messages are arbitrarily delayed due to asynchrony. Then, it is as if that the adversary
controls 100% of the mining power. In this case, the adversary can create forks of arbitrary
lengths in Bitcoin or completely take over the committee in BFT-based blockchains [8, 15, 26].
Pass et al. formalized the above intuition and showed that Bitcoin’s security fundamentally
relies on the bounded message delay [25]. The larger ∆ is, the smaller percentage of Byzantine
participants Bitcoin can tolerate; if ∆ is unbounded (an asynchronous network), then even
an adversary with minuscule mining power can break Bitcoin.

Why do we use PBFT if the network is synchronous? It is well known that there exist
protocols that can tolerate f < n/2 Byzantine faults in a synchronous network [14, 20, 29].
By requiring f < n/3, PBFT preserves safety under asynchrony. But this seems unnecessary
given that we assume synchrony. We adopt PBFT (with modifications) because it is an
established protocol that provides responsiveness. Most protocols that tolerate f < n/2 are
synchronous and not responsive, because they advance in rounds of duration ∆. If the actual
latency of the network is better than ∆ – either because the ∆ estimate is too pessimistic,
the network is faster in the common case, or the network speed has improved as technology
advances – a responsive protocol would offer better performance than a synchronous one. In
other words, we opt to use an asynchronous protocol in a synchronous setting, essentially
abandoning the strength of the bounded message delay guarantee, in order to run as fast as
the network permits. But like all PoW-based blockchains, we rely on synchrony for safety in
the worse case. We remark that a recent protocol called XFT [20] seems to be responsive in
its steady state while tolerating f < n/2 Byzantine faults. An interesting future direction is
to explore whether we can combine our reconfiguration techniques and XFT to get the best
of both worlds.

Proof outline. If each committee in Solida has no more than f < n/3 Byzantine members,
then safety mostly follows from traditional Byzantine consensus. To guarantee f < n/3, we
require that reconfiguration is mostly “fair”, i.e., the probability that a newly elected member
is honest (Byzantine) is roughly proportional to the mining power of honest (Byzantine)

OPODIS 2017



25:6 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

Table 1 Comparison of consensus protocols in Solida and related designs. Bitcoin and
Solida combine committee election and transactions into a single step. Other protocols decouple the
two, which we reflect with two separate columns in the table.

Design Consensus for Responsive Defend
committee election transactions selfish mining

Bitcoin [22] Nakamoto No No
Bitcoin-NG [9] Nakamoto Nakamoto No No
PeerCensus [8] Byzantine∗ Byzantine Yes No
ByzCoin [15] Nakamoto/Byzantine Byzantine Yes Yes

Hybrid consensus [26] Nakamoto Byzantine Yes Yes
Solida Byzantine Byzantine Yes Yes

miners. Additionally, with external leaders driving reconfiguration, we can show independence
between reconfiguration events, and can then apply the Chernoff inequality to bound the
probability of having n/3 Byzantine members on a committee. Thus, the key step of the
proof is to show that the Byzantine participants cannot distort their chance of joining the
committee by too much. Here, the adversary’s main advantage is the network delay for
honest participants, which essentially buys extra time for Byzantine miners to find PoWs.
But since the network delay is bounded, the Byzantine miners’ advantage in finding PoWs
can be also bounded.

2 Related Work

A comparison between Solida and related designs. Table 1 compares Solida and related
designs. To start, we have Bitcoin that pioneered the direction of permissionless consensus
(though not using the term). Bitcoin uses Nakamoto consensus, i.e., PoW and the longest-
chain-win rule, and does not separate leader election and transaction processing. There
have been numerous follow-up works in the Nakamoto framework. Some “altcoins” simply
increases the block creation rate without other major changes to the Bitcoin protocol. A few
proposals relax the “chain” design and instead utilize other graph structures to allow for
faster block creation rate [32, 19, 31]. Some proposals [28] aim to improve throughput with
off-chain transactions.

The key idea of Bitcoin-NG is to decouple transactions and leader election [9]. A miner
is elected as a leader if it mines a (key) block in a PoW chain. This miner/leader is then
responsible for signing transactions in small batches (microblocks) until a new leader emerges.
Since (key) blocks in the PoW chain are small, Bitcoin-NG reduces the likelihood of forks.
One can think of each leader in Bitcoin-NG to be a single-member committee. Since a single
leader cannot be trusted, any transactions it approves still have to be buried in a Nakamoto
PoW chain. Thus, Bitcoin-NG does not improve transaction confirmation time.

To our knowledge, PeerCensus [8] is the first work to envision a committee that approves
transactions using PBFT. It makes the observation that Byzantine consensus enables fast
transaction confirmation. The description and pseudocode are very high level. Under our
best interpretation, it seems that the committee is responsible for reconfiguring itself using
Byzantine consensus, but no detail is given on reconfiguration. ByzCoin [15] employs multi-
signatures to improve the scalability of PBFT. The reconfiguration algorithm in ByzCoin
seems to be left open with multiple options. The description in the paper [15] is quite terse,
and can be interpreted in multiple ways. A later blog post [11] suggests adopting hybrid



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:7

consensus [26]. If ByzCoin goes this path, then our comparison to hybrid consensus applies
to ByzCoin as well. Through private communication, we learned that ByzCoin designers
also had in mind a PBFT-style reconfiguration protocol, which seems to involve extra steps
not described in the paper. We will have to wait to see a detailed published reconfiguration
protocol to compare with ByzCoin properly. Pass and Shi proposed hybrid consensus [26],
which we have compared to in detail in Section 1.

Blockchain analysis. While the Bitcoin protocol is quite simple and elegant, proving its
security rigorously turns out to be highly nontrivial. The original Bitcoin paper [22] and
a few early works [10, 32] considered specific attacks. Garay et al. [12] provided the first
comprehensive security analysis for Bitcoin, by modeling Bitcoin as a synchronous protocol
running in a synchronous network. Pass et al. [25] refined the analysis after observing that
Bitcoin, while relying on a synchronous assumption, does not behave like a conventional
synchronous protocol (cf. Section 1.1).

Byzantine Consensus. Consensus is a classic problem in distributed computing. There are
a few variants of the consensus problem under Byzantine faults. A theoretical variant is
Byzantine agreement [18] in which a fixed set of participants, each with an input value, try to
agree on the same value. A more practical variant, which is also more suitable for blockchains,
is BFT state machine replication (SMR). In this variant, a fixed set of participants try to
agree on a sequence of values that may come from any participant or even external sources.
Most BFT SMR protocols follow the PBFT [5] framework.

3 Model

Network. We consider a permissionless setting in which participants use their public keys
as pseudonyms and can join or leave the system at any time. Participants are connected
to each other in a peer-to-peer network with a small diameter. As mentioned, we adopt a
synchronous network model: whenever a participant sends a message to another participant,
the message is guaranteed to reach the recipient within ∆ time. For convenience, we define
∆ to be the end-to-end message delay bound. If there are multiple hops from the sender
to the recipient, ∆ is the time upper bound for traveling all those hops. Our protocol uses
computational puzzles, i.e., PoW. Similar to Bitcoin, the difficulty of the puzzle is periodically
adjusted so that the expected time to find a PoW stays at D. D should be set significantly
larger than ∆ according to our analysis in Section 4.5.

Types of participants. Participants in the system are either honest or Byzantine. Honest
participants always follow the prescribed protocol, and are capable of delivering a message
to other honest participants within ∆ time. Byzantine participants are controlled by a
single adversary and can thus coordinate their actions. At any time, Byzantine participants
collectively control no more than ρ fraction of the total computation power. We assume the
n members in the Genesis committee C1 are known to all participants, and that the number
of Byzantine participants on C1 is less than n/3.

Delayed adaptive adversary. We assume it takes time for the adversary to corrupt a honest
participant. It captures the idea that it takes time to bribe a miner or infect a clean host.
Most committee-based designs [8, 15, 26] require this assumption. Otherwise, an adversary
can easily violate safety by corrupting the entire committee, which may be small compared

OPODIS 2017



25:8 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

to the whole miner population. This is formalized as a delayed adaptive adversary by Pass
and Shi [26]. Specifically, we assume that even if the adversary starts corrupting a member
as soon as it emerges with a PoW, by the time of corruption, the member would have already
left the committee. Whether this assumption holds in practice remains to be examined.
Algorand [6] introduced techniques to hide the identities of the committee members, and can
thus tolerate instant corruption. Its core technique, however, seems to be tied to proof of
stake, which has its own challenges such as the nothing-at-stake problem.

4 The Protocol

4.1 Overview

Solida has a rolling committee running a Byzantine consensus protocol to commit (batches
of) transactions and reconfiguration events into a ledger. We say each committed decision
fills a slot in a linearizable ledger. The protocol should guarantee all honest members commit
the same value for each slot (safety) and keeps moving to future slots (liveness). To provide
safety and liveness, the number of Byzantine members on each committee must be less than
f (n = 3f + 1), which will be proved in Section 4.5.

We first describe the protocol outside reconfiguration, i.e., when no miner has found a
PoW for the current puzzle. This part further consists of two sub-protocols: steady state
under a stable leader (Section 4.2), and view change to replace the leader (Section 4.3).
Members monitor the current leader, and if the leader does not make progress after some
time, members support the next leader. The new leader has to learn what values have been
proposed, and possibly re-propose those values. This part of the protocol is very similar to
PBFT [5] except that the views in our protocol have more structures to support external
leaders for reconfiguration (Section 4.4).

Each configuration can have multiple lifespans, and each lifespan can have many views.
We use consecutive integers to number configurations, lifespans within a configuration, and
views within a lifespan. The lifespan number is the number of PoWs (honest) committee
members have seen so far in the current configuration. Intuitively, when a new PoW is found,
the lifespan of the previous PoW ends. As explained in Section 1.1, our protocol can switch
back and forth between internal and external leaders and we must enforce a total order among
all leaders. To this end, we will associate each leader with a configuration-lifespan-view tuple
(c, e, v), and rank leaders by c first, and then e, and then v. Each (c, e, v) tuple also defines
a steady state, in which the leader of that view, denoted as L(c, e, v), proposes values for
members to commit. The view tuple and the leader role are managed as follows.

Upon learning that a reconfiguration event is committed into the ledger, a member M
increases its configuration number c by 1, and resets e and v to 0. L(c, 0, 0) is the newly
added member by the previous reconfiguration consensus decision.
Upon receiving a new PoW for the current configuration, a member M increases its
lifespan number e by 1, and resets v to 0. M now supports the finder of the new PoW as
L(c, e, 0) (e ≥ 1).
Upon detecting that the current leader is not making progress (timed out), a member M
increases its view number v by 1. L(c, e, v) (v ≥ 1) is the l-th member on the current
committee, by the order they join the committee, where l = H(c, e) + v mod n, and H
is a random oracle (hash function).

To summarize, the 0-th leader of a lifespan is the newly added member (for e = 0) or the
new PoW finder (e ≥ 1). After that, leaders in that lifespan are selected in a round robin



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:9

manner, with a pre-defined starting point. We chose a pseudorandom starting point using H
but other choices also work.

Now let us consider whether honest members agree on the identities of the leaders. For a
view (c, e, v) with e = 0 or v ≥ 1, the leader identity is derived from a deterministic function
on the tuple and the current committee member identities (i.e., previous reconfiguration
decisions). As long as the protocol ensures safety so far, members agree on the identities
of these leaders. For views of the form (c, e, 0) with e ≥ 1, members may not agree on the
leader’s identity if they receive multiple PoWs out of order. This is not a problem for safety
because it is similar to having an equivocating leader and a BFT protocol can tolerate leader
equivocation. However, contending leaders in a view may prevent progress. Luckily, members
will time out and move on to views (c, e, v) with v ≥ 1. Unique leaders in those views will
ensure liveness.

Crucially, our protocol forbids pipelining to simplify reconfiguration: a member M sends
messages for slot s only if it has committed all slots up to s− 1. LetM(c, e, v, s) be the set
of members currently in view (c, e, v) working on slot s. Each honest member M can only
belong to one such set at any point in time.

We use digital signatures even under a stable leader, i.e., we do not use PBFT’s MAC
optimization [5]. The MAC optimization is not effective for a cryptocurrency since there are
already hundreds of digital signatures to verify in each block/slot. We use 〈x〉M to denote a
message x that carries a signature from member M . A message can be signed in layers, e.g.,
〈〈x〉M 〉M ′ . When the context is clear, we omit the signer and simply write 〈x〉 or 〈〈x〉〉.

When we say a member “broadcasts” a message, we mean the member sends the message
to all current committee members including itself.

4.2 Steady State
(Propose) The leader L picks a batch of valid transactions {tx} and then broadcasts
{tx} and 〈propose, c, e, v, s, h〉L where h is the hash digest of {tx}.
After receiving {tx} and 〈propose, c, e, v, s, h〉L, a member M ∈M(c, e, v, s) checks
L = L(c, e, v) and L has not sent a different proposal,
s is a fresh slot, i.e., no value could have been committed in slot s (details in Section 4.4),
{tx} is a set of valid transactions whose digest is h.

(Prepare) If all the above checks pass, M broadcasts 〈prepare, c, e, v, s, h〉.
After receiving 2f + 1 matching prepare messages, a member M ∈ M(c, e, v, s) accepts
the proposal (represented by its digest h), and concatenates the 2f + 1 matching prepare
messages into an accept certificate A.
(Commit) Upon accepting h, M broadcasts 〈commit, c, e, v, s, h〉.
After receiving 2f + 1 matching commit messages, a member M ∈M(c, e, v, s) commits
{tx} into slot s, and concatenates the 2f + 1 matching commit messages into a commit
certificate C.

The above is standard PBFT. We now add an extra propagation step to the steady state.

(Notify) Upon committing h, M sends 〈〈notify, c, e, v, s, h〉 , C〉M to all other members to
notify them about the decision. M also starts propagating this decision on the peer-to-peer
network to miners, users and merchants, etc. M then moves to slot s+ 1.
Upon receiving a notify message like the above, a member commits h, sends and propagates
its own notify message if it has not already done so, and then moves to slot s+ 1.

OPODIS 2017



25:10 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

4.3 View Change
A Byzantine leader cannot violate safety, but it can prevent progress by simply not proposing.
Thus, in PBFT, every honest member M monitors the current leader, and if no new slot is
committed after some time, M abandons the current leader and supports the next leader.
Since we have assumed a worst-case message delay of ∆, it is natural to set the timeout based
on ∆. The concrete timeout values (4∆ and 8∆) will be justified in the proof of Theorem 2.

(View-change) Whenever a member M moves to a new slot s in a steady state, it starts
a timer T . If T reaches 4∆ and M still has not committed slot s, then M abandons the
current leader and broadcasts 〈view-change, c, e, v〉.
Upon receiving 2f + 1 matching view-change messages for (c, e, v), if a member M is not
in a view higher than (c, e, v), it forwards the 2f + 1 view-change messages to the new
leader L′ = L(c, e, v + 1). After that, if M does not receive a new-view message from L′

within 2∆, then M abandons L′ and broadcasts 〈view-change, c, e, v + 1〉.
(New-view) Upon receiving 2f + 1 matching view-change messages for (c, e, v), the new
leader L′ = L(c, e, v + 1) concatenates them into a view-change certificate V, broadcasts
〈new-view, c, e, v + 1,V〉L′ , and enters view (c, e, v + 1).
Upon receiving a 〈new-view, c, e, v,V〉L′ message, if a member M is not in a view higher
than (c, e, v), it enters view (c, e, v) and starts a timer T . If T reaches 8∆ and still no
new slot is committed, then M abandons L′ and broadcasts 〈view-change, c, e, v〉.
(Status) Upon entering a new view (c, e, v), M sends 〈〈status, c, e, v, s− 1, h, s, h′〉 , C,A〉
to the new leader L′ = L(c, e, v). In the above message, h is the value committed in slot
s− 1 and C is the corresponding commit certificate; h′ is the value accepted by M in slot
s and A is the corresponding accept certificate (h′ = A = ⊥ if M has not accepted any
value for slot s). We call the inner part of the message (i.e., excluding C,A) its header.
Upon receiving 2f + 1 status, L′ concatenates the 2f + 1 status headers to form a status
certificate S. L′ then picks a status message that reports the highest last-committed slot
s∗; if there is a tie, L′ picks the one that reports the highest ranked accepted value in
slot s∗ + 1 . Let the two certificates in this message be C∗ and A∗ (A∗ might be ⊥).
(Re-propose) The new leader L′ broadcasts 〈repropose, c, e, v, s∗ + 1, h′,S, C∗,A∗〉L′ . In
the above message, s∗ should be the highest last-committed slot reported in S. h′ should
match the value in A∗ if A∗ 6= ⊥; If A∗ = ⊥, then L′ can choose h′ freely. 2

The repropose message serves two purposes. First, C∗ allows everyone to commit slot s∗.
Second, it re-proposes h′ for slot s∗ + 1, and carries a proof (S,A∗) that h′ is safe for
slot s∗ + 1. The repropose message is invalid if any of the aforementioned conditions is
violated: s∗ is not the highest committed slot, C is not for slot s∗, A is not for the highest
ranked accepted value for s∗ + 1, or h′ is not the value certified by A.
Upon receiving a valid repropose message, a member M commits slot s∗ if it has not
already; M then executes the prepare/commit/notify steps as in the steady state for slot
s∗ + 1, and marks all slots > s∗ + 1 fresh for view (c, e, v). At this point, the system
transitions into a new steady state.

A practical implementation of our protocol can piggyback status messages on view-change
messages and repropose messages on new-view messages to save two steps. We choose to
separate them in the above description because the reconfiguration sub-protocol can reuse
the status step.

2 Strictly speaking, in this case, L′ is proposing a new value rather than re-proposing. But we keep the
message name as repropose for convenience. A similar situation exists in reconfiguration.



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:11

4.4 Reconfiguration
PoW to prevent Sybil attacks. In order to join the committee, a new member must show
a PoW, i.e., a solution to a computational puzzle based on a random oracle H. The details
of the puzzle will be discussed later. For now, it is only important to know that each
configuration defines a new puzzle. Let the puzzle for configuration c be puzzle(c). Solutions
to this puzzle are in the form of (pk, nonce). pk is a miner’s public key. A miner keeps trying
different values of nonce until it finds a valid solution such that H(puzzle(c), pk, nonce) is
smaller than some threshold. The threshold is also called the difficulty and is periodically
adjusted to keep the expected reconfiguration interval at D.

Upon finding a PoW, the miner tries to join the committee by driving a reconfiguration
consensus as an external leader. To do so, it first broadcasts the PoW to committee members.

(New-lifespan) Upon finding a PoW, the miner broadcasts it to the committee members.
Upon receiving a new valid PoW for the current configuration (that M has not seen
before), M forwards the PoW to other members, enters view (c, e+ 1, 0), sets the PoW
finder as its 0-th leader L′ = L(c, e+ 1, 0) of the new lifespan, and starts a timer T . If
T reaches 8∆ and still no new slot is committed, then M abandons L′ and broadcasts
〈view-change, c, e+ 1, 0〉.
(Status) Upon entering a new lifespan, M sends L′ 〈〈status, c, e, 0, s− 1, h, s, h′〉 , C,A〉,
where s, h, C,A are defined the same way as in the view-change sub-protocol.
Upon receiving 2f + 1 status, L′ constructs s∗, S, C∗ and A∗ as in view-change.
(Re-propose and Reconfigure) Let h∗ be the committed value in the highest commit-
ted slot s∗ among S. Let h′ be the highest ranked accepted value (could be ⊥) into slot
s∗ + 1 among S. Note that h∗ and h′ are certified by S, C∗ and A∗. Now depending on
whether h∗ and h′ are transactions or reconfiguration events, the new external leader L′
takes different actions.

If h∗ is a reconfiguration event to configuration c + 1, then L′ simply broadcasts C
and terminates. Terminating means L′ gives up its endeavor to join the committee
(it is too late and some other leader has already finished reconfiguration) and starts
working on puzzle(c+ 1).
If h∗ is a batch of transactions, and h′ is a reconfiguration event to configuration c+ 1,
then L′ broadcasts 〈repropose, c, e, 0, s∗ + 1, h′,S, C∗,A∗〉L′ and then terminates.
If h∗ is a batch of transactions, and h′ = ⊥, then L′ tries to drive the reconfigura-
tion consensus into slot s∗ + 1 by broadcasting 〈repropose, c, e, 0, s∗ + 1, h,S, C∗,A∗〉L′
where h is a reconfiguration event that lets L′ join the committee. If this proposal
becomes committed, then starting from slot s∗+ 2, the system reconfigures to the next
configuration and L′ joins the committee replacing the oldest member.
If h∗ and h′ are both batches of transactions, then L’ first re-proposes h′ for slot s∗+ 1
by broadcasting 〈repropose, c, e, 0, s∗ + 1, h′,S, C∗,A∗〉L′ . After that, L′ tries to drive
a reconfiguration consensus into slot s∗+2 by broadcasting 〈propose, c, e, 0, s∗ + 2, h〉L′
where h is a reconfiguration event that lets L′ join the committee. If this proposal
becomes committed, then starting from slot s∗+ 3, the system reconfigures to the next
configuration and L′ joins the committee replacing the oldest member.

In the latter three cases, members react to the repropose message in the same way
as in view-change: check its validity and execute prepare/commit/notify. Note that the
reconfiguration proposal in the last case is a steady state propose message instead of a
repropose message, and it does not need to carry certificates as proofs. This is because
after members commit the re-proposed value into slot s∗ + 1, the system enters a special

OPODIS 2017



25:12 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

steady state under leader L′. Slot s∗ + 2 will be marked as a fresh slot in this steady state.
This steady state is special in the sense that, if L′ is not faulty and is not interrupted
by another PoW finder, members will experience a configuration change, but the leader
remains unchanged as we have defined L(c+ 1, 0, 0) to be the newly added member. After
reconfiguration, it becomes a normal steady state in view (c+ 1, 0, 0).

The puzzle and defense to selfish mining. We now discuss what exactly the puzzle is. A
natural idea is to make the puzzle be the previous reconfiguration decision. However, this
allows withholding attacks similar to selfish mining [10]. To favor the adversary, we assume
that if the adversary and an honest miner both find PoWs, the adversary wins the contention
and joins the committee. Then, when the adversary finds a PoW first, its best strategy is to
temporarily withhold it. At this point, the adversary already knows the next puzzle, which is
its own reconfiguration proposal. Meanwhile, honest miners are wasting their mining power
on the current puzzle, not knowing that they are doomed to lose to the adversary when they
eventually find a PoW. This gives the adversary a head start on the next puzzle. Its chance of
taking the next seat on the committee will hence be much higher than its fair share of mining
power. The authors of ByzCoin suggested an idea to thwart the above attack: let the puzzle
include 2f + 1 committee member signatures. This way, a PoW finder cannot determine
the puzzle on its own and thus gains nothing from withholding its PoW. For concreteness,
we let puzzle(c+ 1) be any set of f + 1 notify headers for the last reconfiguration decision
〈notify, c, e, v, s, h〉. This ensures the following:

I Lemma 1. The adversary learns a puzzle at most 2∆ time earlier than honest miners.

Proof. For the adversary to learn the puzzle, at least one honest committee member must
broadcast its notify message, which will cause all other honest members to broadcast their
notify messages within ∆ time. After another ∆ time, all honest miners receive enough notify
messages to learn the puzzle. J

4.5 Safety and Liveness
We first prove safety and liveness assuming each committee has no more than f < n/3
Byzantine members. The proof of the following theorem (given in the appendix) mostly
follows PBFT. Essentially, the biggest change we made to PBFT at an algorithmic level is
from a round robin leader schedule to a potential interleaving between internal and external
leaders. But crucially, we still have a total order among leaders to ensure safety and liveness.

I Theorem 2. The protocol achieves safety and liveness if each committee has no more than
f < n/3 Byzantine members.

Next, we show f < n/3 indeed holds. Let ρ be the adversary’s ratio of mining power.
Honest miners thus collective control 1 − ρ of the total network mining power. Ideally,
we would hope that reconfiguration is a “fair game”, i.e., the adversary taking the next
committee seat is with probability ρ, and an honest miner takes the next seat with probability
1 − ρ. This is indeed simply assumed to be the case in PeerCensus [8] and ByzCoin [15].
However, we show that due to network latency, it is as if that the adversary has an effective
mining power ρ′ = 1− (1− ρ)e−(2ρ+8)∆/D > ρ. (Recall that D is the expected time for the
entire network to find a PoW.) We need D � ∆ so that ρ′ is not too much larger than ρ.

I Theorem 3. Assuming f < n/3 holds for C1, then f < n/3 holds for each subsequent
committee except for a probability exponentially small in n if ρ′ = 1−(1−ρ)e−(2ρ+8)∆/D < 1/3.



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:13

Proof. The increase in the adversary’s effective mining power comes from three sources.
First, as Lemma 1 shows, the adversary may learn a puzzle up to 2∆ earlier than honest
miners. Second, if the adversary finds a PoW while an honest external leader is reconfiguring,
which can take up to 8∆ time, the adversary can interrupt the honest leader and win the
reconfiguration race. Lastly, two honest leaders may interrupt each other if they find PoWs
within 8∆ time apart, while the adversary-controlled miners can coordinate their actions.
Therefore, an honest miner wins a reconfiguration if all three events below happen:

(event X) the adversary finds no PoW in its 2∆ head start,
(event Y ) some honest miner finds a PoW earlier than the adversary given X, and
(event Z) no miner, honest or adversarial, finds a PoW in the next 8∆ time given Y .

PoW mining is a memory-less process modeled by a Poisson distribution: the probability
for a miner to find k PoWs in a period is p(k, λ) = λke−λ

k! , where λ is the expected number
of PoWs to be found in this period. Recall that the expected time for all miners combined to
find a PoW is D. In the 2∆ head start, the adversary expects to find λX = 2∆ρ/D PoWs.
Thus, Pr(X) = p(0, λX) = e−2∆ρ/D. Similarly, Pr(Z) = e−8∆/D. Event Y is a “fair race”
between the adversary and honest miners, so Pr(Y ) = 1 − ρ. The memory-less nature of
PoW also means that the above events X,Y and Z are independent. Thus, the probability
that an honest miner wins a reconfiguration is

Pr(X ∩ Y ∩ Z) = Pr(X) Pr(Y ) Pr(Z) = (1− ρ)e−(2ρ+8)∆/D := 1− ρ′.

We define the above probability to be 1− ρ′, which can be thought of as the honest miners’
effective mining power once we take message delays into account. ρ′ is then the adversary’s
effective mining power. This matches our intuition: as D →∞, the adversary’s advantage
from message delay decreases, and (1− ρ′)→ (1− ρ).

Conditioned on all committees up to Ci having no more than n/3 Byzantine members,
the adversary wins each reconfiguration race with probability at most ρ′, independent of the
results of other reconfiguration races. We can then use the Chernoff inequality to bound
the probability of Byzantine members exceeding n/3 on any committee up to Ci+1. Let
Q denote the number of Byzantine members on a committee. We have E(Q) := µ = ρ′n.
Pr(Q ≥ (1 + δ)µ) ≤ e

−δµ log(1+δ)
2 due to the Chernoff bound. Select δ = 1

3ρ′ − 1, we have

Pr(Q ≥ n/3) ≤ e
n(1−3ρ′) log(3ρ′)

6 . If ρ′ < 1/3, then (1 − 3ρ′) log(3ρ′) < 0, and the above
probability is exponentially small in n as required. J

Concrete committee size. We calculate the required committee size under typical values.
We can calculate ρ′ from ρ given the value of ∆/D. If ∆ is 5 seconds and D is 10 minutes,
then ∆/D = 1/120. Then, for a desired security level, a simple calculation of binomial
distribution yields the required committee size n. The results are listed in Table 2. A security
parameter k means there is a 2−k probability that, after a reconfiguration, the adversary
controls more than n/3 seats on the committee. k = 25 or k = 30 should be sufficient in
practice. Assuming we reconfigure every 10 minutes, 225 reconfigurations take more than 600
years and 230 reconfigurations take more than 20,000 years. With ρ′ = 25%, the required
committee size is around 1000.

It is worth noting that as ρ′ approaches 33%, the required committee size increases
rapidly and the committee-based approach becomes impractical. This gap between theory
and practice is expected. Similarly, Bitcoin, in theory, can tolerate an adversarial with up to
50% mining power. But the recommended “six confirmation” is calculated assuming a 10%
adversary and a rather low security level k ≈ 10. If the adversary really controls close to
50% mining power, then thousands of confirmations would be required for each block.

OPODIS 2017



25:14 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

Table 2 The required committee size under different adversarial miner ratios ρ and desired
security levels k, assuming ∆/D = 1/120.

k 20 25 30 35 40

ρ = 14% ρ′ = 20% 232 298 367 439 508
ρ = 20% ρ′ = 25% 649 841 1036 1231 1423
ρ = 23% ρ′ = 28% 1657 2149 2644 3142 3580
ρ = 25% ρ′ = 30% 4366 5650 6949 8248 9256

4.6 Towards Pipelining
One limitation of the above Solida protocol is that it forbids pipelining, i.e., members are
not allowed to work on multiple slots in parallel. The interaction between pipelining and
reconfiguration is non-trivial, and to the best of our knowledge, has not been worked out in
BFT protocols. In particular, when a slot is being worked on, the exact configuration (i.e.,
identities of committee members) for that slot would not be known if previous slots have not
been committed. In this subsection, we briefly describe how we plan to support pipelining.
We hope to present and implement a detailed pipelined protocol in a future version.

The key idea is to let each proposal carry a digest of its “predecessor proposal”. Since the
predecessor proposal also carries the digest of its own predecessor proposal, each proposal is
tied to its entire chain of “ancestor proposals”. A non-leader member M sends messages for
a proposal for slot s only if M has accepted its predecessor proposal in slot s − 1. When
a member accepts a proposal, it also accepts all its ancestors proposals; likewise, when a
member commits a proposal, it also commits all its ancestors proposals.

During a view-change or a reconfiguration, a member reports in its status message the
highest ranked proposal chain that it has accepted (with an accept certificate). The new
leader L′ then re-proposes the highest ranked proposal chain it hears from members. Note
that in either step, we prioritize the highest ranked proposal chain, not the longest proposal
chain. If the highest ranked proposal chain contains a reconfiguration event in its tail (highest
numbered slot), then L′ re-proposes this proposal chain and terminates. Otherwise, L′
re-proposes the proposal chain and then start making its own proposals. If L′ is a PoW
finder, then its proposal will be a reconfiguration proposal. If its proposal goes through, L′
joins the committee and the system enters a new configuration. The first leader in the new
configuration is the newly added member L′, and the system transitions back to a steady
state with L′ now serving as an internal leader.

5 Implementation and Evaluation

Implementation details. We implement the non-pipelined version of the Solida consensus
protocol in Python and measure its performance. We implement our 6-phase PBFT-style
protocol in which committee members agree on a proposal digest from a successful miner.
For digital signatures, we use ECDSA with the prime192v2 curve and the Charm crypto
library [2]. We test Solida on 16 m4.16xlarge machines on Amazon EC2. The CPUs are
Intel Xeon E5-2686 v4 @ 2.3 GHz. Each machine has 64 cores, giving a total of 1024 cores.
We use 1 CPU core for each committee member, testing committee size up to 1000. To
emulate Internet latency and bandwidth, we add a delay of 0.1 second (unless otherwise
stated) to each message and throttle the bandwidth of each committee member to the values
in Figure 1.



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:15

100 400 1000
Committee size

0

25

50

75

100

125

150

175

Co
ns

en
su

s t
im

e 
(s

)

10 Mbps
35 Mbps
75 Mbps

100
0

2

4

Figure 1 Time to achieve reconfiguration consensus with different committee sizes and network
bandwidth.

Experimental results. The main result we report is the time it takes for committee members
to commit a reconfiguration consensus decision (committing a decision in the steady state
takes strictly less time). We report the consensus time from the leader’s perspective, i.e., the
time between when the leader sends its PoW and when the leader receives the first Notify
message, which is the earliest point at which the leader knows its proposal is committed.
Figure 1 presents the time to reach a reconfiguration consensus decision (averaged over 10
experiments) under different committee sizes n and bandwidth limits. As shown in the
zoomed-in part, with a small committee of 100 members, a decision takes 1 to 3 seconds
depending on the throughput. The bottleneck here is network latency. Recall that there
are 8 sequential messages from the leader’s perspective, each adding 0.1s latency. With
larger committees of 400 and 1000 members, network bandwidth becomes the bottleneck. As
expected, consensus time is roughly quadratic in committee size and inversely proportional
to network bandwidth. With moderate network bandwidth, consensus time is manageable
even with 1000 committee members: 48.3s for 35 Mbps and 23.6s for 75 Mbps. To study the
effect of network latency, we rerun some experiments with a 0.5s latency (results not shown).
In each experiment, the consensus time increases by about 3s, which is as expected given the
8 sequential messages and a 0.4s latency increase for each.

6 Conclusion and Future Work

This work presents Solida, a blockchain protocol based on PoW-augmented reconfigurable
Byzantine consensus. We have presented a detailed protocol, rigorously proved safety and
liveness under the (seemingly necessary) bounded message delay model, and provided a
prototype implementation and evaluation results. Besides the pipelined protocol, interesting
future directions include designing and rigorously analyzing incentives for Solida, and
extending Solida to tolerate an adversary with up to 50% mining power.

Acknowledgement. We thank Eleftherios Kokoris-Kogias for clarifying the ByzCoin pro-
tocol and other helpful discussions. We thank the anonymous reviewers for their valuable
suggestions.

OPODIS 2017



25:16 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

References

1 Ittai Abraham and Dahlia Malkhi. BVP: Byzantine vertical paxos, 2016.
2 Joseph A Akinyele, Christina Garman, Ian Miers, Matthew W Pagano, Michael Rushanan,

Matthew Green, and Aviel D Rubin. Charm: a framework for rapidly prototyping cryp-
tosystems. Journal of Cryptographic Engineering, 3(2):111–128, 2013.

3 Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for the
masses with bft-smart. In Dependable Systems and Networks (DSN), 2014 44th Annual
IEEE/IFIP International Conference on, pages 355–362. IEEE, 2014.

4 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. pages
514–532. Springer, 2001.

5 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the third symposium on Operating systems design and implementation, pages 173–186.
USENIX Association, 1999.

6 Jing Chen and Silvio Micali. Algorand: The efficient and democratic ledger, 2016. URL:
https://arxiv.org/pdf/1607.01341.pdf.

7 CoinDesk. Average number of transactions per block, accessed Aug, 2016. URL: https:
//www.coindesk.com/data/bitcoin-number-transactions-per-block/.

8 Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consis-
tency. In Proceedings of the 17th International Conference on Distributed Computing and
Networking, page 13. ACM, 2016.

9 Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 45–59, 2016.

10 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International Conference on Financial Cryptography and Data Security, pages 436–454.
Springer, 2014.

11 Bryan Ford. Untangling mining incentives in bitcoin and byzcoin, 2016. URL: http:
//bford.github.io/2016/10/25/mining/.

12 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Anal-
ysis and applications. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 281–310. Springer, 2015.

13 Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. Zab: High-performance broad-
cast for primary-backup systems. In Dependable Systems & Networks (DSN), 2011 IEEE/I-
FIP 41st International Conference on, pages 245–256. IEEE, 2011.

14 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. J. Comput. Syst. Sci., 75(2):91–112, 2009.

15 Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing Bitcoin security and performance with strong consistency
via collective signing. In 25th USENIX Security Symposium, pages 279–296. USENIX
Association, 2016.

16 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133–169, 1998.

17 Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup repli-
cation. In Proceedings of the 28th ACM symposium on Principles of distributed computing,
pages 312–313. ACM, 2009.

18 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

https://arxiv.org/pdf/1607.01341.pdf
https://www.coindesk.com/data/bitcoin-number-transactions-per-block/
https://www.coindesk.com/data/bitcoin-number-transactions-per-block/
http://bford.github.io/2016/10/25/mining/
http://bford.github.io/2016/10/25/mining/


I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:17

19 Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.
In International Conference on Financial Cryptography and Data Security, pages 528–547.
Springer, 2015.

20 Shengyun Liu, Christian Cachin, Vivien Quéma, and Marko Vukolic. XFT: practical fault
tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design and
Implementation, pages 485–500. USENIX Association, 2016.

21 Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 17–30. ACM, 2016.

22 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
23 Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Gen-

eralizing selfish mining and combining with an eclipse attack. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 305–320. IEEE, 2016.

24 Diego Ongaro and John K Ousterhout. In search of an understandable consensus algorithm.
In USENIX Annual Technical Conference, pages 305–319, 2014.

25 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Advances in Cryptology – EUROCRYPT 2017, pages 643–673.
Springer International Publishing, 2017.

26 Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. 2016. Cryptology ePrint Archive, Report 2016/917.

27 Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, pages 315–324. ACM, 2017.

28 Joseph Poon and Thaddeus Dryja. The Bitcoin lightning network: Scalable off-chain instant
payments. Technical Report., 2015. URL: https://lightning.network.

29 Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. Practical synchronous
byzantine consensus. Cryptology ePrint Archive, Report 2017/307, 2017. URL: http:
//eprint.iacr.org/2017/307.

30 Rodrigo Rodrigues, Barbara Liskov, Kathryn Chen, Moses Liskov, and David Schultz. Au-
tomatic reconfiguration for large-scale reliable storage systems. IEEE Transactions on
Dependable and Secure Computing, 9(2):145–158, 2012.

31 Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A fast and scalable
cryptocurrency protocol, 2016.

32 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.
In International Conference on Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

A Proofs

Proof of Theorem 2. We first consider safety. Let M be the member to commit slot s in
the lowest ranked view. Say M commits value h and it does so in view (c, e, v). We need to
show that no other value h′ 6= h can be committed into slot s in that view and all future
views. In fact, we will show by induction that there cannot exist an accept certificate A′ for
h′ in that view and all future views, which means no honest member would have accepted h′,
let alone committing it. Since M committed in view (c, e, v), there must be 2f + 1 members
that have accepted h in that view, and 2f + 1 members that have sent 〈prepare, c, e, v, h〉.
For the base case, suppose for contradiction that A′ exists for h′ in view (c, e, v). Then,
2f + 1 members must send 〈prepare, c, e, v, h′〉. This means at least one honest member has
sent prepare messages for two different proposals in view (c, e, v), which is a contradiction.
For the inductive step, suppose that no accept certificate exists for h′ from view (c, e, v) up
to (excluding) view (c′, e′, v′). Since M has committed slot s, then at least 2f + 1 members

OPODIS 2017

https://lightning.network
http://eprint.iacr.org/2017/307
http://eprint.iacr.org/2017/307


25:18 Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus

must have committed slot s − 1 (they send prepare for slot s only after committing slot
s− 1). So in the status certificate S of a repropose message for view (c′, e′, v′), the largest
last-committed slot s∗ ≥ s− 1. Therefore, slot s is either already committed to h, or has
to be re-proposed. If slot s needs to be re-proposed, which means s∗ = s− 1, then S must
contain at least one status header reporting that h has been accepted into slot s with a rank
no lower than (c, e, v). Due to the inductive hypothesis, no accept certificate can exist for
h′ with a rank equal to or higher than (c, e, v). h is, therefore, the unique highest ranked
accepted value for slot s, and it is the only value that can be legally re-proposed in view
(c′, e′, v′). Hence, no accept certificate for h′ can exist in view (c′, e′, v′), completing the
proof.

Next, we consider liveness. According to the protocol, if a Byzantine leader does not
commit any slot for too long, it will be replaced shortly. But here is an another liveness
attack that a Byzantine leader can perform in the cryptocurrency setting. The Byzantine
leader can simply construct transactions that transfer funds between its own accounts and
keep proposing/committing these transactions. It is impossible for honest members to detect
such an attack. Fortunately, we have shown that honest miners win at least 2/3 of the
reconfiguration races, and after a reconfiguration, the newly added member becomes the
leader. So 2/3 of the time, an honest leader is in control to provide liveness. It remains to
check that an honest leader will not be replaced until the next lifespan. It is sufficient to show
that an honest leader will never be accused by an honest member. This is guaranteed by our
timeout values. First, observe that the notify step ensures two honest members commit a
slot at most ∆ time apart. In the steady state, each member gives the leader 4∆ time to
commit each slot: one ∆ to account for the possibility that other members come to this slot
(i.e., finish the previous slot) ∆ time later, and three ∆ for the three phases in the steady
state. At the beginning of a new view or a new lifespan, each member gives the leader 8∆
time, because the status and repropose steps take extra 4∆ time. The last case to consider is
when a member abandons a future leader because it does not send new-view when it should.
Before accusing a future leader, a member allows 2∆ time after forwarding it a view-change
certificate, which is sufficient for an honest leader to broadcast new-view. J

Remark. Garay et al. [12] laid out three desired properties for blockchains: common prefix,
chain quality, and chain growth. We note that these three properties are more applicable
to Bitcoin-style blockchains that do not satisfy traditional safety and liveness. Common
prefix is strictly weaker than safety. Chain growth is the Nakamoto consensus counterpart
of liveness. If chain quality is interpreted as “the ratio of honest committee members” in
the BFT-based approach, then we have proved it in Theorem 3. If it is instead interpreted
as “the ratio of slots committed under honest leaders”, then it is not very meaningful. We
cannot prevent Byzantine leaders from making progress really fast, thereby decreasing the
ratio of slots committed under honest leaders, but that does not hurt honest leaders’ ability
to commit slots at their own pace in their own views.

B Comparison to ByzCoin Evaluation Results

We would like to explain an apparent contradiction between our experimental results and
those of ByzCoin [15]. Under the same parameter settings (0.1s latency, 35 Mbps bandwidth
and 100 committee members), our implementation of PBFT takes only 1.3 seconds per
consensus decision, while ByzCoin concludes that PBFT has unacceptable performance. As
a result, ByzCoin suggests sending (and aggregating) consensus messages in a tree rooted at



I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman 25:19

the leader. On a closer look, our results and theirs actually corroborate each other. ByzCoin
finds PBFT performance to be unacceptable only when the block is large. With a small block
size, their results confirm that PBFT is very fast and indeed takes about 1s per consensus
decision. Therefore, the unacceptable performance they see in PBFT solely results from the
leader broadcasting the entire batch of transactions {tx}. It is indeed important to reduce
the burden on the leader by gossiping {tx} among committee members. But using a tree as
the communication graph is not Byzantine fault tolerant. A Byzantine node in the tree can
make its entire subtree unreachable. Instead, {tx} should be sent through the peer-to-peer
network much like in Bitcoin. The other major technique ByzCoin proposed, the Schnorr
multi-signature, is also not Byzantine fault tolerant. Schnorr signature has a “commitment”
step before the actual signing step. A Byzantine signer may participate in the commitment
step but refuse to sign in the signing step. The leader then has to initiate a new instance
of Schnorr multi-signature up to f times, which may be even slower than using normal
signatures. Therefore, the results reported in ByzCoin are only for the best case where there
is no adversary. These results are still relevant if we believe most of the time during the
protocol, there is no adversary. Alternatively, we may use multi-signature schemes that do
not have the commitment step and are thus Byzantine fault tolerant [4]. But these schemes
are much less efficient, and it remains interesting future work to study whether they improve
efficiency in practice.

OPODIS 2017


	Introduction
	Overview of the Solida Protocol
	Overview of the Model and Proof

	Related Work
	Model
	The Protocol
	Overview
	Steady State
	View Change
	Reconfiguration
	Safety and Liveness
	Towards Pipelining

	Implementation and Evaluation
	Conclusion and Future Work
	Proofs
	Comparison to ByzCoin Evaluation Results

