
Non-Uniform Replication∗

Gonçalo Cabrita1 and Nuno Preguiça2

1 NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, Caparica, Portugal
g.cabrita@campus.fct.unl.pt

2 NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, Caparica, Portugal
nuno.preguica@fct.unl.pt

Abstract
Replication is a key technique in the design of efficient and reliable distributed systems. As
information grows, it becomes difficult or even impossible to store all information at every replica.
A common approach to deal with this problem is to rely on partial replication, where each replica
maintains only a part of the total system information. As a consequence, a remote replica might
need to be contacted for computing the reply to some given query, which leads to high latency
costs particularly in geo-replicated settings. In this work, we introduce the concept of non-
uniform replication, where each replica stores only part of the information, but where all replicas
store enough information to answer every query. We apply this concept to eventual consistency
and conflict-free replicated data types. We show that this model can address useful problems
and present two data types that solve such problems. Our evaluation shows that non-uniform
replication is more efficient than traditional replication, using less storage space and network
bandwidth.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Non-uniform Replication, Partial Replication, Replicated Data Types,
Eventual Consistency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.24

1 Introduction

Many applications run on cloud infrastructures composed by multiple data centers, geo-
graphically distributed across the world. These applications usually store their data on
geo-replicated data stores, with replicas of data being maintained in multiple data centers.
Data management in geo-replicated settings is challenging, requiring designers to make a
number of choices to better address the requirements of applications.

One well-known trade-off is between availability and data consistency. Some data stores
provide strong consistency [5, 17], where the system gives the illusion that a single replica
exists. This requires replicas to coordinate for executing operations, with impact on the
latency and availability of these systems. Other data stores [7, 11] provide high-availability
and low latency by allowing operations to execute locally in a single data center eschewing a
linearizable consistency model. These systems receive and execute updates in a single replica
before asynchronously propagating the updates to other replicas, thus providing very low
latency.

∗ This work has been partially funded by CMU-Portugal research project GoLocal Ref. CMUP-
ERI/TIC/0046/2014, EU LightKone (grant agreement n.732505) and by FCT/MCT project NOVA-
LINCS Ref. UID/CEC/04516/2013. Part of the computing resources used in this research were provided
by a Microsoft Azure Research Award.

© Gonçalo Cabrita and Nuno Preguiça;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Non-Uniform Replication

With the increase of the number of data centers available to applications and the amount
of information maintained by applications, another trade-off is between the simplicity of
maintaining all data in all data centers and the cost of doing so. Besides sharding data
among multiple machines in each data center, it is often interesting to keep only part of
the data in each data center to reduce the costs associated with data storage and running
protocols that involve a large number of replicas. In systems that adopt a partial replication
model [22, 25, 6], as each replica only maintains part of the data, it can only locally process
a subset of the database queries. Thus, when executing a query in a data center, it might be
necessary to contact one or more remote data centers for computing the result of the query.

In this paper we explore an alternative partial replication model, the non-uniform
replication model, where each replica maintains only part of the data but can process all
queries. The key insight is that for some data objects, not all data is necessary for providing
the result of read operations. For example, an object that keeps the top-K elements only
needs to maintain those top-K elements in every replica. However, the remaining elements
are necessary if a remove operation is available, as one of the elements not in the top needs
to be promoted when a top element is removed.

A top-K object could be used for maintaining the leaderboard in an online game. In
such system, while the information for each user only needs to be kept in the data center
closest to the user (and in one or two more for fault tolerance), it is important to keep a
replica of the leaderboard in every data center for low latency and availability. Currently,
for supporting such a feature, several designs could be adopted. First, the system could
maintain an object with the results of all players in all replicas. While simple, this approach
turns out to be needlessly expensive in both storage space and network bandwidth when
compared to our proposed model. Second, the system could move all data to a single data
center and execute the computation in that data center or use a data processing system that
can execute computations over geo-partitioned data [10]. The result would then have to be
sent to all data centers. This approach is much more complex than our proposal, and while
it might be interesting when complex machine learning computations are executed, it seems
to be an overkill in a number of situations.

We apply the non-uniform replication model to eventual consistency and Conflict-free
Replicated Data Types [23], formalizing the model for an operation-based replication approach.
We present two useful data type designs that implement such model. Our evaluation shows
that the non-uniform replication model leads to high gains in both storage space and network
bandwidth used for synchronization when compared with state-of-the-art replication based
alternatives.

In summary, this paper makes the following contributions:
The proposal of the non-uniform replication model, where each replica only keeps part of
the data but enough data to reply to every query;
The definition of non-uniform eventual consistency (NuEC), the identification of sufficient
conditions for providing NuEC and a protocol that enforces such conditions relying on
operation-based synchronization;
Two useful replicated data type designs that adopt the non-uniform replication model
(and can be generalized to use different filter functions);
An evaluation of the proposed model, showing its gains in term of storage space and
network bandwidth.

The remainder of this paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the non-uniform replication model. Section 4 applies the model to an
eventual consistent system. Section 5 introduces two useful data type designs that follow the
model. Section 6 compares our proposed data types against state-of-the-art CRDTs.

G. Cabrita and N. Preguiça 24:3

2 Related Work

Replication. A large number of replication protocols have been proposed in the last
decades [8, 27, 15, 16, 2, 21, 17]. Regarding the contents of the replicas, these proto-
cols can be divided in those providing full replication, where each replica maintains the full
database state, and partial replication, where each replica maintains only a subset of the
database state.

Full replication strategies allow operations to concurrently modify all replicas of a system
and, assuming that replicas are mutually consistent, improves availability since clients may
query any replica in the system and obtain an immediate response. While this improves the
performance of read operations, update operations now negatively affect the performance
of the system since they must modify every replica which severely affects middle-scale to
large-scale systems in geo-distributed settings. This model also has the disadvantage of
limiting the system’s total capacity to the capacity of the node with fewest resources.

Partial replication [3, 22, 25, 6] addresses the shortcomings of full replication by having
each replica store only part of the data (which continues being replicated in more than one
node). This improves the scalability of the system but since each replica maintains only a
part of the data, it can only locally process a subset of queries. This adds complexity to the
query processing, with some queries requiring contacting multiple replicas to compute their
result. In our work we address these limitations by proposing a model where each replica
maintains only part of the data but can reply to any query.

Despite of adopting full or partial replication, replication protocols enforce strong consis-
tency [17, 5, 18], weak consistency [27, 7, 15, 16, 2] or a mix of these consistency models [24, 14].
In this paper we show how to combine non-uniform replication with eventual consistency.
An important aspect in systems that adopt eventual consistency is how the system handles
concurrent operations. CRDTs have been proposed as a technique for addressing such
challenge.

CRDTs. Conflict-free Replicated Data Types [23] are data types designed to be replicated
at multiple replicas without requiring coordination for executing operations. CRDTs encode
merge policies used to guarantee that all replicas converge to the same value after all updates
are propagated to every replica. This allows an operation to execute immediately on any
replica, with replicas synchronizing asynchronously. Thus, a system that uses CRDTs can
provide low latency and high availability, despite faults and network latency. With these
guarantees, CRDTs are a key building block for providing eventual consistency with well
defined semantics, making it easier for programmers to reason about the system evolution.

When considering the synchronization process, two main types of CRDTs have been
proposed: state-based CRDT, where replicas synchronize pairwise, by periodically exchanging
the state of the replicas; and operation-based CRDTs, where all operations need to be
propagated to all replicas.

Delta-based CRDTs [1] improve upon state-based CRDTs by reducing the dissemination
cost of updates, sending only a delta of the modified state. This is achieved by using delta-
mutators, which are functions that encode a delta of the state. Linde et. al [26] propose an
improvement to delta-based CRDTs that further reduce the data that need to be propagated
when a replica first synchronizes with some other replica. This is particularly interesting in
peer-to-peer settings, where the synchronization partners of each replica change frequently.
Although delta-based CRDTs reduce the network bandwidth used for synchronization, they
continue to maintain a full replication strategy where the state of quiescent replicas is
equivalent.

OPODIS 2017

24:4 Non-Uniform Replication

Computational CRDTs [19] are an extension of state-based CRDTs where the state of the
object is the result of a computation (e.g. the average, the top-K elements) over the executed
updates. As with the model we propose in this paper, replicas do not need to have equivalent
states. The work we present in this paper extends the initial ideas proposed in computational
CRDTs in several aspects, including the definition of the non-uniform replication model, its
application to operation-based eventual consistency and the new data type designs.

3 Non-uniform replication

We consider an asynchronous distributed system composed by n nodes. Without loss of
generality, we assume that the system replicates a single object. The object has an interface
composed by a set of read-only operations, Q, and a set of update operations, U . Let S be
the set of all possible object states, the state that results from executing operation o in state
s ∈ S is denoted as s • o. For a read-only operation, q ∈ Q, s • q = s. The result of operation
o ∈ Q ∪ U in state s ∈ S is denoted as o(s) (we assume that an update operation, besides
modifying the state, can also return some result).

We denote the state of the replicated system as a tuple (s1, s2, . . . , sn), with si the state
of the replica i. The state of the replicas is synchronized by a replication protocol that
exchanges messages among the nodes of the system and updates the state of the replicas.
For now, we do not consider any specific replication protocol or strategy, as our proposal can
be applied to different replication strategies.

We say a system is in a quiescent state for a given set of executed operations if the
replication protocol has propagated all messages necessary to synchronize all replicas, i.e.,
additional messages sent by the replication protocol will not modify the state of the replicas.
In general, replication protocols try to achieve a convergence property, in which the state of
any two replicas is equivalent in a quiescent state.

I Definition 1 (Equivalent state). Two states, si and sj , are equivalent, si ≡ sj , iff the results
of the execution of any sequence of operations in both states are equal, i.e., ∀o1, . . . , on ∈
Q ∪ U , on(si • o1 • . . . • on−1) = on(sj • o1 • . . . • on−1).

This property is enforced by most replication protocols, independently of whether they
provide strong or weak consistency [13, 15, 27]. We note that this property does not require
that the internal state of the replicas is the same, but only that the replicas always return
the same results for any executed sequence of operations.

In this work, we propose to relax this property by requiring only that the execution of
read-only operations return the same value. We name this property as observable equivalence
and define it formally as follows.

I Definition 2 (Observable equivalent state). Two states, si and sj , are observable equivalent,
si

o≡ sj , iff the result of executing every read-only operation in both states is equal, i.e.,
∀o ∈ Q, o(si) = o(sj).

As read-only operations do not affect the state of a replica, the results of the execution
of any sequence of read-only operations in two observable equivalent states will also be the
same. We now define a non-uniform replication system as one that guarantees only that
replicas converge to an observable equivalent state.

I Definition 3 (Non-uniform replicated system). We say that a replicated system is non-
uniform if the replication protocol guarantees that in a quiescent state, the state of any
two replicas is observable equivalent, i.e., in the quiescent state (s1, . . . , sn), we have si

o≡
sj ,∀si, sj ∈ {s1, . . . , sn}.

G. Cabrita and N. Preguiça 24:5

3.1 Example
We now give an example that shows the benefit of non-uniform replication. Consider an
object top-1 with three operations: (i) add(name, value), an update operation that adds
the pair to the top; (ii) rmv(name), an update operation that removes all previously added
pairs for name; (iii) get(), a query that returns the pair with the largest value (when more
than one pair has the same largest value, the one with the smallest lexicographic name is
returned).

Consider that add(a, 100) is executed in a replica and replicated to all replicas. Later
add(b, 110) is executed and replicated. At this moment, all replicas know both pairs.

If later add(c, 105) executes in some replica, the replication protocol does not need to
propagate the update to the other replicas in a non-uniform replicated system. In this case,
all replicas are observable equivalent, as a query executed at any replica returns the same
correct value. This can have an important impact not only in the size of object replicas, as
each replica will store only part of the data, but also in the bandwidth used by the replication
protocol, as not all updates need to be propagated to all replicas.

We note that the states that result from the previous execution are not equivalent because
after executing rmv(b), the get operation will return (c, 105) in the replica that has received
the add(c, 105) we operation and (b, 100) in the other replicas.

Our definition only forces the states to be observable equivalent after the replication
protocol becomes quiescent. Different protocols can be devised giving different guarantees.
For example, for providing linearizability, the protocol should guarantee that all replicas
return (c, 105) after the remove. This can be achieved, for example, by replicating the now
relevant (c, 105) update in the process of executing the remove.

In the remainder of this paper, we study how to apply the concept of non-uniform
replication in the context of eventually consistent systems. The study of its application to
systems that provide strong consistency is left for future work.

4 Non-uniform eventual consistency

We now apply the concept of non-uniform replication to replicated systems providing eventual
consistency.

4.1 System model
We consider an asynchronous distributed system composed by n nodes, where nodes may
exhibit fail-stop faults but not byzantine faults. We assume a communication system with a
single communication primitive, mcast(m), that can be used by a process to send a message
to every other process in the system with reliable broadcast semantics. A message sent by a
correct process is eventually received by all correct processes. A message sent by a faulty
process is either received by all correct processes or none. Several communication systems
provide such properties – e.g. systems that propagate messages reliably using anti-entropy
protocols [8, 9].

An object is defined as a tuple (S, s0,Q,Up,Ue), where S is the set of valid states of
the object, s0 ∈ S is the initial state of the object, Q is the set of read-only operations
(or queries), Up is the set of prepare-update operations and Ue is the set of effect-update
operations.

A query executes only at the replica where the operation is invoked, its source, and it has
no side-effects, i.e., the state of an object remains unchanged after executing the operation.

OPODIS 2017

24:6 Non-Uniform Replication

When an application wants to update the state of the object, it issues a prepare-update
operation, up ∈ Up. A up operation executes only at the source, has no side-effects and
generates an effect-update operation, ue ∈ Ue. At source, ue executes immediately after up.

As only effect-update operations may change the state of the object, for reasoning about
the evolution of replicas we can restrict our analysis to these operations. To be precise, the
execution of a prepare-update operation generates an instance of an effect-update operation.
For simplicity, we refer the instances of operations simply as operations. With Oi the set of
operations generated at node i, the set of operations generated in an execution, or simply
the set of operations in an execution, is O = O1 ∪ . . . ∪On.

4.2 Non-uniform eventual consistency
For any given execution, with O the operations of the execution, we say a replicated system
provides eventual consistency iff in a quiescent state: (i) every replica executed all operations
of O; and (ii) the state of any pair of replicas is equivalent.

A sufficient condition for achieving the first property is to propagate all generated
operations using reliable broadcast (and execute any received operation). A sufficient
condition for achieving the second property is to have only commutative operations. Thus, if
all operations commute with each other, the execution of any serialization of O in the initial
state of the object leads to an equivalent state.

From now on, unless stated otherwise, we assume that all operations commute. In this
case, as all serializations of O are equivalent, we denote the execution of a serialization of O

in state s simply as s •O.
For any given execution, with O the operations of the execution, we say a replicated

system provides non-uniform eventual consistency iff in a quiescent state the state of any
replica is observable equivalent to the state obtained by executing some serialization of O.
As a consequence, the state of any pair of replicas is also observable equivalent.

For a given set of operations in an execution O, we say that Ocore ⊆ O is a set of core
operations of O iff s0 •O

o≡ s0 •Ocore. We define the set of operations that are irrelevant to
the final state of the replicas as follows: Omasked ⊆ O is a set of masked operations of O iff
s0 •O

o≡ s0 • (O \Omasked).
I Theorem 4 (Sufficient conditions for NuEC). A replication system provides non-uniform
eventual consistency (NuEC) if, for a given set of operations O, the following conditions
hold: (i) every replica executes a set of core operations of O; and (ii) all operations commute.
Proof. From the definition of core operations of O, and by the fact that all operations
commute, it follows immediately that if a replica executes a set of core operations, then
the final state of the replica is observable equivalent to the state obtained by executing a
serialization of O. Additionally, any replica reaches an observable equivalent state. J

4.3 Protocol for non-uniform eventual consistency
We now build on the sufficient conditions for providing non-uniform eventual consistency
to devise a correct replication protocol that tries to minimize the operations propagated to
other replicas. The key idea is to avoid propagating operations that are part of a masked set.
The challenge is to achieve this by using only local information, which includes only a subset
of the executed operations.

Algorithm 1 presents the pseudo-code of an algorithm for achieving non-uniform eventual
consistency – the algorithm does not address the durability of operations, which will be
discussed later.

G. Cabrita and N. Preguiça 24:7

Algorithm 1 Replication algorithm for non-uniform eventual consistency.
1: S : state: initial s0 . Object state
2: logrecv : set of operations: initial {}
3: loglocal : set of operations: initial {} . Local operations not propagated
4:
5: execOp(op): void . New operation generated locally
6: loglocal = loglocal ∪ {op}
7: S = S • op
8:
9: opsToPropagate(): set of operations . Computes the local operations that need to be propagated

10: ops = maskedF orever(loglocal, S, logrecv)
11: loglocal = loglocal \ ops
12: opsImpact = hasObservableImpact(loglocal, S, logrecv)
13: opsP otImpact = mayHaveObservableImpact(loglocal, S, logrecv)
14: return opsImpact ∪ opsP otImpact
15:
16: sync(): void . Propagates local operations to remote replicas
17: ops = opsT oP ropagate()
18: compactedOps = compact(ops) . Compacts the set of operations
19: mcast(compactedOps)
20: logcoreLocal = {}
21: loglocal = loglocal \ ops
22: logrecv = logrecv ∪ ops
23:
24: on receive(ops): void . Process remote operations
25: logrecv = logrecv ∪ ops
26: S = S • ops

The algorithm maintains the state of the object and two sets of operations: loglocal, the
set of effect-update operations generated in the local replica and not yet propagated to other
replicas; logrecv, the set of effect-update operations propagated to all replicas (including
operations generated locally and remotely).

When an effect-update operation is generated, the execOp function is called. This function
adds the new operation to the log of local operations and updates the local object state.

The function sync is called to propagate local operations to remote replicas. It starts
by computing which new operations need to be propagated, compacts the resulting set of
operations for efficiency purposes, multicasts the compacted set of operations, and finally
updates the local sets of operations. When a replica receives a set of operations (line 24), the
set of operations propagated to all nodes and the local object state are updated accordingly.

Function opsToPropagate addresses the key challenge of deciding which operations need
to be propagated to other replicas. To this end, we divide the operations in four groups.

First, the forever masked operations, which are operations that will remain in the set
of masked operations independently of the operations that might be executed in the future.
In the top example, an operation that adds a pair masks forever all known operations that
added a pair for the same element with a lower value. These operations are removed from
the set of local operations.

Second, the core operations (opsImpact, line 12), as computed locally. These operations
need to be propagated, as they will (typically) impact the observable state at every replica.

Third, the operations that might impact the observable state when considered in com-
bination with other non-core operations that might have been executed in other replicas
(opsPotImpact, line 13). As there is no way to know which non-core operations have been
executed in other replicas, it is necessary to propagate these operations also. For example,
consider a modified top object where the value associated with each element is the sum of
the values of the pairs added to the object. In this case, an add operation that would not
move an element to the top in a replica would be in this category because it could influence
the top when combined with other concurrent adds for the same element.

OPODIS 2017

24:8 Non-Uniform Replication

Fourth, the remaining operations that might impact the observable state in the future,
depending on the evolution of the observable state. These operations remain in loglocal.
In the original top example, an operation that adds a pair that will not be in the top, as
computed locally, is in this category as it might become the top element after removing the
elements with larger values.

For proving that the algorithm can be used to provide non-uniform eventual consistency,
we need to prove the following property.

I Theorem 5. Algorithm 1 guarantees that in a quiescent state, considering all operations
O in an execution, all replicas have received all operations in a core set Ocore.

Proof. To prove this property, we need to prove that there exists no operation that has not
been propagated by some replica and that is required for any Ocore set. Operations in the first
category have been identified as masked operations independently of any other operations
that might have been or will be executed. Thus, by definition of masked operations, a Ocore

set will not (need to) include these operations. The fourth category includes operations that
do not influence the observable state when considering all executed operations – if they might
have impact, they would be in the third category. Thus, these operations do not need to be
in a Ocore set. All other operations are propagated to all replicas. Thus, in a quiescent state,
every replica has received all operations that impact the observable state. J

4.4 Fault-tolerance
Non-uniform replication aims at reducing the cost of communication and the size of replicas,
by avoiding propagating operations that do not influence the observable state of the object.
This raises the question of the durability of operations that are not immediately propagated
to all replicas.

One way to solve this problem is to have the source replica propagating every local
operation to f more replicas to tolerate f faults. This ensures that an operation survives
even in the case of f faults. We note that it would be necessary to adapt the proposed
algorithm, so that in the case a replica receives an operation for durability reasons, it would
propagate the operation to other replicas if the source replica fails. This can be achieved
by considering it as any local operation (and introducing a mechanism to filter duplicate
reception of operations).

4.5 Causal consistency
Causal consistency is a popular consistency model for replicated systems [15, 2, 16], in which
a replica only executes an operation after executing all operations that causally precede it [12].
In the non-uniform replication model, it is impossible to strictly adhere to this definition
because some operations are not propagated (immediately), which would prevent all later
operations from executing.

An alternative would be to restrict the dependencies to the execution of core operations.
The problem with this is that the status of an operation may change by the execution of
another operation. When a non-core operation becomes core, a number of dependencies that
should have been enforced might have been missed in some replicas.

We argue that the main interest of causal consistency, when compared with eventual
consistency, lies in the semantics provided by the object. Thus, in the designs that we present
in the next section, we aim to guarantee that in a quiescent state, the state of the replicated
objects provide equivalent semantics to that of a system that enforces causal consistency.

G. Cabrita and N. Preguiça 24:9

5 Non-uniform operation-based CRDTs

CRDTs [23] are data-types that can be replicated, modified concurrently without coordination
and guarantee the eventual consistency of replicas given that all updates propagate to all
replicas. We now present the design of two useful operation-based CRDTs [23] that adopt
the non-uniform replication model. Unlike most operation-based CRDT designs, we do not
assume that the system propagates operations in a causal order. These designs were inspired
by the state-based computational CRDTs proposed by Navalho et al. [19], which also allow
replicas to diverge in their quiescent state.

5.1 Top-K with removals NuCRDT
In this section we present the design of a non-uniform top-K CRDT, as the one introduced
in section 3.1. The data type allows access to the top-K elements added and can be used,
for example, for maintaining the leaderboard in online games. The proposed design could
be adapted to define any CRDT that filters elements based on a deterministic function by
replacing the topK function used in the algorithm by another filter function.

For defining the semantics of our data type, we start by defining the happens-before
relation among operations. To this end, we start by considering the happens-before relation
established among the events in the execution of the replicated system [12]. The events
that are considered relevant are: the generation of an operation at the source replica, and
the dispatch and reception of a message with a new operation or information that no new
message exists. We say that operation opi happens before operation opj iff the generation of
opi happened before the generation of opj in the partial order of events.

The semantics of the operations defined in the top-K CRDT is the following. The
add(el,val) operation adds a new pair to the object. The rmv(el) operation removes any pair
of el that was added by an operation that happened-before the rmv (note that this includes
non-core add operations that have not been propagated to the source replica of the remove).
This leads to an add-wins policy [23], where a remove has no impact on concurrent adds.
The get() operation returns the top-K pairs in the object, as defined by the function topK
used in the algorithm.

Algorithm 2 presents a design that implements this semantics. The prepare-update add
operation generates an effect-update add that has an additional parameter consisting in
a timestamp (replicaid, val), with val a monotonically increasing integer. The prepare-
update rmv operation generates an effect-update rmv that includes an additional parameter
consisting in a vector clock that summarizes add operations that happened before the remove
operation. To this end, the object maintains a vector clock that is updated when a new add
is generated or executed locally. Additionally, this vector clock should be updated whenever
a replica receives a message from a remote replica (to summarize also the adds known in the
sender that have not been propagated to this replica).

Besides this vector clock, vc, each object replica maintains: (i) a set, elems, with the
elements added by all add operations known locally (and that have not been removed yet);
and (ii) a map, removes, that maps each element id to a vector clock with a summary of
the add operations that happened before all removes of id (for simplifying the presentation
of the algorithm, we assume that a key absent from the map has associated a default vector
clock consisting of zeros for every replica).

The execution of an add consists in adding the element to the set of elems if the add has
not happened before a previously received remove for the same element – this can happen as
operations are not necessarily propagated in causal order. The execution of a rmv consists

OPODIS 2017

24:10 Non-Uniform Replication

Algorithm 2 Top-K NuCRDT with removals.
1: elems : set of 〈id, score, ts〉 : initial {}
2: removes : map id 7→ vectorClock: initial []
3: vc : vectorClock: initial []
4:
5: get() : set
6: return {〈id, score〉 : 〈id, score, ts〉 ∈ topK(elems)}
7:
8: prepare add(id, score)
9: generate add(id, score, 〈getReplicaId(), + + vc[getReplicaId()]〉)

10:
11: effect add(id, score, ts)
12: if removes[id][ts.siteId] < ts.val then
13: elems = elems ∪ {〈id, score, ts〉}
14: vc[ts.siteId] = max(vc[ts.siteId], ts.val)
15:
16: prepare rmv(id)
17: generate rmv(id,vc)
18:
19: effect rmv(id, vcrmv)
20: removes[id] = pointwiseMax(removes[id], vcrmv)
21: elems = elems \ {〈id0, score, ts〉 ∈ elem : id = id0 ∧ ts.val ≤ vcrmv[ts.siteId]}
22:
23: maskedForever(loglocal, S, logrecv): set of operations
24: adds = {add(id1, score1, ts1) ∈ loglocal :
25: (∃add(id2, score2, ts2) ∈ loglocal : id1 = id2 ∧ score1 < score2 ∧ ts1.val < ts2.val)∨
26: (∃rmv(id3, vcrmv) ∈ (logrecv ∪ loglocal) : id1 = id3 ∧ ts1.val ≤ vcrmv[ts1.siteId]}
27: rmvs = {rmv(id1, vc1) ∈ loglocal : ∃rmv(id2, vc2) ∈ (loglocal ∪ logrecv) : id1 = id2 ∧ vc1 < vc2}
28: return adds ∪ rmvs
29:
30: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
31: return {} . This case never happens for this data type
32:
33: hasObservableImpact(loglocal, S, logrecv): set of operations
34: adds = {add(id1, score1, ts1) ∈ loglocal : 〈id1, score1, ts1〉 ∈ topK(S.elems)}
35: rmvs = {rmv(id1, vc1) ∈ loglocal : (∃add(id2, score2, ts2) ∈ (loglocal ∪ logrecv) :
36: 〈id2, score2, ts2〉 ∈ topK(S.elems ∪ {〈id2, score2, ts2〉}) ∧ id1 = id2 ∧ ts2.val ≤ vc1[ts2.siteId])}
37: return adds ∪ rmvs
38:
39: compact(ops): set of operations
40: return ops . This data type does not require compaction

in updating removes and deleting from elems the information for adds of the element that
happened before the remove. To verify if an add has happened before a remove, we check if
the timestamp associated with the add is reflected in the remove vector clock of the element
(lines 12 and 21). This ensures the intended semantics for the CRDT, assuming that the
functions used by the protocol are correct.

We now analyze the code of these functions.
Function maskedForever computes: the local adds that become masked by other

local adds (those for the same element with a lower value) and removes (those for the same
element that happened before the remove); the local removes that become masked by other
removes (those for the same element that have a smaller vector clock). In the latter case, it
is immediate that a remove with a smaller vector clock becomes irrelevant after executing
the one with a larger vector clock. In the former case, a local add for an element is masked
by a more recent local add for the same element but with a larger value as it is not possible
to remove only the effects of the later add without removing the effect of the older one. A
local add also becomes permanently masked by a local or remote remove that happened after
the add.

Function mayHaveObservableImpact returns the empty set, as for having impact on
any observable state, an operation also has to have impact on the local observable state by
itself.

G. Cabrita and N. Preguiça 24:11

Function hasObservableImpact computes the local operations that are relevant for
computing the top-K. An add is relevant if the added value is in the top; a remove is relevant
if it removes an add that would be otherwise in the top.

5.2 Top Sum NuCRDT

We now present the design of a non-uniform CRDT, Top Sum, that maintains the top-K
elements added to the object, where the value of each element is the sum of the values added
for the element. This data type can be used for maintaining a leaderboard in an online game
where every time a player completes some challenge it is awarded some number of points,
with the current score of the player being the sum of all points awarded. It could also be used
for maintaining a top of the best selling products in an (online) store (or the top customers,
etc).

The semantics of the operations defined in the Top Sum object is the following. The
add(id, n) update operation increments the value associated with id by n. The get() read-only
operation returns the top-K mappings, id→ value, as defined by the topK function (similar
to the Top-K NuCRDT).

This design is challenging, as it is hard to know which operations may have impact in the
observable state. For example, consider a scenario with two replicas, where the value of the
last element in the top is 100. If the known score of an element is 90, an add of 5 received in
one replica may have impact in the observable state if the other replica has also received an
add of 5 or more. One approach would be to propagate these operations, but this would lead
to propagating all operations.

To try to minimize the number of operations propagated we use the following heuristic
inspired by the demarcation protocol and escrow transactions [4, 20]. For each id that does
not belong to the top, we compute the difference between the smallest value in the top and
the value of the id computed by operations known in every replica – this is how much must
be added to the id to make it to the top: let d be this value. If the sum of local adds for the
id does not exceed d

num.replicas in any replica, the value of id when considering adds executed
in all replicas is smaller than the smallest element in the top. Thus, it is not necessary to
propagate add operations in this case, as they will not affect the top.

Algorithm 3 presents a design that implements this approach. The state of the object is a
single variable, state, that maps identifiers to their current values. The only prepare-update
operation, add, generates an effect-update add with the same parameters. The execution of
an effect-update add(id, n) simply increments the value of id by n.

Function maskedForever returns the empty set, as operations in this design can never
be forever masked.

Function mayHaveObservableImpact computes the set of add operations that can
potentially have an impact on the observable state, using the approach previously explained.

Function hasObservableImpact computes the set of add operations that have their
corresponding id present in the top-K. This guarantees that the values of the elements in the
top are kept up-to-date, reflecting all executed operations.

Function compact takes a set of add operations and compacts the add operations that
affect the same identifier into a single operation. This reduces the size of the messages sent
through the network and is similar to the optimization obtained in delta-based CRDTs [1].

OPODIS 2017

24:12 Non-Uniform Replication

Algorithm 3 Top Sum NuCRDT.
1: state : map id 7→ sum: initial []
2:
3: get() : map
4: return topK(state)
5:
6: prepare add(id, n)
7: generate add(id, n)
8:
9: effect add(id, n)

10: state[id] = state[id] + n
11:
12: maskedForever(loglocal, S, logrecv): set of operations
13: return {} . This case never happens for this data type
14:
15: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
16: top = topK(S.state)
17: adds = {add(id, _) ∈ loglocal : s = sumval({add(i, n) ∈ loglocal : i = id})
18: ∧ s ≥ ((min(sum(top))− (S.state[id]− s)) / getNumReplicas())}
19: return adds
20:
21: hasObservableImpact(loglocal, S, logrecv): set of operations
22: top = topK(S.state)
23: adds = {add(id, _) ∈ loglocal : id ∈ ids(top)}
24: return adds
25:
26: compact(ops): set of operations
27: adds = {add(id, n) : id ∈ {i : add(i, _) ∈ ops}∧ n = sum({k : add(id1, k) ∈ ops : id1 = id})}
28: return adds

5.3 Discussion
The goal of non-uniform replication is to allow replicas to store less data and use less
bandwidth for replica synchronization. Although it is clear that non-uniform replication
cannot be useful for all data, we believe that the number of use cases is large enough for
making non-uniform replication interesting in practice. We now discuss two classes of data
types that can benefit from the adoption of non-uniform replication.

The first class is that of data types for which the result of queries include only a subset
of the data in the object. In this case two different situations may occur: (i) it is possible to
compute locally, without additional information, if some operation is relevant (and needs
to be propagated to all replicas); (ii) it is necessary to have additional information to be
able to decide if some operation is relevant. The Top-K CRDT presented in section 5.1 is an
example of the former. Another example includes a data type that returns a subset of the
elements added based on a (modifiable) user-defined filter – e.g. in a set of books, the filter
could select the books of a given genre, language, etc. The Top-Sum CRDT presented in
section 5.2 is an example of the latter. Another example includes a data type that returns
the 50th percentile (or others) for the elements added – in this case, it is only necessary to
replicate the elements in a range close to the 50th percentile and replicate statistics of the
elements smaller and larger than the range of replicated elements.

In all these examples, the effects of an operation that in a given moment do not influence
the result of the available queries may become relevant after other operations are executed –
in the Top-K with removes due to a remove of an element in the top; in the filtered set due
to a change in the filter; in the Top-Sum due to a new add that makes an element relevant;
and in the percentile due to the insertion of elements that make the 50th percentile change.
We note that if the relevance of an operation cannot change over time, the non-uniform
CRDT would be similar to an optimized CRDT that discard operations that are not relevant
before propagating them to other replicas.

G. Cabrita and N. Preguiça 24:13

A second class is that of data types with queries that return the result of an aggregation
over the data added to the object. An example of this second class is the Histogram CRDT
presented in the appendix. This data type only needs to keep a count for each element. A
possible use of this data type would be for maintaining the summary of classifications given
by users in an online shop. Similar approaches could be implemented for data types that
return the result of other aggregation functions that can be incrementally computed [19].

A data type that supports, besides adding some information, an operation for removing
that information would be more complex to implement. For example, in an Histogram CRDT
that supports removing a previously added element, it would be necessary that concurrently
removing the same element would not result in an incorrect aggregation result. Implementing
such CRDT would require detecting and fixing these cases.

6 Evaluation

In this section we evaluate our data types that follow the non-uniform replication model. To
this end, we compare our designs against state-of-the-art CRDT alternatives: delta-based
CRDTs [1] that maintain full object replicas efficiently by propagating updates as deltas
of the state; and computational CRDTs [19] that maintain non-uniform replicas using a
state-based approach.

Our evaluation is performed by simulation, using a discrete event simulator. To show
the benefit in terms of bandwidth and storage, we measure the total size of messages sent
between replicas for synchronization (total payload) and the average size of replicas.

We simulate a system with 5 replicas for each object. Both our designs and the compu-
tational CRDTs support up to 2 replica faults by propagating all operations to, at least, 2
other replicas besides the source replica. We note that this limits the improvement that our
approach could achieve, as it is only possible to avoid sending an operation to two of the five
replicas. By either increasing the number of replicas or reducing the fault tolerance level, we
could expect that our approach would perform comparatively better than the delta-based
CRDTs.

6.1 Top-K with removals

We begin by comparing our Top-K design (NuCRDT) with a delta-based CRDT set [1]
(Delta CRDT) and the top-K state-based computational CRDT design [19] (CCRDT).

The top-K was configured with K equal to 100. In each run, 500000 update operations
were generated for 10000 Ids and with scores up to 250000. The values used in each operation
were randomly selected using a uniform distribution. A replica synchronizes after executing
100 events.

Given the expected usage of top-K for supporting a leaderboard, we expect the remove
to be an infrequent operation (to be used only when a user is removed from the game).
Figures 1 and 2 show the results for workloads with 5% and 0.05% of removes respectively
(the other operations are adds).

In both workloads our design achieves a significantly lower bandwidth cost when compared
to the alternatives. The reason for this is that our design only propagates operations that
will be part of the top-K. In the delta-based CRDT, each replica propagates all new updates
and not only those that are part of the top. In the computational CRDT design, every
time the top is modified, the new top is propagated. Additionally, the proposed design of
computational CRDTs always propagates removes.

OPODIS 2017

24:14 Non-Uniform Replication

 0

 50

 100

 150

 200

 250

 300

 350

 400

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 1 Top-K with removals: payload size and replica size, workload of 95/5

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k
A
ve

ra
g
e

R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 2 Top-K with removals: payload size and replica size, workload of 99.95/0.05

The results for the replica size show that our design is also more space efficient than
previous designs. This is a consequence of the fact that each replica, besides maintaining
information about local operations, only keeps information from remote operations received
for guaranteeing fault-tolerance and those that have influenced the top-K at some moment
in the execution. The computational CRDT design additionally keeps information about
all removes. The delta-based CRDT keeps information about all elements that have not
been removed or overwritten by a larger value. We note that as the percentage of removes
approaches zero, the replica sizes of our design and that of computational CRDT starts to
converge to the same value. The reason for this is that the information maintained in both
designs is similar and our more efficient handling of removes starts becoming irrelevant. The
opposite is also true: as the number of removes increases, our design becomes even more
space efficient when compared to the computational CRDT.

6.2 Top Sum
To evaluate our Top Sum design (NuCRDT), we compare it against a delta-based CRDT map
(Delta CRDT) and a state-based computational CRDT implementing the same semantics
(CCRDT).

The top is configured to display a maximum of 100 entries. In each run, 500000 update
operations were generated for 10000 Ids and with challenges awarding scores up to 1000. The
values used in each operation were randomly selected using a uniform distribution. A replica
synchronizes after executing 100 events.

Figure 3 shows the results of our evaluation. Our design achieves a significantly lower
bandwidth cost when compared with the computational CRDT, because in the computational
CRDT design, every time the top is modified, the new top is propagated. When compared
with the delta-based CRDTs, the bandwidth of NuCRDT is approximately 55% of the
bandwidth used by delta-based CRDTs. As delta-based CRDTs also include a mechanism for
compacting propagated updates, the improvement comes from the mechanisms for avoiding
propagating operations that will not affect the top elements, resulting in less messages being
sent.

G. Cabrita and N. Preguiça 24:15

 1

 10

 100

 1000

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
),

 l
og

1
0

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e(
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3 Top Sum: payload size and replica size

The results for the replica size show that our design also manages to be more space
efficient than previous designs. This is a consequence of the fact that each replica, besides
maintaining information about local operations, only keeps information of remote operations
received for guaranteeing fault-tolerance and those that have influenced the top elements at
some moment in the execution.

7 Conclusions

In this paper we proposed the non-uniform replication model, an alternative model for
replication that combines the advantages of both full replication, by allowing any replica to
reply to a query, and partial replication, by requiring that each replica keeps only part of
the data. We have shown how to apply this model to eventual consistency, and proposed
a generic operation-based synchronization protocol for providing non-uniform replication.
We further presented the designs of two useful replicated data types, the Top-K and Top
Sum, that adopt this model (in appendix, we present two additional designs: Top-K without
removals and Histogram). Our evaluation shows that the application of this new replication
model helps to reduce the message dissemination costs and the size of replicas.

In the future we plan to study which other data types can be designed that adopt this
model and to study how to integrate these data types in cloud-based databases. We also
want to study how the model can be applied to strongly consistent systems.

References
1 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data types.

J. Parallel Distrib. Comput., 111:162–173, 2018. doi:10.1016/j.jpdc.2017.08.003.
2 Sérgio Almeida, João Leitão, and Luís E. T. Rodrigues. Chainreaction: a causal+ con-

sistent datastore based on chain replication. In Zdenek Hanzálek, Hermann Härtig,
Miguel Castro, and M. Frans Kaashoek, editors, Eighth Eurosys Conference 2013, Eu-
roSys ’13, Prague, Czech Republic, April 14-17, 2013, pages 85–98. ACM, 2013. doi:
10.1145/2465351.2465361.

3 Gustavo Alonso. Partial database replication and group communication primitives. In Proc.
European Research Seminar on Advances in Distributed Systems, 1997.

4 Daniel Barbará-Millá and Hector Garcia-Molina. The Demarcation Protocol: A Tech-
nique for Maintaining Constraints in Distributed Database Systems. The VLDB Journal,
3(3):325–353, jul 1994. doi:10.1007/BF01232643.

5 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wil-
son Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi

OPODIS 2017

http://dx.doi.org/10.1016/j.jpdc.2017.08.003
http://dx.doi.org/10.1145/2465351.2465361
http://dx.doi.org/10.1145/2465351.2465361
http://dx.doi.org/10.1007/BF01232643

24:16 Non-Uniform Replication

Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s Globally-distributed Database. In Proc. 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, 2012.

6 Tyler Crain and Marc Shapiro. Designing a causally consistent protocol for geo-distributed
partial replication. In Carlos Baquero and Marco Serafini, editors, Proceedings of the First
Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC@EuroSys
2015, Bordeaux, France, April 21, 2015, pages 6:1–6:4. ACM, 2015. doi:10.1145/2745947.
2745953.

7 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-value store. In Thomas C. Bressoud and
M. Frans Kaashoek, editors, Proceedings of the 21st ACM Symposium on Operating Sys-
tems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007,
pages 205–220. ACM, 2007. doi:10.1145/1294261.1294281.

8 Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic algorithms
for replicated database maintenance. In Fred B. Schneider, editor, Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, August 10-12, 1987, pages 1–12. ACM, 1987. doi:10.1145/41840.
41841.

9 Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Massoulié.
Epidemic information dissemination in distributed systems. IEEE Computer, 37(5):60–67,
2004. doi:10.1109/MC.2004.1297243.

10 Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Rodrigues. Pixida:
Optimizing Data Parallel Jobs in Wide-area Data Analytics. Proc. VLDB Endow., 9(2):72–
83, 2015. doi:10.14778/2850578.2850582.

11 Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. Operating Systems Review, 44(2):35–40, 2010. doi:10.1145/1773912.1773922.

12 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

13 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
1998. doi:10.1145/279227.279229.

14 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’12, pages 265–278, 2012.

15 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In Ted
Wobber and Peter Druschel, editors, Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 401–
416. ACM, 2011. doi:10.1145/2043556.2043593.

16 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-latency Geo-replicated Storage. In Proc. 10th USENIX Conference on
Networked Systems Design and Implementation, nsdi’13, 2013.

17 Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency Multi-datacenter Databases Using Replicated Commit. Proc. VLDB
Endow., 6(9), jul 2013. doi:10.14778/2536360.2536366.

18 Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke, Nuno M. Preguiça, and
Rodrigo Rodrigues. Blotter: Low latency transactions for geo-replicated storage. In Rick
Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich, editors, Proceedings

http://dx.doi.org/10.1145/2745947.2745953
http://dx.doi.org/10.1145/2745947.2745953
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1109/MC.2004.1297243
http://dx.doi.org/10.14778/2850578.2850582
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.14778/2536360.2536366

G. Cabrita and N. Preguiça 24:17

of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia,
April 3-7, 2017, pages 263–272. ACM, 2017. doi:10.1145/3038912.3052603.

19 David Navalho, Sérgio Duarte, and Nuno M. Preguiça. A study of crdts that do computa-
tions. In Carlos Baquero and Marco Serafini, editors, Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data, PaPoC@EuroSys 2015, Bor-
deaux, France, April 21, 2015, pages 1:1–1:4. ACM, 2015. doi:10.1145/2745947.2745948.

20 Patrick E. O’Neil. The escrow transactional method. ACM Trans. Database Syst.,
11(4):405–430, 1986. doi:10.1145/7239.7265.

21 Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–81,
2005. doi:10.1145/1057977.1057980.

22 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial replication
in wide area networks. In 29th IEEE Symposium on Reliable Distributed Systems (SRDS
2010), New Delhi, Punjab, India, October 31 - November 3, 2010, pages 214–224. IEEE
Computer Society, 2010. doi:10.1109/SRDS.2010.32.

23 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Repli-
cated Data Types. In Proc. 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS’11, 2011.

24 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Ted Wobber and Peter Druschel, editors, Proceedings of the 23rd
ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal,
October 23-26, 2011, pages 385–400. ACM, 2011. doi:10.1145/2043556.2043592.

25 Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-
cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agreements for
cloud storage. In Michael Kaminsky and Mike Dahlin, editors, ACM SIGOPS 24th Sympo-
sium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 309–324. ACM, 2013. doi:10.1145/2517349.2522731.

26 Albert van der Linde, João Leitão, and Nuno M. Preguiça. ∆-crdts: making ∆-crdts delta-
based. In Peter Alvaro and Alysson Bessani, editors, Proceedings of the 2nd Workshop on
the Principles and Practice of Consistency for Distributed Data, PaPoC@EuroSys 2016,
London, United Kingdom, April 18, 2016, pages 12:1–12:4. ACM, 2016. doi:10.1145/
2911151.2911163.

27 Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009. doi:10.1145/
1435417.1435432.

A Appendix

In this appendix we present two additional NuCRDT designs. These designs exemplify the
use of different techniques for the creation of NuCRDTs.

A.1 Top-K without removals
A simpler example of a data type that fits our proposed replication model is a plain top-K,
without support for the remove operation. This data type allows access to the top-K elements
added to the object and can be used, for example, for maintaining a leaderboard in an online
game. The top-K defines only one update operation, add(id,score), which adds element id
with score score. The get() operation simply returns the K elements with largest scores.
Since the data type does not support removals, and elements added to the top-K which do
not fit will simply be discarded this means the only case where operations have an impact in
the observable state are if they are core operations – i.e. they are part of the top-K. This
greatly simplifies the non-uniform replication model for the data type.

OPODIS 2017

http://dx.doi.org/10.1145/3038912.3052603
http://dx.doi.org/10.1145/2745947.2745948
http://dx.doi.org/10.1145/7239.7265
http://dx.doi.org/10.1145/1057977.1057980
http://dx.doi.org/10.1109/SRDS.2010.32
http://dx.doi.org/10.1145/2043556.2043592
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2911151.2911163
http://dx.doi.org/10.1145/2911151.2911163
http://dx.doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/1435417.1435432

24:18 Non-Uniform Replication

Algorithm 4 Top-K NuCRDT.
1: elems : {〈id, score〉} : initial {}
2:
3: get() : set
4: return elems
5:
6: prepare add(id, score)
7: generate add(id, score)
8:
9: effect add(id, score)

10: elems = topK(elems ∪ {〈id, score〉})
11:
12: maskedForever(loglocal, S, logrecv) : set of operations
13: adds = {add(id1, score1) ∈ loglocal : (∃add(id2, score2) ∈ logrecv : id1 = id2 ∧ score2 > score1)
14: return adds
15:
16: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
17: return {} . Not required for this data type
18:
19: hasObservableImpact(loglocal, S, logrecv) : set of operations
20: return {add(id, score) ∈ loglocal : 〈id, score〉 ∈ S.elems}
21:
22: compact(ops): set of operations
23: return ops . This data type does not use compaction

Algorithm 4 presents the design of the top-K NuCRDT. The prepare-update add(id,score)
generates an effect-update add(id,score).

Each object replica maintains only a set of K tuples, elems, with each tuple being
composed of an id and a score. The execution of add(id,score) inserts the element into the
set, elems, and computes the top-K of elems using the function topK. The order used for the
topK computation is as follows: 〈id1, score1〉 > 〈id2, score2〉 iff score1 > score2 ∨ (score1 =
score2 ∧ id1 > id2). We note that the topK function returns only one tuple for each element
id.

Function maskedForever computes the adds that become masked by other add opera-
tions for the same id that are larger according to the defined ordering. Due to the way the
top is computed, the lower values for some given id will never be part of the top. Function
mayHaveObservableImpact always returns the empty set since operations in this data
type are always core or forever masked. Function hasObservableImpact returns the set of
unpropagated add operations which add elements that are part of the top – essentially, the
add operations that are core at the time of propagation. Function compact simply returns
the given ops since the design does not require compaction.

A.2 Histogram
We now introduce the Histogram NuCRDT that maintains a histogram of values added to
the object. To this end, the data type maintains a mapping of bins to integers and can be
used to maintain a voting system on a website. The semantics of the operations defined in
the histogram is the following: add(n) increments the bin n by 1; merge(histogramdelta) adds
the information of a histogram into the local histogram; get() returns the current histogram.

This data type is implemented in the design presented in Algorithm 5. The prepare-
update add(n) generates an effect-update merge([n 7→ 1]). The prepare-update operation
merge(histogram) generates an effect-update merge(histogram).

Each object replica maintains only a map, histogram, which maps bins to integers. The
execution of a merge(histogramdelta) consists of doing a pointwise sum of the local histogram
with histogramdelta.

G. Cabrita and N. Preguiça 24:19

Algorithm 5 Histogram NuCRDT.
1: histogram : map bin 7→ n : initial []
2:
3: get() : map
4: return histogram
5:
6: prepare add(bin)
7: generate merge([bin 7→ 1])
8:
9: prepare merge(histogram)

10: generate merge(histogram)
11:
12: effect merge(histogramdelta)
13: histogram = pointwiseSum(histogram, histogramdelta)
14:
15: maskedForever(loglocal, S, logrecv) : set of operations
16: return {} . Not required for this data type
17:
18: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
19: return {} . Not required for this data type
20:
21: hasObservableImpact(loglocal, S, logrecv) : set of operations
22: return loglocal

23:
24: compact(ops): set of operations
25: deltas = {hist : merge(histdelta) ∈ ops}
26: return {merge(pointwiseSum(deltas))}

Functions maskedForever and mayHaveObservableImpact always return the empty
set since operations in this data type are always core. Function hasObservableImpact
simply returns loglocal, as all operations are core in this data type. Function compact takes
a set of instances of merge operations and joins the histograms together returning a set
containing only one merge operation.

OPODIS 2017

	Introduction
	Related Work
	Non-uniform replication
	Example

	Non-uniform eventual consistency
	System model
	Non-uniform eventual consistency
	Protocol for non-uniform eventual consistency
	Fault-tolerance
	Causal consistency

	Non-uniform operation-based CRDTs
	Top-K with removals NuCRDT
	Top Sum NuCRDT
	Discussion

	Evaluation
	Top-K with removals
	Top Sum

	Conclusions
	Appendix
	Top-K without removals
	Histogram

