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Abstract
In combining-based synchronization, two main parameters that affect performance are the com-
bining degree of the synchronization algorithm, i.e. the average number of requests that each com-
biner serves, and the number of expensive synchronization primitives (like CAS, Swap, etc.) that
it performs. The value of the first parameter must be high, whereas the second must be kept low.

In this paper, we present Osci, a new combining technique that shows remarkable perform-
ance when paired with cheap context switching. We experimentally show that Osci significantly
outperforms all previous combining algorithms. Specifically, the throughput of Osci is higher
than that of previously presented combining techniques by more than an order of magnitude.
Notably, Osci’s throughput is much closer to the ideal than all previous algorithms, while keep-
ing the average latency in serving each request low. We evaluated the performance of Osci in two
different multiprocessor architectures, namely AMD and Intel.

Based on Osci, we implement and experimentally evaluate implementations of concurrent
queues and stacks. These implementations outperform by far all current state-of-the-art concur-
rent queue and stack implementations. Although the current version of Osci has been evaluated
in an environment supporting user-level threads, it would run correctly on any threading library,
preemptive or not (including kernel threads).
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1 Introduction

The development of efficient parallel software has become a necessity due to the dominance
of multicore machines. One obstacle in achieving good performance when introducing
parallelism in modern applications comes from the synchronization cost incurred by those
parts of the application that cannot be parallelized. Efficient synchronization mechanisms
are then required to maintain this synchronization cost low.
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Whenever a parallel application wants to access shared data, a synchronization request
is initiated. In order to avoid races, these requests must be executed in mutual exclusion.
Therefore, a lower bound on the time to executem such requests is the time it takes for a single
thread to sequentially execute them, sidestepping the cost of the synchronization protocol.
An ideal synchronization protocol would not require more time than this, independently of
the number of the active threads and despite any contention on the accessed data. In practice,
even the best current synchronization protocols cause a drastic reduction in performance,
even in low contention.

Recent work [8, 9, 14] has focused on developing synchronization protocols implementing
the combining synchronization technique (first realized in [11, 31]). This technique has been
argued [8, 9, 14] to be very efficient. A combining synchronization protocol maintains a list
to store the pending synchronization requests issued by the active threads. A thread first
announces its request by placing a node in the list, and then tries to acquire a global lock. If
it does so, it becomes a combiner, and serves not only its own synchronization request, but
also active requests announced by other threads. Each thread that has not acquired the lock,
busy waits until either its request is executed by a combiner or the global lock is released.

CC-Synch [9] is a simple implementation of the combining technique which outperforms pre-
vious state-of-the-art combining algorithms including flat-combining [14] and OyamaAlg [26],
and other synchronization mechanisms such as CLH-locks [7, 19] and a simple lock-free
algorithm [9]. Nevertheless, Figure 1 indicates that the performance of CC-Synch is still far
from the ideal in a multicore machine equipped with 64 processing cores (more details on this
experiment are provided in Section 5); the ideal performance is measured by calculating the
time that it takes to a single thread to execute the total number of synchronization requests
(that are to be executed by all threads) sidestepping the synchronization protocol, as well as
the local work that follows each of the synchronization requests that it has to perform itself.

In this paper, we present a technique that significantly enhances the performance of
combining-based synchronization by reducing the number of expensive synchronization prim-
itives such as Compare&Swap (CAS) or Swap that are performed on the same shared memory
location, resulting in much fewer cache-misses and cpu backend stalls. Yet, this technique
results in algorithms that are as simple as using CC-Synch or any other synchronization
technique. The technique enables batching of the synchronization requests initiated by
threads running on the same core. The requests are batched in a single “fat” node, which is
then appended in the list of the announced synchronization requests by performing just a
single expensive synchronization primitive.

We study the impact on performance of this technique when combined with cheap context
switching. Specifically, we experimentally argue that its performance power is remarkable
when employed in an environment supporting user-level threads. We present Osci, a new
combining synchronization protocol which exploits this technique. Osci exhibits performance
that is surprisingly closer to the ideal than previous combining algorithms. We experiment
with Osci in a setting where a kernel-level thread running on each core has spawned a number
of user-level threads. Osci appropriately schedules the threads, using a fair implementation
of Yield (whenever a Yield is executed, the running thread voluntarily gives the control of
the core that it is running to some other thread), to achieve better performance.

Osci ensures that a thread p from the set Pc of threads running on a core c, initializes the
contents of a node nd and informs other threads in Pc that they can record their requests
there. So, p initiates a recording period for nd. Next time p is scheduled, it informs threads
in Pc that the recording period for nd is over and appends nd to the shared list of requests.
Thus, when nd is appended in the list, more than one requests by threads in Pc may have
been recorded in it. The combiner traverses the request list and serves all requests recorded
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Table 1 Summary of the known combining techniques.

Algorithm Primitives Scheduling-Aware

Blocking Algorithms
OyamaAlg [26] CAS, read-write No

flat-combining [14] CAS, read-write No
CC-Synch [9] Swap, read-write No

DSM-Synch [9] Swap, CAS, read-write No
Osci (this paper) Swap, CAS, read-write Yes

Wait-Free Algorithms
PSim [8] LL/SC, read-write, Fetch&Add No

PSim-x (this paper) LL/SC, read-write, Fetch&Add Yes

in each of the list nodes. Each of the other threads performs local spinning until either its
request is served by a combiner or the thread becomes the new combiner.

In modern NUMA architectures, the execution of a synchronization primitive (CAS, Swap,
etc.) on a shared memory location causes expensive cache misses and costs at least a few
thousands of cpu cycles. Specifically, such primitives usually involve a flooding of invalidation
messages performed by the coherence protocol [17] to those cores that keep a copy of the
contents of the shared memory location in their caches (read is usually cheaper since it
avoids causing any invalidation messages). In contrast to the expensive synchronization
primitives, a context switch (Yield) among user-level threads running on the same core may
cost no more than a hundred cpu cycles. In most locking and combining protocols, every
request issued by a thread performs at least one expensive synchronization instruction on a
common shared variable, resulting in a cache-line invalidation. For instance, in a queue lock,
this shared variable is the Tail of the queue. Thus, the application (or the announcement) of
k requests results in (at least) k cache invalidations, causing contention and increased traffic
on the interconnection network. By using cheap context switching, Osci creates fat nodes
containing batches of requests. It does so by attempting to pass the control of the processor
to all threads that are running on the same core, thus enabling them to announce new
requests at a very low cost. Each fat node may contain up to t > 1 requests (all issued by the
user-level threads that are running on the same core). In this way, Osci substantially reduces
the synchronization cost for announcing and applying batches of requests. Specifically, k
requests may cause only k/t cache line invalidations for their announcement, resulting to
substantially reduced coherence traffic on the interconnection network. As an immediate
consequence, Osci does not only achieve high combining degree but it also causes the smallest
amount of cache misses (all cache levels), due to low number of cache invalidations, and
the smallest amount of backend stalls than all the other protocols (see Section 5 for a more
detailed performance analysis).

We experimentally compare Osci with known synchronization algorithms, i.e. CC-Synch [9],
PSim [8], flat-combining [14], OyamaAlg [26], a blocking Fetch&Multiply implementation
based on CLH spin-locks [7, 19], and a simple lock-free implementation (see Table 1). (MCS
locks [21] exhibit similar performance to CLH locks.) Osci outperforms CC-Synch by a factor
of up to 11x (Figure 4b) without increasing the latency of CC-Synch. The performance
advantages of Osci over all other algorithms are even higher. It is noticeable that Osci’s
performance is not worse than that of CC-Synch when context switching is expensive (e.g. in
systems that do not support user-level threads). It is worth noting that employing user-level
threads in previous algorithms does not significantly improve their performance (see Table 2).

OPODIS 2017
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Figure 1 Average throughput of the ideal implementation, and the CC-Synch [9] implementation
of a Fetch&Multiply object on a 64-core machine.

Osci is linearizable [15] (see Section 4 for a sketch of proof). Linearizability ensures that
in every execution α, each synchronization request executed in α, appears to take effect,
instantaneously, at some point in its execution interval.

We used Osci to get an implementation of a queue (OsciQueue) and a stack (OsciStack).
Experiments show that OsciQueue outperforms all current state-of-the-art implementations
of queues (combining-based or not), including LCRQ [25], CC-Queue [9], SimQueue [8], and
the lock-free queue in [22]. Section 5 reveals that OsciQueue is more than 4 times faster
than LCRQ [25], the state-of-the-art concurrent queue implementation. OsciStack exhibits
performance advantages similar to that of OsciQueue.

We also present PSim-x, a simple variant of PSim [8]. PSim is a practical universal
construction which implements the combining technique in a wait-free manner (wait-freedom
ensures that each active thread manages to complete the execution of each of its requests in
a finite number of steps). PSim can simulate any concurrent object given that only a small
part of the object’s state is updated by each request. In environments providing fast context
switching, PSim-x achieves a significantly increased combining degree in comparison to PSim.
This is done by using oversubscribing and applying appropriate scheduling on threads. As a
result, the performance of PSim-x is highly enhanced compared to that of PSim. Specifically,
PSim-x outperforms previous synchronization techniques (other than Osci). It also improves
upon Osci by being wait-free (assuming that failures occur at the core level rather than at the
thread level). Its performance, albeit lower than that of Osci, is still close to the ideal. The
same holds for PSimQueue-x, a concurrent queue implementation that is based on PSim-x.

It is noticeable that based on PSim-x, it is straightforward to implement, in a wait-free
manner and at a very low cost, useful complex synchronization primitives such as CAS on
multiple words (and many others), that are not provided by current architectures.

2 Related Work

The current state-of-the-art combining algorithm is CC-Synch [9]. CC-Synch employs a single
list to (1) store the synchronization requests and (2) implements the lock as a fast queue-based
CLH-like spin-lock [7, 19]. This made CC-Synch simpler than previous protocols [14, 26].
Moreover, CC-Synch causes a bounded number of cache misses per request and its combining
degree (i.e. the average number of requests served by a combiner) is argued [9] to be higher
than that of previous techniques. Osci shares some ideas with CC-Synch. However, Osci
applies a different technique from that of CC-Synch for announcing requests, batching them in
fat nodes before placing them in the list of the pending requests, and it features an additional
synchronization layer for the coordination of user-level threads in a way that the algorithm
works even with preemptive schedulers.

A hierarchical version of CC-Synch, called H-Synch [9], exploits the hierarchical commu-
nication nature of some systems which organize their cores into clusters and provide fast
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communication to the threads running on the same cluster, and much slower communication
among threads running on cores of different clusters. Our experiments that have been
conducted on (a) an AMD machine equipped with 4 AMD Opteron 6272 processors, and
on (b) an Intel machine equipped with 4 Intel Xeon E5-4610 processors, show that H-Synch
does not perform much better than CC-Synch in this kind of machines (similar results are
also presented in [9]). However, batching the requests of the threads running on the same
core can be considered as a form of performing hierarchical combining with the cores playing
the role of clusters. We have experimented with a variant of H-Synch which employs many
user-level threads per core and its performance is much worse than Osci (almost 2.5x slower).
The reason is that Osci applies combining in two levels, among the threads of a core and
across cores, whereas H-Synch uses a lock to synchronize threads across cores.

Although the employed thread model has been studied in other contexts [5, 30], to the
best of our knowledge, this is the first paper that studies the performance impact of fast
context switching in the context of combining-based synchronization. Fast context switching
is realized here by employing user-level threads. However, our algorithms can be utilized
efficiently in several other contexts, like, the Glasgow Haskell compiler [20], applications
based on several JAVA implementations [1, 23], OpenMP tasks [12], operating systems that
support scheduler activations [3], applications using User-Mode scheduling provided by the
recent versions of the Windows operating system [2], and tasks in Cilk-like environments [10].
The use of Yield does not play any role in the correctness of Osci and PSim-x. So, they
could work efficiently in any environment that exhibits fast context switching, preemptive or
not (even if the thread scheduling decisions were made by the operating system [3]).

Blocking implementations of the combining technique are presented in [9, 14, 26]. All are
outperformed by CC-Synch [9] and PSim [8]. Sagonas et. al [18] have designed a combining
technique, optimized for concurrent objects that support operations, which do not require to
return some value (e.g. the enqueue operation of a concurrent queue). Their experiments
show that their implementation outperforms CC-Synch and flat-combining in that case.

Holt et. al [16] present a generic framework based on flat-combining [14] suitable for
systems that communicate through message passing (clusters). With this framework, they
efficiently implement concurrent data structures much faster than their locking analogs.

Fast concurrent stack and queue implementations appear in [8, 9, 14, 25, 22, 27, 28, 29].
In [25], Morrison and Afek present a lock-free implementation of a concurrent queue, called
LCRQ. LCRQ outperforms CC-Queue [9] and the queue based on flat-combining [14]. Our
experiments show that OsciQueue outperforms LCRQ by a factor of more than 4 and
PSimQueue-x outperforms LCRQ by a factor of more than 2. In [28], Tsigas and Zhang
present a lock-free queue implementation which outperforms the lock-free queue of [22], as
well as a blocking queue based on spin-locks; the queue is implemented as a circular array.

3 Model

We consider a system of m processing cores on which n threads p0, . . . pn−1 (where n can be
much larger than m) are executed. On each of the m cores, t = n/m threads are executed
(for simplicity, let n mod m = 0); one of these t threads is a kernel thread which spawns the
other t− 1 threads as user-level threads (by calling a function called CreateThread). We
assume that thread pi is executed on core i/t. Without loss of generality, we assume that
thread pj·t is the kernel thread of core j. We remark that the operating system may decide
to move a kernel thread p (and all the user level threads that p has spawned) to another
core. Notice also that it is only for the simplicity of the presentation that we make the above
assumptions regarding the placement of the threads.

OPODIS 2017
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The kernel is aware only of the kernel threads and makes decisions about scheduling. If the
kernel decides to switch context when one of these threads p has the CPU, p and all threads
it has spawned, stop executing until the operating system decides to allocate the CPU to p
again. A thread calls Yield whenever it wants to give the CPU. Then, a user-level scheduler,
implemented by the corresponding kernel thread, is activated to decide which of the t threads
of the core will next occupy the CPU. We assume that this choice is made in a fair manner.

We consider a failure model, where if a kernel thread p fails, then all threads executing in
the same core also fail at the same point in time as p.

4 Description of Algorithms

Description of Osci. Osci (Algorithm 1) maintains a linked list of nodes (initially empty)
for storing active requests. A shared pointer Tail, initially NULL, points to the last inserted
node in the list. Each node v is of type ListNode and contains the requests announced by
the active threads running on a single core c. These requests are recorded in the reqs field of
v, which is an array with as many elements as the number of threads running on c. A thread
pi, running on c, records its requests in the i mod t position of reqs (we note that for cases
where different number of threads run on each core, Osci still works).

One of the threads (let it be p) that have recorded requests in the head node of the list
plays the role of the combiner. A combiner traverses the list and serves the requests recorded
in each of the list nodes (lines 30-36), until either it has traversed all elements of the list or
it has served h requests in total∗ (line 37). If any of these conditions holds, the combiner
thread gives up its combining role by identifying one of the threads from those that have
recorded their requests in the next node to be the new combiner (lines 43-44). We remark
that at each point in time, if the list is non-empty, then there is exactly one combiner. On
the other hand, if the list is empty, then no combiner exists.

Each thread owns (only) two nodes of type ListNode and uses them interchangeably to
perform subsequent requests (lines 1 and 4), so the nodes are recycled in an efficient way.
The first thread (let it be pi) among those running on core c = bi/tc, that wants to apply a
request, tries to store a pointer to one of its nodes (let this node be nd) in Announce[c] (line
2) using CAS†. Notice that Announce[c] may also be accessed simultaneously by other threads
running on c. If pi’s CAS succeeds, pi records a struct of type ThreadReq in nd.reqs[i mod t].
This struct contains a pointer req pointing to the request that pi has initiated, the return
value ret for this request and two boolean variables completed and locked (to which we refer
as the locked and completed fields of pi). If both locked and completed are equal to false,
pi becomes the new combiner. Whenever pi performs spinning, it spins on its locked field; if
locked becomes false while completed is true, then a combiner has served pi’s request.

After pi has recorded its request, it changes the door field of nd from LOCKED (which was
initially) to OPEN (line 9) and calls Yield (line 10) to allow other threads running on c to
announce their requests in nd. We say that pi is a director of core j. A director executes
lines 4-18 and it is the only thread among those that run on the same core c that can later
be a combiner (no other thread on c can be a combiner while applying this current batch of

∗ In order to prevent a combiner from traversing a continuously growing list, an upper bound h on the
requests that p may serve is set; experiments show that h does not significantly affect performance; for
our experiments, we have chosen h = 2n.

† CAS implementations on real machines usually return true/false. For simplicity of the presentation, we
assume that CAS returns the old value of the memory location on which it is applied. We can trivially
make the algorithm work with CAS instructions that return true/false.
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Algorithm 1 Pseudocode for Osci.
constant t = dn/me, LOCKED= 0, OPEN= 1, CLOSE= 2; // m is the number of cores, n is the number of threads
struct ThreadReq { struct ListNode {

ArgVal req; ThreadReq reqs[0..t-1];
RetVal ret; int door;
boolean completed, locked; } struct ListNode *next; }

shared ListNode *Tail = NULL, *Announce[0..m-1] = {NULL};
private ListNode nodei[0..1] = {〈 {〈 ⊥, ⊥, false, true〉}, LOCKED, NULL〉};
private boolean togglei = 0;

RetVal Osci(ArgVal arg) { // pseudocode for thread pi, i ∈ {1, . . . , n}
ListNode *myNode, *tmpNode, *cur = NULL;
int offset = i mod t, counter = 0, j;

1 myNode = &nodei[togglei]; // choose one of the nodes of pi to use
2 cur = CAS(Announce[bi/tc], NULL, myNode);
3 if (cur == NULL) { // pi is the current director on core bi/tc
4 togglei = 1 - togglei;
5 myNode→reqs[offset].req = arg; // the director announces its request
6 myNode→reqs[offset].locked = true;
7 myNode→reqs[offset].completed = false;
8 myNode→next = NULL;
9 myNode→door = OPEN;
10 YIELD(); // pass control to some other thread
11 Announce[bi/tc] = NULL;
12 while (CAS(myNode→door, OPEN, CLOSE) != OPEN) YIELD();// close the door
13 tmpNode = SWAP(Tail, myNode); // append the node in the request list
14 if (tmpNode 6= NULL) { // pi is not the combiner
15 tmpNode→next = myNode; // set the next field of the previous node
16 while (myNode→reqs[offset].locked==true) YIELD();// pi calls Yield() instead of spinning
17 if (myNode→reqs[offset].completed==true) // check if pi’s request has already been applied
18 return myNode→reqs[offset].ret;

}
19 } else { // pi is not the director
20 while (CAS(cur→door, OPEN, LOCKED) != OPEN) // try to acquire the lock
21 if (cur→door == CLOSE) goto line 2; // if door is closed start from scratch
22 else YIELD();
23 myNode = cur;
24 myNode→reqs[offset] = <arg, ⊥, false, true>; // pi announces its request
25 myNode→door = OPEN;
26 while (myNode→reqs[offset].locked==true) YIELD();// yield to other threads of same core
27 if (myNode→reqs[offset].completed==true) // check if pi’s request has already been applied
28 return myNode→reqs[offset].ret;

}
29 tmpNode = myNode; // pi is the combiner
30 while(true) {
31 for (j = 0; j < t; j++) { // pi applies the requests of threads executing on core j
32 if (tmpNode→reqs[j].completed == false) {
33 apply tmpNode→reqs[j].req and store the return value to tmpNode→reqs[j].ret;
34 tmpNode→reqs[j].completed = true; // announce that tmpNode→ req[j] is applied
35 tmpNode→reqs[j].locked = false; // unlock the corresponding spinning thread
36 counter = counter + 1;

}
}

37 if (tmpNode→next == NULL or counter ≥ h) break;// h is an upper bound of the combined requests
38 tmpNode = tmpNode→next;

}
39 if (tmpNode→next == NULL) { // check if pi’s req is the only record in the list
40 if(CAS(Tail, tmpNode, NULL) == tmpNode) // attempt to set T ail to NULL
41 return myNode→reqs[offset].ret;
42 while (tmpNode→next == NULL) YIELD(); // some thread has in the mean time appended a node

}
43 for (j = 0; tmpNode→next→reqs[j].completed 6=false; j++) noop;
44 tmpNode→next→reqs[j].locked = false; // identify the new combiner
45 return myNode→reqs[offset].ret;

} // Osci

OPODIS 2017



8:8 Lock Oscillation: Boosting the Performance of Concurrent Data Structures

operations). In case that the director becomes a combiner, it also executes lines 29-45. To
apply a request, a thread pj 6= pi that is also executed on c, first checks whether the door of
the node nd pointed to by Announce[c] is OPEN, and if this is so, it tries to acquire the door
by setting the value of door to LOCKED using CAS (line 20). If the CAS succeeds, pj records
its request in nd (lines 23, 24), unlocks the door (line 25), and repeatedly calls Yield (line
26) until some combiner either serves its request (lines 32-36) or informs pj to become the
new combiner (line 44).

Since we assume fair scheduling of threads on each core, it is guaranteed that at some
later point, pi is re-activated and executes from line 11 on. Then, pi changes the door field
of nd to CLOSE (line 12) using CAS to avoid synchronization problems with other threads
running on c that may simultaneously try to record their requests in nd. Next, pi appends
nd in the shared list by executing Swap (line 13). If pi has appended its node in an empty list
(i.e. if the condition of line 14 is false), or both the locked and completed fields in the entry
of nd→ reqs corresponding to pi, are equal to false (lines 16, 17), pi becomes a combiner.

If pi does not become a combiner, it updates the next field of the previous node to point
to its node (line 15), and repeatedly calls Yield (line 16) until a combiner either serves its
request or informs pi that it is the new combiner. In the first case, pi returns on line 18,
whereas in the second it executes the combiner code (lines 29-45).

If a thread pi evaluates the if condition of line 39 to true but unsuccessfully executes
the CAS on line 40, then some other thread pj has succeeded in updating Tail to point to a
node nd′ but it has not yet changed the next field of the node to which Tail was previously
pointed to point to nd′. Then, pi has to wait until pj sets next to point to nd′ (line 42), to
ensure that it will correctly choose the thread to become the next combiner (lines 43-44).
Notice that on lines 43-44, pi indicates the node with the smallest identifier among those that
have recorded their requests in nd′ as the new combiner. A combiner is the director of a core
and owns the first node of the list that contains requests unserved by previous combiners.

Osci is linearizable. If a thread p executes the CAS of line 2 successfully (i.e. it becomes
a director), and until the next time pi is scheduled and executes line 12, no other thread
on this core can become the director (since these threads will execute the CAS of line 2
unsuccessfully). Let α be any execution and consider a thread pi that executes an instance A
of Osci at some configuration C. Let Tail(C) be the value of Tail at C. For each i, 1 ≤ i ≤ n,
denote by mynodei(C) the value of variable mynode at C. If A executes the Swap of line 13
and gets NULL as the response, denote by Cf the configuration resulting from the execution
of line 13; in case there is at least one configuration C ′ in A such that mynodei(C ′)→ reqs[i
mod t].locked = false and mynodei(C ′) → reqs[i mod t].completed = false, denote by
Cf the first of these configurations. We say that pi is a combiner at C if Cf exists and C is
a configuration that follows Cf in which A is active. We prove that in each configuration
C, either Tail(C) equals NULL and there is no combiner at C, or Tail(C) points to a node
nd and there is exactly one combiner at C. We also prove that only a combiner executes
lines 30-45 implying that each request recorded in a list node is applied exactly once, as
needed to prove linearizability.

Description of PSim and PSim-x. PSim uses (1) an array Announce of n entries, where
each if the n threads announces its requests, (2) a bit vector Toggles which records the
threads that have active requests, and (3) an LL/SC object Tail, which stores a pointer to the
state of the object. Whenever a thread pi wants to apply a request, it announces its request
in Announce[i]. After that, it toggles Toggles[i] (by executing a Fetch&Add instruction) to
indicate that it has an active request. Thread pi discovers which requests are active using
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this vector and Toggles; pi serves the active requests by executing their code on a local copy
of the simulated state. Then, pi executes an SC in an effort to change Tail to point to this
copy. These actions may have to be applied by pi twice to ensure that its request has been
served. Together with the simulated state, PSim stores a response value for each thread.

In PSim-x, each thread p calls Yield after announcing its request. This increases the
combining degree of the algorithm. In most cases, when p is scheduled again, it finds out
that its request has been completed, so it does not pay the overhead of executing the rest of
the algorithm. These are the reasons for the better performance of PSim-x.

5 Performance Evaluation

We evaluated Osci and PSim-x in two different multiprocessor architectures. The first is a 64-
core machine consisting of 4 AMD Opteron 6272 processors. Each of these processors consists
of 2 dies and each die contains 4 modules, each of which contains 2 cores (64 logical cores).
The second one is an Intel 40-core machine equipped with 4 Intel Xeon E5-4610 processors.
Each processor consists of 10 cores, and each core executes two threads concurrently (80
logical cores). We used the gcc 4.8.5 compiler and the Hoard memory allocator [4] for all
experiments. The operating system was Linux with kernel version 3.4. We performed a lot
of experiments for different numbers of user level threads to achieve the best performance
for each algorithm. All algorithms were carefully optimized and for those that use backoff
schemes, we performed a lot of experiments to choose the best backoff parameters. To
prohibit the linux scheduler from doing unnecessary kernel thread migrations, threads were
bound in all experiments: the i-th thread was bound on core bi/tc, where t = dn/me. Most
of the commercially available shared memory machines provide CAS instructions rather than
supporting LL/SC. For our experiments, we simulate an LL on some object O with a simple
read, and an SC with a CAS on a timestamped version of O to avoid the ABA problem‡.

For our experiments, we developed a library that provides basic support for user level
threads. We note that our goal is not to present a new user-level threads library but to ensure
that we use a library which is simple and provides fast context switching. By replacing our
user-level threads library with any other library that ensures fast context switching, Osci and
PSim-x would exhibit similar performance gains. The thread on library we used supports the
operations CreateThread, Join, and Yield. A POSIX thread (kernel-level thread) runs on
each core. This thread calls CreateThread to spawn the other user-level threads running
on the same core. It calls Join to wait its children threads to complete. Yield activates a
user-level scheduler which passes control to some other thread executing on the same core.
Yield is implemented with a FIFO queue that stores the running threads on each processing
core. Moreover, Yield makes the appropriate calls to standard _setjmp/_longjmp functions
to context switch between user-level threads. For performance reasons, it is important that
the implementation of Yield is as fast as possible and the scheduler is fair.

For our experiments, we first consider a synthetic benchmark, called the Fetch&Multiply
benchmark, which is similar to that presented in [8, 9]. In this benchmark, a Fetch&Multiply
object is simulated using state-of-the-art synchronization techniques such as CC-Synch [9],
PSim [8], flat-combining [13, 14], a blocking implementation of a Fetch&Multiply object
based on CLH queue spin-locks [7, 19], OyamaAlg [26], and a simple lock-free implementation.
A Fetch&Multiply object supports the operation Fetch&Multiply(O, k) which returns

‡ The ABA problem occurs when a thread p reads a value A from a shared variable O and then a thread
p′ modifies O to the value B and back to A; when p executes again, it thinks that the value of O has
never changed which is incorrect.
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Table 2 Speedup of state-of-the-art synchronization algorithms when employing user level threads
(AMD Opteron).

Algorithm throughput Variant throughput speedup

CC-Synch 4.18 CC-Synch-x8 4.60 1.10
DSM-Synch 4.10 DSM-Synch-x8 4.58 1.12

H-Synch 4.23 H-Synch-x32 10.1 2.39
PSim 3.90 PSim-x64 23.2 5.94

Lock-Free 2.00 Lock-Free-x2 1.87 0.94
CLH 1.58 CLH-x4 1.70 1.08

flat-combining 2.99 flat-combining-x24 5.51 1.84
OyamaAlg 1.72 OyamaAlg-x16 2.80 1.63

the current value v of memory location O and updates the value of O to be v ∗ k. The
considered lock free implementation uses a single CAS object. When a thread wants to apply
a Fetch&Multiply, it repeatedly executes CAS until it succeeds; to increase the scalability, a
backoff scheme is employed. The Fetch&Multiply object is simple enough to exhibit any
overheads that a synchronization technique may induce while simulating a simple, small
shared object. To avoid long runs and unrealistically low number of cache misses [22, 8],
which may make the experiment unrealistic, we added some small local workload between
two consecutive executions of Fetch&Multiply in a similar way as in [9, 22]. This local
workload is implemented as a loop of dummy iterations whose number is chosen randomly
(to be up to 512). For our machine configuration, this workload is large enough to avoid long
runs and unrealistically low number of cache misses; still, it is small enough to allow large
contention in the simulated object (see Figure 4b for more details). Each instance of the
benchmark simulates 108 Fetch&Multiply, in total, with each of the n threads simulating
108/n Fetch&Multiply out of them. The average throughput is measured. Each experiment
is executed 10 times and averages are taken.

In Table 2, we present the throughput for (1) the original versions of the evaluated
algorithms (i.e. only one thread per core) and (2) their variants where many user level
threads per core are created (for executing the Fetch&Multiply benchmark). The x〈yy〉
suffix in their names indicates the number of user level threads that are executed per core, so
CLH-x4 indicates that CLH spin locks are evaluated with 4 user level threads per core. We
performed a lot of experiments for different numbers of user level threads in order to achieve
the best performance for each algorithm. We also report the additional speedup we gain
for each algorithm by using more than one user level thread per core. The performance of
these variants appears in column 4 of the table. The performance presented in Table 2 was
measured for the best number of user-level threads for each algorithm and it was performed
on the AMD machine. For blocking algorithms that perform spinning on some shared
variable, namely CC-Synch, flat-combining and the implementation based on CLH locks, we
(repeatedly) call Yield instead of spinning. For implementations that repeatedly perform CAS,
like OyamaAlg and the lock-free implementation, we call Yield between any two consecutive
attempts to execute CAS.

Table 2 shows that all algorithms other than PSim, H-Synch, flat-combining and OyamaAlg
do not exhibit any performance gain when employing user level threads. The main reason
for this is that the total number of atomic primitives (i.e. CAS, Swap and Fetch&Add) that
are executed by each of these algorithms is the same independently of how many user level
threads are employed. We note that the performance of the simple lock-free implementation
deteriorates for n > m, since then this variant (1) behaves similarly to the original algorithm
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(a) (b)

Figure 2 Average throughput of Osci while simulating a Fetch&Multiply object on (a) the AMD
machine (b) the Intel machine, for different numbers of user-level threads per core. The legends are
listed top to bottom in the order of the curve they refer to.

(the identity of the thread that repeatedly attempts to execute CAS at each point in time is
immaterial), and (2) has the additional cost of executing Yield.

It is noticeable that the performance of PSim improves by a factor of up to 5.9 when
using user-level threads. This performance gain is due to the fact that each thread in PSim-x
first announces its request, then calls Yield to allow to other threads on the same core to
announce their requests, and finally checks if its request has been applied. Only if this is
not so, PSim-x tries to serve all the pending requests. However, it turns out that in most
of the cases, this is not needed, so the request is completed without paying the overhead
of executing the combining part. This results in a big performance advantage of PSim-x.
The version of flat combining that uses user level threads increases its performance by a
factor of up to 1.84, while the performance of OyamaAlg increases by a factor of up to 1.63.
However, PSim-x is 4.21 times faster than flat-combing, 8.2 times faster than OyamaAlg, and
3.8 times faster than H-Synch. We remark that the maximum performance for flat-combining
is achieved for 24 user-level threads per core. Notice that H-Synch performs better than that
of CC-Synch and PSim but much lower than that of Osci and PSim-x.

Figures 2a and 2b show Osci’s performance for different numbers of user level threads per
core when executing the Fetch&Multiply benchmark on the AMD and the Intel architectures,
respectively. The x-axis of the diagram represent the number of cores, and the y-axis represents
the average throughput of Osci (over the 10 runs performed). Each line of the diagrams
corresponds to a different number of user-level threads per core. The local work between
two consecutive Fetch&Multiply is up to 512 dummy iterations. The first figure shows
that the performance of Osci increases as the number of user level threads increases. For
small numbers of user level threads per core (up to 8), the performance gain is significant.
Specifically, by using 4 user level threads per core, the performance of Osci is increased
almost 4x, and when 8 user level threads per core are used, the performance increases by a
factor of more than 6. However, smaller performance gains are illustrated in case of 16 or
more user level threads since then the dominant performance factor becomes the switching
overhead that Yield induces. Moreover, no significant improvement on Osci’s performance
is achieved when more than 32 threads are employed per core. Our experiments show that
for big numbers of threads per core (e.g. more than 64), the performance of Osci slightly
deteriorates. In the case of the Intel architecture (Figure 2b), the performance behavior
of Osci is very similar, since its performance increases as the number of user level threads
increases. The best performance for Osci is achieved for either 64 or 96 threads per core.

Figures 3a, 3b compare the performance of Osci and PSim-x with the other synchronization
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(a) (b)

Figure 3 Average throughput of Osci and PSim-x against other synchronization techniques on (a)
the AMD machine, and (b) the Intel machine.

techniques (the versions that use more than one thread per core) running the Fetch&Multiply
benchmark on the AMD and Intel machines, respectively. Driven by the results presented on
Figures 2a, 2b, we configured Osci to use 32 user-level threads per core on the AMD machine
and 64 on the Intel machine. Experiments showed that PSim-x scales well with 64 threads per
core on the AMD machine and with 128 threads per core on Intel. Figures 3a, 3b also show
the performance of an ideal implementation of the Fetch&Multiply. The throughput of the
ideal implementation is calculated by multiplying n with the throughput of the sequential
execution. This is higher than what the ideal algorithm would achieve (so this comparison
is not in favor of our algorithms). For n = 1, the ideal performance is almost the same
as the performance of Osci and CC-Synch [9] (and close to all other algorithms), since (1)
the dominant performance factor is the local work, (2) there is no contention, and (3) all
algorithms perform just 1 or 2 atomic primitives per request without causing cache misses.
Notice that the performance of the ideal algorithm scales linearly to the number of cores.

Figure 3a shows that Osci and PSim-x outperform all other synchronization techniques
(the versions that do not use more than one thread per core) by far. On the AMD machine,
Osci outperforms CC-Synch [9] by a factor up to 7.5 and PSim-x outperforms CC-Synch by a
factor up to 4.6. Recall that, Table 2 shows that the performance of CC-Synch, as well as of
all other algorithms, do not improve much when using more than one user-level thread per
core. This proves that the batching technique impacts performance significantly. Figure 3a
also shows that Osci is up to 6.8 times faster than the variant of flat-combining that employs
user-level threads and it is only up to 25% slower than the ideal. As expected [9], CC-Synch is
faster than PSim and that the simple lock-free version of Fetch&Multiply performs similarly
to CLH locks (on this benchmark). Figure 3b shows that the performance advantages of Osci
and PSim-x on the Intel machine are very similar to those on the AMD machine. Due to lack
of space, we focus our performance study of Osci and PSim-x on the AMD machine, from
now on. The performance behavior of Osci and PSim-x on the Intel architecture is similar.

Figure 4a provides a comparison of the performance of Osci and PSim-x to that of the
original algorithms (that employ just one thread per core). Similarly to Figure 3a, the
performance advantages of Osci and PSim-x are significant. Table 3 shows that Osci does not
significantly impact the average latency per operation. With 4 threads per core, the average
latency is slightly increased (by less than 5% whereas its throughput is 3.81 times higher than
that of CC-Synch. With 8 threads per core, the latency increases just 4 nsec (less than 29%)
whereas the throughput is 6.23 times higher. Notice that for local work that is greater than
1k, the dominant factor in system’s performance is the local work and not the overhead of



P. Fatourou and N.D. Kallimanis 8:13

Table 3 The impact of Osci in latency performance (random local work = 512).

CC-Synch Osci-x4 Osci-x8 Osci-x16 Osci-x32 H-Synch-x32
Average Latency (usec) 0.0142 0.0148 0.0182 0.0298 0.0541 0.0205

Throughput (millions ops/sec) 4.51 17.22 28.10 34.32 37.83 10.12

(a) (b)

Figure 4 (a) Average throughput of Osci and PSim-x against other synchronization techniques
while simulating a Fetch&Multiply object on the AMD machine. (b) Average throughput of Osci
and PSim-x with different values of random work for 64 cores.

the synchronization protocol (see Figure 4b). In this case the optimum performance should
be achieved with low numbers of user-level threads per core leading to also low latency.

In Figure 4b, we evaluate the performance of Osci and PSim-x for different values of local
random work on the AMD machine. In this benchmark, we use 64 user-level threads per core
for Osci in order to achieve the best performance. It is shown that Osci and PSim-x outperform
all the other synchronization, techniques (Osci outperforms CC-Synch and flat-combining by
a factor of up to 11, respectively). Even in cases where the contention is low (local random
work is equal to 4k), Osci and PSim-x perform better (more than 1.5 times faster) than
all other synchronization techniques. Smaller values of local work (and therefore higher
contention) are in favor of Osci and PSim-x. For relatively large amounts of random local
work, the experiment shows that the throughput starts to decline. For local work greater
than 16k, all synchronization techniques have similar performance, since then the local work
becomes the dominant performance factor. This experiment shows that Osci and PSim-x
would behave efficiently for a large collection of applications, since their performance is
tolerant for different amounts of local work that the application may execute. Additionally,
even with low contention, Osci and PSim-x perform better than all the other algorithms.

Table 4 sheds light on the reasons that Osci achieves good performance, providing the
average number of cache misses (all levels) per request, the average number of cpu cycles
spent in backend stalls per request, and the average combining degree achieved by each
algorithm. Given that all the memory footprints of our benchmarks were small comparing to
the processors’ cache size, the great majority of cache misses are cache-line invalidations due
to the coherency protocol. The number of cache misses and backend stalls was recorded with
perf linux tool. As shown in Table 4, Osci exhibits the lowest amount of cache misses among
all the other algorithms. Moreover, Osci causes the smallest number of cpu cycles spent in
back-end stalls. Therefore, Osci not only executes the smallest amount of cache misses but
also its cache-misses are the cheapest, since it spends the fewest cpu cycles in backend-stalls.
This is due to the fact that Osci is able to announce an entire batch of active requests
by executing just a single Swap. Similarly, the combiner reads (and applies) a batch of
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Table 4 Last level cache misses and cpu cycles spent in backend stalls per request (64 cores,
maximum random work = 64).

Algorithm cache-misses
(all levels)

cpu cycles spent in
backend stalls combining degree

Osci-x64 0.20 247.9 1404
PSim-x64 0.24 2306 1307

H-Synch-x32 0.47 666.1 32
CC-Synch 0.47 4210 1079

PSim 0.40 14300 22

requests without causing a cache miss for each request. We remark that all the other atomic
primitives executed by a thread, performing an instance of Osci, access memory locations
cached in the local core where the thread resides, avoiding invalidations on the caches of
remote cores. PSim-x achieves the second lowest number of cache misses. Even though
PSim-x’s cache misses are more expensive than H-Synch-x32’s (back-end stalls are more in
this case), H-Synch-x32 spends a significant amount of cpu cycles spinning on a central lock.
Also, the very low combining degree of H-Synch-x32 results in worse performance, comparing
to PSim-x; for a bigger number of threads per core, H-Synch’s performance deteriorates.
PSim-x operates in a more complicated way than Osci in order to achieve wait-freedom. The
main overhead of PSim-x compared to Osci is that, to execute a request, each thread locally
copies the state of the simulated object and an array of return values of size Ω(n). Due to
the over-subscription, the array of return values is pretty large in PSim-x. This results in a
larger amount of cache-misses and backend stalls comparing to Osci. As PSim-x is a simple
variant of PSim, the performance gains of PSim-x over PSim originate from the much better
combing degree of PSim-x. This results in much less cache misses and cpu stalls.

6 Queue and Stack Implementations

We implement and experimentally analyze a shared queue, called OsciQueue, based on the
two lock queue implementation by Michael and Scott [22]. In OsciQueue, the two locks of the
lock queue [22] are replaced by two instances of Osci. We also study a version of SimQueue [8]
that uses user level threads. This version is called PSimQueue-x.

In Figure 5a, we compare these queue implementations with state-of-the-art queue
implementations, like the lock-free LCRQ implementation recently presented by Morrison
and Afek in [25], the blocking CC-Queue implementation presented in [9], the wait-free
SimQueue [8] implementation, and the lock free queue implementation presented by Michael
and Scott in [22]. The experiment is performed on the AMD machine and it is similar to that
presented in [22, 8, 9]. Specifically, each of the n threads executes 108/n pairs of enqueue
and dequeue requests, starting from an empty data structure. This experiment is performed
for different values of n. Similarly to the experiment of Figure 3a, a random local work (up to
512 dummy loop iterations) is simulated between the execution of two consecutive requests
by the same thread. In the experiment of Figure 5a, the queue was initially empty. In our
environment, OsciQueue achieves its best performance for 64 user-level threads per core. We
use the LCRQ implementation that is provided in [24] and we performed a lot of experiments
to determine the appropriate ring size of LCRQ that achieves the best performance.

Figure 5a shows that OsciQueue outperforms all other queue implementations by far.
Specifically, OsciQueue is more than 4 times faster than LCRQ and more than 5 times faster
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(a) (b)

Figure 5 Average throughput of (a) OsciQueue, and (c) OsciStack.

than CC-Queue. It is also shown that PSimQueue-x outperforms LCRQ by a factor of 2. Notice
that OsciQueue’s performance is far from ideal by a factor of only 25%. Additionally, it ensures
wait-freedom which is stronger than lock-freedom ensured by LCRQ. As it is expected [25],
LCRQ has the best performance among all the other queue implementations. Recall that the
queue is initially empty in this experiment. We also performed a similar experiment where
the queue was initially containing 8192 elements. In this case, the performance results were
very similar to those of Figure 5a.

Based on Osci and PSim-x, we derive implementations for concurrent stacks, called
OsciStack and PSimStack-x, respectively. In Figure 5b, we compare their performance with the
state-of-the-art shared stack implementations. More specifically, OsciStack and PSimStack-
x were evaluated against CC-Stack [9], SimStack [8], the lock-free stack implementation
presented by Treiber in [27], a stack implementation based on CLH spin locks [7, 19], where
elimination has been applied when possible. The stack implementation recently presented
in [6] is designed for a client-server model and thus it is not evaluated in this paper.

Similarly to the experiment of Figure 5a, we measure the average throughput that each
algorithm achieves (every thread executes 108/n pairs of push and pop requests) for different
values of n. The random local work is set to 512. Figure 5b illustrates that OsciStack
outperforms by far all other stack implementations. Specifically, OsciStack is up to 7.1
times faster than CC-Stack. It is noticeable that PSimStack-x, which is a wait-free stack
implementation outperforms CC-Stack by a factor of up to 3.3.

7 Conclusions

In this paper a new combining technique, which is called Osci is presented. Osci shows
remarkable performance when paired with cheap context switching. We have experimentally
shown that Osci significantly outperforms all previous combining algorithms. Specifically,
the throughput of Osci is higher than that of previously presented combining techniques by
more than an order of magnitude. Notably, Osci’s throughput is much closer to the ideal
than all previous algorithms, while maintaining the average latency in serving each request
low. Osci is evaluated in two different multiprocessor architectures, namely AMD and Intel.

Based on Osci, we have implemented and experimentally evaluated implementations
of concurrent queues and stacks. These implementations outperform by far all current
state-of-the-art concurrent queue and stack implementations. Although the current version
of Osci has been evaluated in an environment supporting user-level threads, it would run
correctly on any threading library, preemptive or not (including kernel threads).
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