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Abstract
We investigate distributed algorithms for broadcasting in unreliable wireless networks. Our basic
setting is the signal to noise and interference ratio (SINR) model, which captures the physical
key characteristics of wireless communication. We consider a dynamic variant of this model in
which an adversary can adaptively control the model parameters for each individual transmission.
Moreover, we assume that the network devices have no information about the geometry or the
topology of the network and do neither know the exact model parameters nor do they have any
control over them.

Our model is intended to capture the inherently unstable and unreliable nature of real wireless
transmission, where signal quality and reception depends on many different aspects that are often
hard to measure or predict. We show that with moderate adaptations, the broadcast algorithm
of Daum et al. [DISC 13] also works in such an adversarial, much more dynamic setting. The
algorithm allows to broadcast a single message in a network of size n in time O(D·polylog(n+R)),
where D is the diameter and R describes the granularity of the communication graph.
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1 Introduction

In the signal to noise and interference (SINR) model (a.k.a. the physical interference model),
a message is received if and only if the ratio between the signal strength at the receiving node
and the combined strength of the background noise and any interfering signals is above a
given threshold. By now, the SINR model has become the standard communication model to
study wireless network algorithms. In the distributed algorithms literature, different variants
of the basic SINR model have been studied, based on the properties of the underlying
geometric space, how much geometric information the network devices have and how much
they know about the model parameters or the network topology.

One of the most general variants of the SINR model has been termed the ad hoc SINR
model by Daum et al. in [4], where they study the problem of broadcasting a message to all
nodes of a wireless network. In [4], it is assumed that the network nodes have no information
about the geometry or the topology of the network, prohibiting algorithms that utilize
advance knowledge about network topology and layout or the way that signals propagate in
space. The distances between the nodes are assumed to form a general growth-bounded metric
space. Furthermore, the nodes use uniform transmission powers, they have only approximate
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3:2 Broadcasting in an Unreliable SINR Model

knowledge of the hardware and model parameters, and they do not have additional capabilities
like carrier sensing. Because the model makes only minimal assumptions, it allows to develop
algorithms that can operate in a quite general setting.

However, while the authors of [4] assume that the model parameters are only known
approximately, these parameters are still assumed to be uniform over the whole network and
static over time. As a result, whether a message is successfully received is determined by a
deterministic function depending on the system parameters and the geometry of the network.
However in real wireless networks, communication often turns out to be rather unreliable
and highly volatile, and system parameters tend to not be uniform over space and time [22].
As a result, practical wireless communication behaves in an inherently non-deterministic
way. Examples for such unpredictable communication behavior are background noise due to
coexisting networks or jamming, various multi-path effects due to changes of the environment,
or fluctuations in sending power or signal sensitivity among different wireless devices.

In order to improve practical applicability in the present paper, we consider an unreliable
variant of the ad hoc SINR model (which we will term the unreliable SINR model) by adding
a worst-case adversary, which decides to a given extent whether or not messages are received.
The adversary adds a dynamic and non-deterministic component to the model that allows
to capture non-uniform and dynamically changing SINR parameters. More concretely, we
assume that at each point in time and individually for each node, an adversary can adaptively
control the threshold on the signal to interference and noise ratio above which a message can
successfully be decoded (for a formal definition of the model, we refer to Section 3).

As our main contribution, we adapt the broadcast algorithm of Daum et el. [4] to work in
the unreliable SINR model. We show that with relatively modest adaptions, the algorithm
of [4] can also be used to efficiently solve the broadcast problem in the unreliable SINR model.
More specifically, let GC be the communication graph in which two nodes are adjacent if
they can reliably communicate with each other in the unreliable SINR model (if the signal to
noise ratio for the two nodes is sufficiently above the maximum threshold that the adversary
is allowed to choose). We prove that the global broadcast problem can be solved in time
O
(
D ·polylog(n+R) · βmax

βmin

)
, where D is the diameter of the communication graph GC , R

is the ratio of maximum to minimum distance between any two adjacent nodes in GC ,1
and [βmin, βmax] is the range within which the adversary can adaptively choose the SINR
threshold in each time slot and for each node.

The paper is structured as follows. In Section 2 we summarize existing work related to
broadcasting in the SINR model and non-deterministic distributed algorithms. In Section 3
we specify our model and give some notions used throughout the following sections. Section
4 gives an overview on the neighborhood dissemination process, which conducts one hop
of the global message broadcast. In Section 5 to Section 8 we analyze the neighborhood
dissemination protocol. Finally, in Section 9, we show that our abstract model, where the
adversary can only control the SINR threshold, in fact allows to also capture a more general
adversary, which controls all SINR-parameters.

1 Theoretically, any functional dependency R = f(n) is possible, e.g., for a series of nodes v1, . . . , vn+1
with decreasing distances d(vi, vi+1) = 1/f(i). However, we consider R ∈ ω(n) unlikely in practice. E.g.,
placing n nodes uniformly at random inside a square with sidelength re/

√
2 (where re is the effective

communication range), yields an expected granularity R ∈ Θ(n).
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2 Related Work

Broadcasting in the SINR Model. Broadcasting algorithms in conjunction with the SINR
model were first investigated in [10]. They consider local broadcast, where each node needs to
broadcast a message to all neighbors in the communication graph. Note that local broadcast
can be used as a building block to solve global broadcast. Subsequent publications on
broadcasting (local and global) in the SINR model include [13,14,25,26]. However, all the
aforementioned publications leverage assumptions that are incompatible with our conception
of the SINR model. Incongruities include in particular that nodes have knowledge of their
position or of distances to other nodes or that nodes can modify their sending power or have
carrier sensing capability.

Broadcasting in the Ad Hoc SINR Model. Most relevant for our work are distributed
information dissemination algorithms that work in the ad hoc SINR model as discussed in
Section 1. The first such algorithm is the local broadcast algorithm of [12], which can be
used to solve global broadcast in the ad hoc SINR model in time O(D∆C(logn)2), where ∆C

is the maximum degree of the communication graph GC . Note that ∆C is a potentially large
factor (e.g., in single-hop networks). In [4] the global broadcast problem is solved directly
in time O(D · polylog(n+R)). Recall that R is the ratio between the largest and smallest
distance between neighbors in the communication graph. The solution of [4] forms the basis
of our algorithm and we will point out the differences to the algorithm and analysis alongside.

For large and moderately large values of R, the result of [4] has been improved by
Jurdzinski, Kowalski, Rozanski, and Stachowiak [15], where it is shown that one can get rid
of the dependency on R and solve the global broadcast problem in time O(D log2 n).2 The
algorithm of [15] is based on finding an assignment of probabilities such that in each local
neighborhood, the sum of probabilities is upper and lower bounded by some constant.

Halldorsson et al. [11] use the concept of abstract Medium Access Control (abstract
MAC) layers introduced in [16] (and subsequently enhanced in [7]), to implement higher-level
procedures such as single and multi-message broadcast and consensus in the ad hoc SINR
model. The abstract MAC layer provides basic routines where run-times are bounded by
delay-functions. By proving upper bounds on delays in the ad hoc SINR model, they establish
an abstract MAC layer that permits single-message broadcast in O((D + logn) polylogR),
which is an improvement over [4].

The algorithm of [4] is the simplest and seemingly most robust of the global broadcast
algorithms in the ad hoc SINR model and we therefore decided to extend this algorithm to
the adversarial, unreliable SINR model considered in the present paper. However, it would
certainly be interesting to see whether the approaches of [11] and [15] can also be adapted to
work in a more dynamic and unreliable setting.

Adversarial Models in Wireless Networks. To the best of our knowlege, the only previous
paper that analyzes non-deterministic, adversarial behavior in combination with the SINR
model, is by Ogierman et al. [23]. They assume that the SINR noise parameter is controlled
by an adaptive adversary with a restricted energy budget during each interval of some
fixed length. The objective of [23] is to design a MAC layer that allows to achieve optimal
throughput. The algorithm has a constant competitive ratio and it is based on a protocol

2 The algorithm of [4] – which takes O(D logn(log?n+ logα+1 R)) time – is faster than the algorithm
of [15] if R≤2log1/c n for a sufficiently large constant c>α (α is the path loss exponent, see Section 3).
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3:4 Broadcasting in an Unreliable SINR Model

designed in [24] for a simpler wireless network model. We note that the algorithm of [23]
heavily relies on the assumption that the nodes can use carrier-sensing.

Non-deterministic behaviour in the broader context of distributed networks has been
studied in various settings. Of particular interest in the context of the present paper is the
dual graph model introduced by [17]. The dual graph model considers graphs G = (V,E)
and G′ = (V,E′) with E ⊆ E′, where G is reliable and G′ contains unreliable edges, which
are controlled dynamically by an adaptive worst-case adversary. A message can only be
delivered from sender to receiver if no other neighbor (in the graph of currently active edges)
of the receiver sends. Broadcast in this framework was studied in [8, 17,19].

Another line of work [1,2,5,9,20,24] studies scenarios, where an adversary with a limited
energy budget per time may jam the single shared channel or a subset of multiple shared
channels, to the effect that no transmissions via the jammed channels are possible. However,
all of the aforementioned non-SINR models share the assumption that interference is a strictly
local and binary concept (a message is received if and only if exactly one node or neighbor
sends) and they all fail to capture the global and continuous interference concept of the SINR
model, which is more faithful to reality (cf. [21]).

3 Model and Preliminaries

Communication Model. Let V be a set of n point-shaped communication devices (we call
them nodes) embedded to distinct points of a metric space (X, d). For u, v ∈ V , let d(u, v)
denote the distance between the two points in X to which u and v are embedded. Nodes are
reliable and have unique identifiers. Time is divided into synchronous time slots, henceforth
also called rounds. In each round, each node can either transmit a message with a fixed
transmission power P or it can listen to the channel and thereby receive at most one message.
In addition, each node may conduct an arbitrary amount of computations during each round.
We do not explicitly restrict the size of messages, however, in addition to the size of the data
that needs to be broadcast we require at most O(logn) additional bits.

Let I ⊆ V \{u, v} be the set of nodes other than u, v∈V that are transmitting during a
round. Then v receives a message from u, iff u transmits, v listens, and

SINR(u, v, I) := P/d(u, v)α

N +
∑
w∈I P/d(w, v)α ≥ βv. (1)

We call the parameters P , N , α, and βv in Equation 1 the SINR parameters. The value of
P > 0 denotes the transmission power of all nodes. Further, the parameter N ≥ 0 describes
the background noise and α ≥ 2 specifies the power loss of the transmitted signals. Finally,
for each node v ∈ V , the threshold βv > 0 determines how large the signal to interference
and noise ratio at node v needs to be, such that v successfully decodes a signal.

In our abstract model, we assume that the SINR parameters P , N , and α are fixed and
that only the value of βv is subject to some variability and uncertainty. More specifically,
there are generally known lower and upper bounds βmin ≥ 1 and βmax > βmin on βv. In each
round and for all nodes v ∈ V , the actual value of βv is determined by a strongly adaptive
adversary arbitrarily in the range [βmin, βmax]. That is, the adversary can adjust the value
βv for each node and can thereby control to some extent, whether a given message is received
or not. We note that to keep our abstract model as simple as possible, we assume that
the adversary can only change βv while all other SINR parameters are fixed (and globally
known). In Section 9, we discuss how our abstract model can be used to capture a more
powerful adversary that can vary all SINR parameters within a given range.
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Communication Graph. We define the maximum range rm :=(P/Nβmin) 1
α , maximum safe

range rs := (P/Nβmax) 1
α and the effective range re := rs/(1 + ρ) for constant ρ > 0. For a

given I ⊆ V we call a transmission from u to v safe if SINR(u, v, I) ≥ βmax, otherwise the
transmission is called unsafe. For d(u, v) > rm no transmissions among u and v are possible.
For rs < d(u, v) ≤ rm only unsafe transmissions are possible. For d(u, v) ≤ rs and especially
d(u, v) ≤ re safe transmissions are possible (e.g., if I = ∅). Now we are able to formally
define the communication graph GC as (V, {{u, v}|u, v ∈ V, u 6= v, d(u, v)≤re}).

All nodes are assumed to know polynomial bounds on the number of nodes n and on
the ratio R := dmax

dmin
of the maximum distance dmax to the minimum distance dmin among

neighbors in the communication graph GC . The values of n and R appear only inside log
functions. Since it makes no difference in the asymptotic running time of our algorithm, we
will assume exact knowledge of n and R for simplicity. Further, we assume that the network
is growth-bounded in the following sense. There exists a constant δ ∈ [1, α) such that for any
subset of nodes S ⊆ V , for any v ∈ S and any x ∈ R+, the number of nodes from S that are
within distance x · dSmin of v is bounded by O(xδ), where dSmin := minu,v∈S,u 6=v d(u, v).3

Global Broadcast and Neighborhood Dissemination. In the present paper, we intend to
solve the global broadcast problem. There is a distinguished source node s that initially has
a broadcast messageM. The global broadcast problem is solved whenM is disseminated
to all nodes in V . We assume that a node v cannot participate in a global broadcast
algorithm before v learns the broadcast messageM. This assumption is sometimes known
as asynchronous start. We are interested in randomized algorithms that solve the global
broadcast problem with high probability (w.h.p.) that is, with probability at least 1− 1/nc
for a given, sufficiently large constant c > 0. The algorithms’ guarantees have to hold for
any strategy of the adversary, i.e., for every possible way in which the adversary may choose
βv for each round and node. We call an algorithm that fulfills these criteria robust.

Our solution to the global broadcast problem is based on a solution to the following
neighborhood dissemination problem. Assume that a subset S ⊆ V of the nodes knows some
messageM. Neighborhood dissemination is solved as soon as all neighbors N(S)4 of S in
GC knowM. Note that if D is the diameter of GC , the global broadcast problem can clearly
be solved by running neighborhood dissemination D times.

Spatial Reuse in Dense Networks. In dense networks we can take advantage of the fact
that signals fade polynomially with distance. At the same time, the interference from nodes
within a distance around v grows not too fast (when said distance is increased) due to the
growth bound. These properties potentially allow large numbers of concurrent transmissions
in densely packed areas. This is sometimes known as spatial reuse.

The following lemma gives a formalization of this property and is slightly adapted from
Daum et al. [4]. Assume that a set of active nodes all transmit with a fixed probability p
and that all other nodes are silent. Then there is a constant probability that two nodes can
communicate safely, given that they are within safe transmission range of each other and are
closer than the smallest distance among active nodes times a constant.

3 Intuitively, the growth bound can be interpreted as follows. Assume we grow the radius x of a sphere
around a node v. Then the interference caused by nodes at distance x fades faster (i.e. with 1/xα) than
the number of nodes within that sphere grows (i.e. with O(xδ)). This implies that the total interference
from distant nodes decreases (the important feature is δ < α), as we show in Lemma 1. This notion is
generalized for arbitrary subsets S ∈ V and ’normalized for granularity’ dSmin.

4 N(S) := {v ∈ V | there is u ∈ S such that (u, v) is an edge in GC}
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3:6 Broadcasting in an Unreliable SINR Model

I Lemma 1 (cf. [4]). Let S ⊆ V be a set of active nodes sending with fixed probability p. All
non-transmitting nodes listen. Consider two nodes u ∈ S and v ∈ V with d(u, v) ≤ c1 · re and
d(u, v) ≤ c2 · dSmin, where 0<c1<1+ρ, c2>0 are constants and dSmin =minx6=y∈S d(x, y). If v
listens, then a safe transmission from u to v takes place with constant probability µ ∈ (0, p).

Proof. We show SINR(u, v, I)≥ βmax. For this purpose we compute a bound on Imax
S′ (v)

defined as the maximum interference at v originating from S′ := {w∈S | d(v, w)≥k0 · dSmin}
with k0 ∈N. We partition S′=

⋃∞
k=k0

Rk along concentric rings Rk := {w∈S′ | k · dSmin≤
d(v, w)<(k+1) · dSmin} of thickness dSmin. Moreover, let Bk := {w∈S | d(v, w)<(k+1)dSmin}
be the nodes within a ball of radius (k+1)dSmin centered at v.

First we unwrap the definition of the growth bound |Bk| ∈ O((k+1)δ) = O(kδ): There
are constants k0, ζ > 0 such that |Bk| ≤ ζ · kδ for all k ≥ k0. This allows us to bound the
interference at v stemming from Rk0 . In the worst case (regarding the amount of interference
from Rk0) all of the at most ζ · kδ0 nodes in Bk0 are located in Rk0 , which gives us

Imax
Rk0

(v) =
∑

w∈Rk0

P

d(v, w)α ≤ ζ · k
δ−α
0

P

(dSmin)α
∈ O(kδ−α0 ) P

(dSmin)α
.

Now we bound the combined interference from the other rings Rk, with k > k0. Again,
we look at the worst case regarding interference at v. The maximum interference without
violating the growth bound is obtained when as many nodes as possible are as close to v
as possible. Therefore, Bk−1 contains as many nodes as the growth bound allows, implying
that |Rk| ≤ ζkδ−|Bk−1| ≤ ζ(kδ − (k−1)δ) ≤ ζδkδ−1 (the last inequality is given in Appendix
C Lemma 17). This leads us to

∞∑
k=k0+1

Imax
Rk

(v) ≤ ζδ
∞∑

k=k0+1
kδ−α−1 P

(dSmin)α

≤ ζδ
∫ ∞
k=k0

kδ−α−1dk
P

(dSmin)α
= ζδ

kδ−α0 P

(α− δ)(dSmin)α
∈ O(kδ−α0 ) P

(dSmin)α
.

Combining these results we observe Imax
S′ (v)≤κ(k0)P/(dSmin)α for a sequence κ(k0) ∈ O(kδ−α0 ),

which approaches 0 for k0 →∞. Assuming all nodes in S \ S′ remain silent we obtain

SINR(u, v, S′) =
P

d(u,v)α

N + Imax
S′ (v)

(∗)
≥ P

d(u,v)αP
rαs βmax

+ d(u,v)ακ(k0)P
(dSmin)α

(∗) : N= P
rαs βmax

(cf. def. of rs)

≥ P
cα1 r

α
e P

(1+ρ)αrαe βmax
+ (c2dSmin)ακ(k0)P

(dSmin)α

= βmax
cα1

(1+ρ)α︸ ︷︷ ︸
<1

+ cα2 βmaxκ(k0)︸ ︷︷ ︸
→0, for k0→∞

≥ βmax

for sufficiently large k0 ∈ Θ(1).5 Thus a safe transmission from u to v takes place with
probability µ ∈ p(1−p)O(kδ0) defined as the probability that all nodes in S \S′ are silent.6 J

5 Note that k0 does not depend on the size n, active nodes S, nor on the granularity R of the network.
Only on SINR parameters, growth bound exponent δ and c1, c2, which we deem all constant.

6 Daum et al. [4] propose to choose p such that µ(p, k0) is maximized.
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Algorithm 1 RobustDissemination. . high level description
S1 ← S . set of active nodes at start of this procedure
for phase φ← 1 to blogRc+ 2 do . number of phases limited due to Lemma 11

for Θ(Q logn) rounds do . Q determined in Lemmas 13,14
Nodes in Sφ sendM with probability p/Q . disseminateM to N(S)

Compute DIS Sφ+1 of H̃µ[Sφ] by executing subroutine ComputeDIS(µ, p) on all v∈S

4 Robust Broadcast Algorithm - Overview

The solution of the neighborhood dissemination problem lies at the core of the broadcast
algorithm by [4]. An algorithm solves neighborhood dissemination for a set of active nodes S
that already know a messageM, if after its execution, the neighborhood N(S) of S in the
communication graph GC also knowsM. Starting with a source node v as single active node
S = {v}, global broadcast can be solved by iteratively calling the neighborhood dissemination
routine, setting S = N(S) after each iteration. This wayM travels one hop along all shortest
paths in GC emanating from the source, thus solving global broadcast after at most D calls
of the neighborhood dissemination routine (D is the diameter of GC).

Algorithm RobustDissemination (introduced above) solves the neighborhood dis-
semination problem in a robust manner. This means that the synchronous execution of
RobustDissemination by all active nodes v ∈ S disseminates messageM to N(S) w.h.p.
and for any strategy of the adversary. It differs from [4] only in its subroutines and its
analysis.7 The dissemination ofM from S to N(S), relies on a graph structure Hµ[S] among
the set S of active nodes, named SINR-induced graph by [4]. The graph Hµ[S] contains all
edges among nodes in S with a probability of transmission success of at least µ.

In [4], active nodes approximate Hµ[S] by exchanging messages and computing the ratio
of successfully received messages in order to determine reliable links. In the unreliable SINR
model, the probability of transmission success is subject to adversary influence. In our
analysis we account for that by modifying the definition of Hµ[S] and classify edges into safe
and unsafe edges (implying that Hµ[S] is not unique, since the adversary may ’choose’ unsafe
edges). The structure Hµ[S] itself is implicit. We introduce a subroutine Transmit that,
when executed simultaneously by all nodes in S, ’probes’ connections and passes messages
only among those nodes in S which are sufficiently ’reliable’, while prohibiting communication
among all others, thereby inducing Hµ[S]. The details are covered in Section 5.

Algorithm RobustDissemination is grouped into phases during which active nodes
send. After each phase, active nodes are thinned out to decrease interference and enable
dissemination of M to more distant neighbors. In [4], this is achieved by calculating a
maximal independent set (MIS) on Hµ[S] and deactivating the nodes not in it. Due to
unreliable edges we are not able to compute a MIS of Hµ[S] in our scenario. Instead, we
use the well-known coloring algorithm of [18] to construct a structure we call Dominating
Independent Set (DIS) in O(logn log?n) rounds and has properties similar to a MIS (this
structure was used before in the context of dual graphs by [3]). The algorithm ComputeDIS
uses Transmit as a subroutine and is given and analyzed in Section 6.

We show that after calculating a DIS on S and deactivating all nodes not in it, the
minimal distance among remaining nodes in S at least doubles. Hence, after at most O(logR)
phases their distance exceeds re (remaining nodes are ’sparse’) and by then (at the latest)M

7 We adjust the proofs of [4] to this paper, thus knwoledge of [4] is recommended but not required.
Additionally we mark all lemmas, which have a direct counterpart in [4] with “(cf. [4])”.
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3:8 Broadcasting in an Unreliable SINR Model

is received by all nodes in N(S) w.h.p. The properties required for the analysis of Algorithm
1 are given in Section 7 where we adhere closely to the respective proofs provided in [4].8

In the following, we present the details and subroutines of RobustDissemination. We
show that key characteristics of the algorithm of [4] are conserved or transformed into similar
notions in the unreliable case. This enables us to prove the following theorem in Section 8.

I Theorem 2. Algorithm RobustDissemination solves neighborhood dissemination in the
unreliable SINR model robustly and in O(logn (log?n+ (logR)α+1 βmax

βmin
)) rounds.

We can solve global broadcast by repeating algorithm RobustDissemination D times,
a fact we note in the following corollary.

I Corollary 3. Algorithm RobustDissemination can be used to solve global broadcast in
the unreliable SINR model robustly and in O(D logn (log?n+ (logR)α+1 βmax

βmin
)) rounds.

5 SINR-Induced Graphs in the Unreliable SINR Model

Assume that during each round the active nodes in S send with the same probability p∈(0, 1),
which yields a random set I⊆S of transmitting nodes. For every pair of nodes u, v let σu,v
be the probability that SINR(u, v, I) ≥ βmax, i.e., the probability that a safe transmission
from u to v takes place. Let τu,v be the probability that SINR(u, v, I) ≥ βmin, i.e., an unsafe
transmission may take place (the adversary might decide). Obviously τu,v ≥ σu,v.

Let µ ∈ (0, p) be a given threshold probability. Then we call v a µ-safe neighbor of u and
(u, v) a µ-safe edge if both σu,v ≥ µ and σv,u ≥ µ. We highlight the fact that (u, v) is µ-safe
iff (v, u) is µ-safe as well, with the notation {u, v}. We call v a µ-unsafe neighbor of u and
(u, v) a µ-unsafe edge if τu,v ≥ µ and (u, v) is not µ-safe.

Define the (directed) SINR-induced graph Hµ[S] := (S,Eµ[S]) where (u, v) ∈ Eµ[S],
iff τu,v ≥ µ. This means Eµ[S] contains exactly the µ-safe and µ-unsafe edges. Let
Eµsafe[S] ∪ Eµunsafe[S] = Eµ[S] with Eµsafe[S] ∩ Eµunsafe[S] = ∅ be the partition of Eµ[S] into
µ-safe edges and µ-unsafe edges.

We cannot hope to determine Hµ[S] efficiently and exactly with a distributed algorithm
in the unreliable scenario, since the adversary might mask the existence of µ-unsafe edges.
Instead we settle for an ε-close approximation H̃µ[S] (for an ε ∈ (0, 1

2 ]).9 A graph H̃µ[S] :=
(S, Ẽµ[S]) is an ε-close approximation of Hµ[S] if and only if

Eµsafe[S] ⊆ Ẽµ[S] ⊆ E(1−ε)µ[S].

This entails that H̃µ[S] guarantees to include µ-safe edges with σu,v, σv,u ≥ µ and to exclude
edges with τu,v < (1− ε)µ. A graph H̃µ[S] may or may not include edges (u, v) with
τu,v ≥ (1−ε)µ and σu,v < µ or σv,u < µ, though. Due to these edges, an approximation
H̃µ[S] is not unique and communication in H̃µ[S] along these edges is inherently volatile.

Note that instead of computing H̃µ[S] (as in [4]), we utilize that communication via
Transmit(µ, p,M) (Algorithm 2) induces a graph H̃µ[S] by guaranteeing (w.h.p.) com-
munication along edges in Eµsafe[S] and inhibiting communication among edges (u, v) with
τu,v < (1−ε)µ w.h.p. (the adversary decides about the remaining edges in E(1−ε)µ[S]). We

8 Algorithm RobustDissemination uses the following constants: Network param. n,R, SINR param.
P,N, α, βmin, βmax, and tuning param. p, ε. Parameter µ is derived from these constants (cf. Lemma 1).

9 ε = 1
2 optimizes the run-time of Transmit(µ, p,Mv). The increased in-degree ∆ of H̃µ[S] associated

with this choice of ε is of comparatively little consequence regarding run-time.
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prove this in Lemma 5. The properties of H̃µ[S] are leveraged in the analysis of the DIS
(in whose computation we actually employ Transmit(µ, p,M), cf. Section 6) and in the
analysis of the neighborhood dissemination protocol (Section 7).

A convenient property of H̃µ[S] we immediately observe, is that its maximum in-degree
is bounded by ∆ := 1

(1−ε)µ , since a higher in-degree implies a node v that might receive∑
u∈N(v) τu,v ≥

∑
u∈N(v)(1−ε)µ > 1 messages in expectation, contradicting the fact that

nodes receive at most one message per round. Another property is shown by the subsequent
lemma, namely that there is a small enough constant µ, such that Hµ[S] contains all relatively
short edges as µ-safe edges. Since Eµsafe[S]⊆ Ẽµ[S], this lemma extends to H̃µ[S].

I Lemma 4 (cf. [4]). There exists µ ∈ (0, p), s.t. for any S ⊆ V and all u, v ∈ S, u 6= v with
d(u, v) ≤ min(2dSmin, re), dSmin = min

u 6=v∈S
d(u, v), it holds that {u, v} ∈ Eµsafe[S].

Proof. Since d(u, v) ≤ 2 · dSmin and d(u, v) ≤ re, this lemma is a corollary of Lemma 1. J

The following routine guarantees safe and fast message passing among µ-safe neighbors
in S w.h.p. Furthermore, it inhibits communication among nodes in S with low transmission
probability w.h.p. Edges along which communication takes place form a graph H̃µ[S].

Algorithm 2 Transmit(µ, p,Mv). . to be initiated simultaneously by each v ∈ S

for T ← c logn
ε2µ rounds do . c determined in Lemma 5 and ε ∈ (0, 1

2 ) fixed
Send pair (ID(v),Mv) of messageMv and own ID(v) with probability p

for T rounds do . list length constant, since nodes have at most 1
(1−ε)µ neighbors

With probability p, send list of IDs of which at least (1− ε
2 )µT messages were received

for all ID(u) in own ID-list do
if ID(u) is in own list and ID(v) is in the ID-list received from u then

Consider messageMu of u as received . receive messages where σu,v, σv,u≥µ
else discardMu . neglect messages where τu,v<(1−ε)µ

I Lemma 5. Algorithm Transmit(µ, p,Mv) takes O( logn
ε2µ ) rounds. If initiated simultane-

ously by each v ∈ S, then messages are received among µ-safe neighbors u, v (σu,v≥µ) w.h.p.
If τu,v<(1−ε)µ then w.h.p. no message of u is received by v. Furthermore, edges along which
messages are successfully received form an ε-close approximation H̃µ[S] of Hµ[S] w.h.p.

Proof. Let u, v ∈ S and let Xi := 1, if SINR(u, v, I) ≥ βmax in round i of the first loop, i.e., a
safe transmission from u to v takes place, and Xi := 0, else. Furthermore, let X :=

∑T
i=1Xi.

Assume (u, v) is µ-safe, i.e., σu,v, σv,u≥µ. Using a multiplicative Chernoff bound we show
that the event X ≤ (1− ε

2 )µT is very improbable.

P(X ≤ (1− ε

2)σu,vT ) ≤ exp(−ε
2σu,vT

8 ) = exp(− logn · c σu,v8µ ) ≤ n− c8 .

Analogously, the same result holds for messages sent from v to u. Let Au,v be the event
that v does not receive message Mu from u via algorithm Transmit(µ, p,Mv) that is
X ≤ (1− ε

2 )µT during the first loop or u does not receive v’s list during the second loop.
The second condition is even less likely than the first, hence P(Au,v) ≤ 2n− c8 ≤ n1− c8 .

This means that (for c>8) event Āu,v takes place w.h.p., i.e., v receives messageMu from
u. The same is true for event Āv,u. If both Āu,v and Āv,u occur, we have {u, v} ∈ Ẽµsafe[S]
in the graph H̃µ[S] induced by those edges along which messages are successfully received.
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Now let Yi := 1, if SINR(u, v, I) ≥ βmin in round i of the first loop, i.e., an unsafe
transmission from u to v might take place, and Yi := 0, else. Let Y :=

∑T
i=1 Yi. Assume

τu,v < µ(1− ε) =: µ′ and let Bu,v be the event Y ≥ (1− ε
2 )µT . We obtain

P(Bu,v) = P(Y ≥ (1− ε

2)µT ) = P(Y ≥
1− ε

2
1− ε µ

′T ) ≤ P(Y ≥ (1 + ε

2)µ′T )

≤ exp(−ε
2µ′T

12 ) = exp(− logn · c µ
′

12µ ) = n−
c

12 (1−ε)
(ε≤ 1

2 )
≤ n−

c
24 .

Therefore, even if the adversary permits all transmissions with SINR(u, v, I) ≥ βmin during
the first loop, the total number will be lower than (1− ε

2 )µT w.h.p. Thus u is not in v’s list,
hence neither receives the others message thus (u, v), (v, u) /∈ Ẽµ[S] w.h.p. The probability
that at least one edge of the clique among active nodes C(S) := {(u, v) | u, v ∈ S, u 6= v} is
falsely in- or excluded in Ẽµ[S] is bounded by

P(
⋃

(u,v)∈C(S)

(Au,v ∪Bu,v)) ≤
∑

(u,v)∈C(S)

(P(Au,v) + P(Bu,v)) ≤
∑

(u,v)∈C(S)

(n1−c/8 + n−c/24) < n4−c/24.

This shows that for c > 96 w.h.p. all µ-safe edges are included in Ẽµ[S] and all edges which
are not even µ(1−ε)-unsafe are excluded w.h.p. J

Note that the definition of H̃µ[S] permits directed edges (u, v) ∈ Ẽµ[S] with (v, u) /∈ Ẽµ[S].
In practice, this happens if τu,v, τv,u ≥ µ(1−ε) and the adversary permits all transmissions
among u and v in the first loop of Algorithm 2 such that u and v are in each others lists.
Subsequently, the adversary allows only the transfer of v’s list to u but blocks all attempts
of u sending its list to v. Nevertheless, µ-safe edges are undirected w.h.p., since there will
occur sufficiently many safe transmissions between µ-safe neighbors, which the adversary
cannot block. In the following we use the notation {u, v} to highlight µ-safe edges.

6 Calculating Dominating Independent Sets

After each phase of message dissemination of nodes in S, we rely on the properties of H̃µ[S],
to thin out the set of nodes S so that message dissemination becomes feasible in areas of
high interference. In the basic algorithm [4] this is accomplished by determining a MIS of
H̃µ[S] and deactivating all nodes not in it. In unreliable scenarios we cannot guarantee
independence with respect to µ-unsafe edges since the adversary might mask their existence
during MIS-calculation. To loosen the requirements, we introduce a more general notion.

I Definition 6. Let G = (V,E,E′) be a graph with disjoint sets of undirected edges E and
directed edges E′. Subset V ′ ⊆ V is independent w.r.t. E if no two nodes in V ′ are connected
by an edge {u, v} ∈ E. Subset V ′ ⊆ V is dominating w.r.t. E ∪ E′ if for every node v ∈ V
either v ∈ V ′ or there exists a u ∈ V ′ such that (u, v) ∈ E ∪ E′. A Dominating Independent
Set (DIS) D ⊆ V of G is independent w.r.t. E and dominating w.r.t. E ∪ E′.

We exploit the fact that the in-degree of any valid graph H̃µ[S] is bounded by ∆∈O(1)
to calculate a DIS of (S,Eµsafe[S], E(1−ε)µ

unsafe [S]). First, we determine a (3∆ log ∆)2-coloring of
S with respect to the µ-safe edges Eµsafe[S] in O(logn log?n) rounds by adapting the method
of Linial [18], which uses ∆-cover-free families. Second, we calculate a DIS based on this
coloring by successively adding nodes of one color while sustaining the DIS condition.
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I Definition 7. A ∆-cover-free family F is a family of subsets of [m],10 such that for any
selection of distinct sets F0, . . . , F∆∈F it holds that F0 *

⋃∆
j=1Fj .

Erdős et al. show in [6] how such families can be constructed using polynomials over finite
fields. The proof of the following lemma provides the according construction procedure and
is given in Appendix A.

I Lemma 8. For prime power q, and integer d ∈ [q − 1] there is a b(q−1)/dc-cover-free
family F of size |F| = qd+1 of subsets of [q2].

From Lemma 8 we immediately obtain the following Lemma 9, which was suggested by
Linial in [18] as constructive alternative to his non-constructive proof of an even smaller
∆-cover-free family. For completeness, the lemma is derived in Appendix A.

I Lemma 9. For k ∈ N, there is a ∆-cover-free family F of subsets of [m] with |F| ≥ k and
m ≤ (3∆ log k)2.

Algorithm 3 ComputeDIS(µ, p). . to be initiated simultaneously by each v ∈ S
k0 ← ID(v) . assign colors, initially unique IDs
k ← n . k tracks upper bound of colors currently used
for O(log? n) times do . loop computes coloring w.r.t. µ-safe edges

Transmit(µ, p, k0) . send own color to neighbors in H̃µ[S]
Let k1, . . . , kt be the colors received from v’s neighbors in H̃µ[S]. . t ≤ ∆, ki ≤ k
Let F={F1, . . . , Fk} as in Lemma 9 . construction procedure in proof of Lemma 8
Choose new color k0 ∈ Fk0 \

⋃
ki 6=k0

Fki . new coloring is valid w.r.t. µ-safe edges
k ← (3∆ log k)2 . at most (3∆ log k)2 colors remaining (Lemma 9)

for l← 1 to k do . loop uses O(1)-coloring to compute DIS
if l = k0 then

Transmit(µ, p,’Do not join DIS and terminate! ’) . inform neighbors
Join DIS and terminate

else Transmit(µ, p, ∅) . All active nodes must initiate routine (Lemma 5)
if received message ’Do not join DIS and terminate! ’ then terminate

I Lemma 10. Algorithm ComputeDIS(µ, p) computes a DIS of (S,Eµsafe[S], E(1−ε)µ
unsafe[S]) in

O( logn
ε2µ log? n) rounds in a robust manner, when initiated simultaneously by all nodes in S.

Proof. We prove that during the first loop of ComputeDIS(µ, p) a valid coloring w.r.t.
µ-safe edges is maintained. Initially we have the trivial coloring by IDs. The rest can be
shown inductively. Presume that, at the beginning of a given loop cycle, we have a valid
coloring with respect to Eµsafe[S] of size at most k.

Due to the synchronous execution of Transmit(µ, p, kv) by each node v ∈ S (where
kv is the current color of v) every node receives at most t ≤ ∆ colors k1, . . . , kt ≤ k from
its neighbors w.h.p., since messages are only transmitted along edges of H̃µ[S] (Lemma 5)
whose in-degree is bounded by ∆. In particular, Transmit(µ, p, kv) guarantees that every
node receives the colors from all of its µ-safe neighbors w.h.p. (Lemma 5).

10For natural numbers n ≥ 1 we define [n] := {1, . . . , n}.
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3:12 Broadcasting in an Unreliable SINR Model

Note that v may also receive colors that conflict with its own, which stem from µ(1−ε)-
unsafe neighbors which are not µ-safe and whose messages were blocked by the adversary
during earlier loop cycles. However, since we only need to ensure a valid coloring with respect
to µ-safe edges, this does not concern us.

Now all nodes in S construct the same ∆-cover-free family F = {F1, . . . , Fk} of subsets
of [m] with m ≤ (3∆ log k)2, in accordance with Lemmas 8, 9.11 Each node v ∈ S picks a
new color k0 ∈ Fk0 \

⋃
ki 6=k0

Fki , which exists due to the ∆-cover-free property. Therefore,
neighbors that had different colors during previous rounds are (w.h.p.) still differently colored.
In particular, this implies that w.h.p. µ-safe neighbors remain differently colored.

In the second loop we use the coloring to determine a DIS of S. Let Dl be the subset
of nodes in S that have joined the DIS and let Tl be those that have terminated until (and
including) loop cycle l. W.h.p., ComputeDIS maintains the invariant that Dl is a DIS of
Tl, i.e., Dl ⊆ Tl is independent w.r.t. µ-safe edges and Dl dominates Tl w.r.t. µ-safe edges
and µ(1−ε)-unsafe edges.

For l = 0, this is obvious since T0 = D0 = ∅. Presume that Dl−1 is a DIS w.r.t. Tl−1
and let v ∈ Tl \ Tl−1. Since µ-safe neighbors are w.h.p. differently colored, v ∈ Dl \Dl−1
cannot have a µ-safe neighbor in Dl \Dl−1 (w.h.p.). Moreover, since Dl−1 informed its µ-safe
neighbors w.h.p. (Lemma 5), they already terminated during previous cycles. Therefore a
node v ∈ Dl \Dl−1 that joined the DIS during cycle l and terminated only then, cannot
have any µ-safe neighbors in Dl−1 (w.h.p.).

We already know that Dl−1 dominates Tl−1 w.r.t. µ-safe edges and µ(1− ε)-unsafe
edges (w.h.p.). Every node v ∈ Tl \ Tl−1 is either in Dl \ Dl−1 or was informed by a
neighbor u ∈ Dl \Dl−1 (possibly via a µ(1−ε)-unsafe edge), which means v is dominated by
u ∈ Dl \Dl−1. Therefore Dl \Dl−1 dominates Tl \ Tl−1, thus Dl dominates Tl (w.h.p.).

The first loop has the claimed runtime (cf. Lemma 5). The run-time of the second loop
depends on the size of the coloring. After at most O(log? n) cycles of the first loop there are
O((∆ log ∆)2) = O(1) colors left. Therefore the run-time of the second loop is dominated by
the run-time of the first, proving the claimed overall run-time. J

7 Neighborhood Dissemination Analysis

In this section we apply moderate changes to the technical parts given in [4] in order to reuse
them in our unreliable SINR model. Let φ be a phase of Algorithm 1: RobustDissemination,
let Sφ be the set of active nodes during phase φ and let dφ :=minu 6=v∈Sφ d(u, v), if |Sφ|≥2
and dφ := ∞, else. The following lemma proves that in a DIS Sφ+1 of Sφ12 the minimum
distance dφ+1 among nodes doubles, or is already larger than the effective communication
range re. The proof is provided in Appendix B.

I Lemma 11 (cf. [4]). Let φ be a phase of Algorithm 1. There exists a constant µ∈(0, p),
such that dφ≥2φ−1dmin or dφ>re, where dmin = min

u6=v∈V
d(u, v).

The next lemmas show that node v ∈N(S) receives the broadcast message M with a
guaranteed probability from its nearest active neighbor u ∈ Sφ, in case certain conditions are
met. These conditions include that u is in safe communication range and that there exists
a neighboring node w ∈ Sφ of u in Hµ[Sφ], which is not too close. With the existence of a

11According to our model, nodes have unlimited computing power during each round. Nevertheless
∆-cover-free families can be computed within polynomial time using the constructive proof of Lemma 8.

12We presume that µ, ε are fixed and abbreviate ’DIS of (S,Eµsafe[S], E(1−ε)µ
unsafe [S])’ with ’DIS of S’.
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relatively long edge (w, u)∈Eµ[Sφ] we can bound the interference at u using the knowledge
that w was able to transfer messages to u with a certain probability (τw,v ≥ (1−ε)µ).
Consequently, we are able to limit the interference at u’s (close) neighbor v. The proofs of
the following lemmas are given in Appendix B. We adhere closely to the proofs provided
in [4], although some adaptions and clarifications are required.

First, we limit the interference stemming from the set of nodes close to v and then
from the set of distant nodes. For this purpose, let V ′ ⊆ V be a subset of nodes and let
Xq
V ′ be the random number of nodes in V ′ that send, when each has individual sending

probability q. Moreover, let IqV ′(y) :=
∑
x∈V ′ sends P/d(x, y)α be the random interference at

y ∈ V stemming from sending nodes in V ′, given that nodes send with probability q. Then
Imax
V ′ (y) :=

∑
x∈V ′ P/d(x, y)α defines the maximum interference at y ∈ V from nodes in V ′.

I Lemma 12 (cf. [4]). Let φ be a phase of Algorithm 1. Let v ∈ N(S) and let u ∈ Sφ
be the node closest to v. Presume there exists w ∈ Sφ with an edge (w, u) ∈ Eµ[Sφ] and
let w be the farthest such neighbor of u. Let A= {x ∈ Sφ | d(u, x)≤ 2d(u,w)}\{u, v} and
Ā = Sφ\(A∪{u, v}). If active nodes send with probability p/Q, then there exists η∈Θ(βmin),
such that the following events occur simultaneously with probability at least (1−ε)µp

8Q ∈Θ(1/Q):
(i) Ip/QA (v) ≤ 2α+1P

Qβmind(u,v)α , (ii) I
p/Q

Ā
(v) ≤ 2α+1ηP

Qβmind(u,w)α , (iii) u sends and v listens.

Lemma 13 proves that there is a constant probability that v ∈ N(S) receivesM from u,
in case v is in communication range of u and the ratio d(u,w)/d(u, v) is above a threshold.

I Lemma 13 (cf. [4]). Let φ be a phase of Algorithm 1. Let v∈N(S) and u,w∈Sφ as in
Lemma 12. Then there exists Q̂∈O(βmax

βmin
2α), γ∈Θ((βmax

βmin
)1/α) such that for all Q ≥ Q̂, node

v receivesM safely with probability Θ(1/Q), if active nodes send with probability p/Q and
d(u, v) ≤ (1+ ρ

2 )re and d(u,w) ≥ γQ−αd(u, v).

Lemma 14 guarantees for each phase φ except the last that v∈N(S) receivesM w.h.p.
in this or previous phases, or v is still in safe communication range of an active neighbor.

I Lemma 14 (cf. [4]). Let φ ≤ logR+1 be a phase of Algorithm 1. Let v∈N(S) and let
uφ∈Sφ be the active node closest to v. Then there exists a Q∈Θ((logR)α), Q≥Q̂ such that
either v receivesM w.h.p. during phase φ or earlier, or d(uφ+1, v) ≤ re(1+ ρφ

2 logR ).

Finally, we show that if Sφ with |Sφ| ≥ 2 is ’sparse’ in the sense that dφ>re (which is a
typical case in at least one phase of Algorithm 1), then v∈N(S) receivesM from uφ ∈ Sφ.

I Lemma 15. Let φ be a phase of Algorithm 1. Let |Sφ| ≥ 2 and dφ > re. If for v ∈ V there
is a node u ∈ Sφ with d(u, v) < c1 · re with 0<c1<1+ρ, then v receivesM in phase φ w.h.p.

8 Proof of Theorem 2

Proof. Using the previous lemmas, we show that algorithm RobustDissemination is
correct and has the claimed run-time. For the correctness, we prove that any node v∈N(S)
receivesM w.h.p. during the last phase ψ := blogRc+2, at the latest.

Lemma 11 shows that for the minimum distance dφ=minu6=v∈Sφ d(u, v) among nodes in Sφ,
it holds that dφ≥2φ−1dmin or dφ>re. Hence, if φ> logR+1, then 2φ−1dmin>R ·dmin =dmax.
Therefore, in the last, ψ-th phase, we have dψ ≥ 2ψ−1dmin > dmax and consequently dψ > re
(recall that dmax is the maximum distance among any two nodes within range re of each
other). Thus, during the last phase ψ, either dψ=∞ in case |Sψ|=1, or the remaining nodes
in Sψ are sparse, in the sense that their minimum distance is greater than re.
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First we approach the case |Sψ|=1. For this purpose, let φ be the first phase for which
only one node remains in Sφ, i.e., either |S1| = 1 or |Sφ−1| ≥ 2. In case S1 = {u}, node
v ∈ N(S1) receivesM safely and w.h.p., during the inner loop where we disseminateM for
Θ(Q logn) rounds with probability p/Q. This is due to the fact that d(v, u)≤re (v∈N(S))
and there is no interference from any other node. Additionally, we choose the hidden constant
in Θ(Q logn) sufficiently large, such that u sends at least once during that loop w.h.p.

Otherwise (|Sφ−1| ≥ 2), we apply Lemma 14 on phase (φ−1), and see that either v has
receivedM already (in that case we are done) or d(uφ, v) ≤ re(1 + ρ(φ−1)

2 logR ) < re(1+ρ) = rs.
The latter condition implies that v is in safe communication range of the only active node uφ
in phase φ, hence v receivesM w.h.p. during round φ using the same argument as before.

Now consider |Sψ|≥2. Then Lemma 14 applies for phase (ψ−1) ≤ logR+ 1, therefore
either v already receivedM w.h.p. or d(uψ, v) ≤ re(1 + ρ(ψ−1)

2 logR ) ≤ c1 · re with c1 ≤ 1+ 3
4ρ.13

Since in the final phase ψ, Sψ is also sparse in the sense that dψ > re, the premise of Lemma
15 is fulfilled, thus v receivesM from its closest neighbor uψ in Sψ w.h.p.

During each phase we execute the sub-procedure ComputeDIS, which takesO(logn log?n)
rounds (Lemma 10). SendingM takes O(Q logn) ⊆ O(βmax

βmin
(logR)α logn) rounds each phase

(we determined Q in Lemma 14). We have blogRc+2 phases, therefore algorithm Robust-
Dissemination takes at most O(logn (log?n+ (logR)α+1 βmax

βmin
)) rounds. J

9 Adversary Reduction

Finally, we show that a seemingly stronger adversary, which controls all SINR-parameters
can be reduced to our abstract model, where it controls only βv. Assume that nodes know
only upper and lower bounds P ↑>P ↓>0, N↑>N↓>0, α↑>α↓≥1, and β↑>β↓≥1 on the true
SINR parameters Pv, Nv, α(u, v), βv. In each round and for all pairs of nodes u, v ∈ V , the
adversary determines the actual values Pv, Nv, α(u, v), and βv arbitrarily within the given
upper and lower bounds, thereby influencing the outcome of

SINR(u, v, I) := Pu/d(u, v)α(u,v)

Nv +
∑
w∈I Pw/d(w, v)α(w,v) ≥ βv.

The following theorem formalizes the fact that instead of picking values for all SINR
parameters Pv, Nv, α(u, v), βv within the given upper and lower bounds, the adversary can
equivalently modify only β′v within some enlarged interval [βmin, βmax] with βmin ≤ β↓ <

β↑ ≤ βmax, while the other SINR parameters remain static (and globally known).

I Theorem 16. For sufficiently large β↓ and a fixed set of uniform SINR parameters
P ∈ [P ↓, P ↑], N ∈ [N↓, N↑], α∈ [α↓, α↑], and β∈ [β↓, β↑], there are values βmax≥βmin≥1 such
that for any choice of Pv, Nv, α(u, v), βv within the bounds, there is a β′v ∈ [βmin, βmax] s.t.

Pu/d(u, v)α(u,v)

Nv +
∑
w∈I Pw/d(w, v)α(w,v) ≥ βv ⇐⇒ P/d(u, v)α

N +
∑
w∈I P/d(w, v)α ≥ β

′
v. (2)

Proof. For brevity, let SINRadv(u, v, I) be the formula with the adversary controlled parame-
ters Pv, Nv, α(u, v) (left-hand side of (2)) and analogously let SINRuni(u, v, I) be defined with
the uniform parameters P , N , α (right-hand side of (2)). For a given I ⊆ V \{u, v}, we inter-
pret Cu,v,I := SINRadv(u, v, I)−βv as connection strength from u to v. Recall that v receives
a message from u if and only if Cu,v,I ≥ 0. Similarly we define Cuni

u,v,I := SINRuni(u, v, I)−β.

13We assume logR ≥ 2. Otherwise the neighborhood dissemination can easily be solved with Lemma 1.
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Instead of going through the ramifications of the functional dependencies among the
SINR parameters occurring in Cu,v,I , we acknowledge that for the given bounds on the SINR
parameters and fixed I, the connection strength Cu,v,I , treated as function of the SINR
parameters, does not diverge. Hence there is a fixed range [C↓u,v,I , C

↑
u,v,I ], from which the

adversary chooses Cu,v,I . We define14 the largest negative deviation ∆− and the largest
positive deviation ∆+ of Cu,v,I from Cuni

u,v,I

∆− := min
u 6=v∈V, I⊆V

(
C↓u,v,I − C

uni
u,v,I

)
≤ 0, ∆+ := max

u6=v∈V, I⊆V

(
C↑u,v,I − C

uni
u,v,I

)
≥ 0.

Suppose the adversary influences the deviation of Cu,v,I from Cuni
u,v,I via a deviation variable

∆ ∈ [∆−,∆+], then

SINRadv(u, v, I) ≥ βv ⇐⇒ Cu,v,I ≥ 0 ⇐⇒ Cuni
u,v,I + ∆ ≥ 0

⇐⇒ SINRuni(u, v, I) ≥ β −∆ ⇐⇒ SINRuni(u, v, I) ≥ β′v,

for β′v ∈ [βmin, βmax] with βmin := β−∆+≤ β−∆− =: βmax. Retracing our definitions, we
see that βmin = β−∆+ ≥ 1 holds if and only if for all u, v ∈ V and all I ⊆ V \ {u, v} :

β − (C↑u,v,I − Cuni
u,v,I) ≥ 1 ⇐⇒ β↓ ≥ SINR↑(u, v, I)− SINRuni(u, v, I) + 1

where SINR↑(u, v, I) := C↑u,v,I + β↓ is the maximum value of SINRadv(u, v, I) with u, v, I
fixed. Hence the requirement βmin ≥ 1 is met iff

β↓ ≥ max
u,v∈V, I⊆V

(
SINR↑(u, v, I)− SINRuni(u, v, I) + 1

)
,

which completes the proof. J

Conveniently, our construction allows us to reduce the case where the default SINR
parameters in the network are non-uniform (e.g. nodes have different sending Power P or
background noise N) to the uniform case without changes to the model. This can be done by
transferring deviation in the connection strengths due to non-uniformity into the adversaries
control. Consequently, the range of deviation [∆−,∆+] from which the adversary may choose
the deviation ∆ of the true Cu,v,I from the presumed uniform connection strength Cuni

u,v,I

may become large depending on the extent of non-uniformity, thereby increasing the ratio
βmax/βmin = (β−∆−)/(β−∆+) (intuitively speaking: we ’bought’ uniformity with additional
adversary influence). We saw in the previous sections that βmax/βmin affects the run-time at
most linearly.15

Obviously, the construction in the proof of Theorem 16 was simplified by accounting
for the largest possible deviation of the true Cu,v,I from the uniform connection strength
Cuni
u,v,I for any pair (u, v) ∈ V 2, u 6= v and any interfering subset I ⊆ V . This may result in a

much bigger ratio βmax/βmin compared to the average deviation (again some intuition: we
exchanged simplicity for adversary influence).

Moreover, we point out that the qualitative construction in the proof (intentionally) omits
the intricate analysis of the dependence of βmax/βmin on the SINR parameters, the network’s
size, design and its layout. The ratio βmax/βmin obtained by the above construction does in
fact functionally depend on these parameters and might become large. However, we argue

14 In practice, ∆+ and ∆− could be determined via measurements.
15To minimize run-time, the choice of uniform SINR parameters P , N , α, β should minimize βmax

βmin
.
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that the size of βmax/βmin is moderate if the local SINR parameters Pv, Nv, α(u, v), βv are
relatively homogeneous and have a narrow range of variation due to the adversary.

In order to guarantee βmin ≥ 1, the default sensitivity parameter β of the network devices
needs to be designed large enough, so that β↓ does not decrease below the value given in the
proof. This shows that our construction has an inherent trade-off, where increased adversary
influence due to the aforementioned effects must be compensated with decreased sensitivity
to signal reception (and thus also decreased transmission range).
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A ∆-Cover-Free Families

Proof. (Lemma 8). Let Fq be the finite field with q elements. Let Pd = {a0+a1x+. . .+adxd |
ai ∈ Fq} be the set of polynomials with coefficients in Fq and degree at most d. For a
polynomial f ∈ Pd let Gf := {(x, f(x)) | x ∈ Fq} ⊆ F2

q be the graph of f over Fq. Consider
the family F := {Gf | f ∈ Fqd} ⊆ 2F2

q of graphs of polynomials from Pd over Fq.
Graphs of degree d or less intersect at most d times and since d < q, all graphs Gf of

polynomials f ∈ Pd are distinct, hence |F| = |Pd| = qd+1. For the same reason we have
G1 ∩G2 ≤ d for graphs G1, G2 ∈ F , hence b(q−1)/dc graphs are cover-free. J

Proof. (Lemma 9). We choose the smallest prime power q ≥ ∆ log k+ 1. Considering powers
of 2 we obviously have ∆ log k + 1 ≤ q ≤ 3∆ log k. Moreover, we choose d := log k. Then
we have b(q−1)/dc ≥ b(∆ log k)/ log kc = ∆, and due to Lemma 8, there is a ∆-cover-free
family F of size |F| = qd+1 ≥ (∆ log k + 1)log k ≥ k of subsets of [q2]. J

B Neighborhood Dissemination Analysis

Proof. (Lemma 12) The case |Sφ|≤1 is covered, since dφ=∞≥2φ−1dmin. In case |Sφ|≥2
we prove the lemma by induction on φ. Obviously, we have d1 ≥ dmin = 20dmin. Presume
that dφ ≥ 2φ−1dmin or dφ > re. If dφ > re is true, we have dφ+1 ≥ dφ > re and are done.
Otherwise, we have dφ≥2φ−1dmin. In Lemma 10 we showed that Sφ+1 is a DIS of Sφ, thus
independent w.r.t. Eµsafe[Sφ]. Therefore no two nodes from Sφ+1 are connected via a µ-safe
edge in Hµ[Sφ].

For a contradiction, assume dφ+1 < 2dφ and dφ+1 ≤ re. There are two nodes u, v ∈ Sφ+1
with d(u, v) = dφ+1. Let µ ∈ (0, p) be the constant from Lemma 4, such that Eµsafe[Sφ]
contains all edges not longer than than min(2dφ, re). Thus, u, v would be connected via a
µ-safe edge in Hµ[Sφ], a contradiction to the independence of the DIS Sφ+1. Consequently,
dφ+1 ≥ 2dφ ≥ 2φdmin (second inequality is due to the induction hypothesis) or dφ+1>re. J

Proof. (Lemma 11). If Xp
A >

2α
βmin

, then u cannot receive a message from w, because

SINR(w, u, I) ≤ P/d(u,w)α
IpA(u) ≤ P/d(u,w)α

Xp
AP/2αd(u,w)α < βmin.

However, since (w, u) ∈ Eµ[Sφ], we have SINR(w, u, I) ≥ βmin with probability at least
(1−ε)µ and therefore P(Xp

A ≤
2α
βmin

) ≥ (1−ε)µ. Now assume nodes send with probability
p/Q instead of p. We simulate this with a two step random experiment. First, we randomly

http://dx.doi.org/10.1109/INFOCOM.2014.6848224
http://dx.doi.org/10.1109/dcoss.2012.39
http://dx.doi.org/10.1016/j.tcs.2014.06.043
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determine a set C ⊆ A of candidate nodes, whereas the probability that x ∈ A becomes a
candidate is p. Second, the probability that a candidate x ∈ C actually sends is 1/Q. Using
the law of total probability and then Markov’s inequality we obtain

P
(
X
p/Q
A ≤ 2α+1

Qβmin

)
≥ P

(
|C| ≤ 2α

βmin

)
· P
(
X

1/Q
C ≤ 2α+1

Qβmin

∣∣∣∣ |C| ≤ 2α
βmin

)
≥ P

(
Xp
A ≤

2α
βmin

)
· P
(
X

1/Q
C ≤ 2E(X1/Q

C )
)
≥ (1−ε)µ

2 .

Therefore, with probability (1−ε)µ
2 the interference Ip/QA (v) is bounded by

I
p/Q
A (v) =

∑
x∈A sends

P

d(x, v)α ≤
X
p/Q
A P

d(u, v)α = 2α+1P

Qβmind(u, v)α .

Next, we limit the maximum interference Ip
Ā

(u) at u stemming from the set of distant nodes
Ā. Again, we utilize that (w, u) ∈ Eµ[Sφ].

(1−ε)µ ≤ P (SINR(w, u, I) ≥ βmin) = P
(
P/d(u,w)α
N + IpV (u) ≥ βmin

)
≤ P

(
P

Ip
Ā

(u)d(u,w)α ≥ βmin

)
= P

(
Ip
Ā

(u) ≤ P

βmind(u,w)α

)
.

(3)

Using the specific Chernoff bound from [4] given in Appendix C Lemma 18, we obtain

P

(
Ip
Ā

(u) ≤
E(Ip

Ā
(u))

2

)
≤ P

(
Ip
Ā

(u) ≤
pImax
Ā

(u)
2

)
≤ exp

(
−p2

αd(u,w)α
8P · Imax

Ā
(u)
)
. (4)

We show Imax
Ā

(u) ≤ η·P
pβmind(u,w)α with η := max

{
2, 8βmin

2α · ln 1
(1−ε)µ

}
∈ Θ(βmin). Assume

that Imax
Ā

(u) > η·P
pβmind(u,w)α . Then we obtain a contradiction to Equation 3 as follows

P
(
Ip
Ā

(u) ≤ P

βmind(u,w)α

)
η≥2
≤ P

(
Ip
Ā

(u) ≤ η · P
2βmind(u,w)α

)
≤ P

(
Ip
Ā

(u) ≤
pImax
Ā

(u)
2

)
(4)
≤ exp

(
−p2

αd(u,w)α
8P Imax

Ā
(u)
)
< exp

(
− 2αη

8βmin

)
≤ (1−ε)µ.

The upper bound of Imax
Ā

(u) can be used to bound Imax
Ā

(v). For any node x ∈ Sφ we have
d(u, x) ≤ d(u, v)+d(v, x) ≤ 2d(v, x), since u is closest to v among the nodes in Sφ. Therefore,
we obtain

IĀ(v) =
∑
x∈Ā

P

d(v, x)α ≤
∑
x∈Ā

2αP
d(u, x)α = 2αIĀ(u).

Markov’s inequality yields

P
(
I
p/Q

Ā
(v) ≤ 2E

(
I
p/Q

Ā
(v)
))
≤ P

(
I
p/Q

Ā
(v) ≤ 2p

Q
Imax
Ā

(v)
)
≥ 1

2 .

Thus, with probability at least 1
2 we have Ip/Q

Ā
(v)≤ 2p

Q I
max
Ā

(v)≤ 2α+1p
Q Imax

Ā
(u)≤ 2α+1ηP

Qβmind(u,w)α .

Finally, the probability that u sends and v listens is p
Q (1− p

Q ) ≤ p
2Q . Events (i), (ii) and (iii)

are independent, hence the probability that all of them to occur simultaneously is (1−ε)µp
8Q . J
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Proof. (Lemma 13). Assume that events (i), (ii) and (iii) from Lemma 12 occur. We use the
bounds on the interference to show that a safe transmission from u to v takes place. This is
the case if SINR(u, v, I) ≥ βmax, i.e., βmaxd(u, v)α(N + I

p/Q
A (v) + I

p/Q

Ā
(v)) ≤ P .

βmaxd(u, v)α
(
N + I

p/Q
A (v) + I

p/Q

Ā
(v)
)

≤ βmax

(
d(u, v)αN + 2α+1P

Qβmin
+ 2α+1ηPd(u, v)α

Qβmind(u,w)α

)
Lemma 12 (i), (ii)

≤ βmax

(
(1+ ρ

2)αrαeN + 2α+1P

Q̂βmin
+ 2α+1ηP

γαβmin

)
d(u, v) ≤ (1+ ρ

2 )re, d(u, v)α ≤ Qd(u,w)α
γα

≤ βmax

(
(1− αρ

2(1+ρ)α )(1+ρ)αrαeN + 2α+1P

Q̂βmin
+ 2α+1ηP

γαβmin

)
(1+ ρ

2 )α
Lemma 19
≤ (1+ρ)α− αρ

2

≤ P
(

1− αρ

2(1+ρ)α

)
+ βmax

(
2α+1P

Q̂βmin
+ 2α+1ηP

γαβmin

)
P = βmax(1+ρ)αrαeN

= P + P

(
βmax2α+1

βminQ̂
+ βmax2α+1η

βminγα
− αρ

2(1+ρ)α

)
≤ P Q̂∈O

(
βmax
βmin

2α
)
, γ∈O

(
(βmax
βmin

)1/α
)
.

In the last step, Q̂∈O(βmax
βmin

2α), γ∈O((βmax
βmin

)1/α) are chosen sufficiently large, such that the
term in the bracket becomes negative. Due to event (iii) u sends and v listens, thus v receives
M from u. Events (i), (ii) and (iii) occur with probability (1−ε)µp

8Q ∈ Θ(1/Q). J

Proof. (Lemma 14) Note that we assume logR ≥ 1 (otherwise the network is ’sparse’ and
broadcast is easy, see Lemma 1). We proof the claim inductively. Active node u1 ∈ S1 is
a neighbor of v ∈ N(S1) in the communication graph GC , thus d(u1, v) ≤ re by definition.
Presume that during phase φ either d(uφ, v) ≤ re(1 + ρ(φ−1)

2 logR ) or v has already receivedM.
We show that the same is true for phase φ+1. If v has already received M we are done.
Therefore, we concentrate on the case that d(uφ, v) is bound from above.

If there is no active node wφ∈Sφ for which an edge (wφ, uφ)∈Eµ[Sφ] exists, then uφ+1
is not dominated by a node in Sφ and therefore uφ+1 =uφ. With to the induction hypothesis,
we obtain d(uφ+1, v) ≤ re(1+ ρ(φ−1)

2 logR ) ≤ re(1+ ρφ
2 logR ). Otherwise, let wφ to be the farthest

node from uφ with an edge (wφ, uφ)∈Eµ[Sφ].
If d(uφ, wφ) ≥ γQ−1/αd(uφ, v), then Lemma 13 applies and we have a guaranteed

probability of Θ(1/Q) that v receivesM, in case active nodes send with probability p/Q. Since
we do exactly that for Θ(Q logn) rounds during phase φ of algorithm RobustDissemination,
node v receivesM w.h.p. (we adjust the constant in Θ(Q logn) accordingly).

Now consider the case d(uφ, wφ)<γQ−1/αd(uφ, v). Since uφ+1 6=uφ, node uφ is dominated
by some other node x∈Sφ+1, which is at distance at most d(uφ, wφ) from uφ. Thus, the nearest
neighbor uφ+1 ∈ Sφ+1 of v is at distance at most d(v, uφ+1) ≤ d(v, x) ≤ d(v, uφ) +d(uφ, x) ≤
d(v, uφ) + d(uφ, wφ). We obtain

d(v, uφ+1) ≤
(

1 + γ

Q1/α

)
d(v, uφ) ≤ re

(
1 + γ

Q1/α

)(
1 + ρ(φ− 1)

2 logR

)
(∗)
≤ re

(
1+ ρ(φ−1)

2 logR + γ(1+ρ/2)
Q1/α

)
≤ re

(
1+ ρφ

2 logR

)
(∗) : φ− 1 ≤ logR

The last step holds for a sufficiently large Q ∈ Θ(βmax
βmin

(logR)α), Q ≥ Q̂. J

Proof. (Lemma 15) Since Sφ is sparse the premise of Lemma 1 is fulfilled and v receivesM
from u with constant probability µ′ = p

Q (1− p
Q )k0 and k0∈Θ(1) (nodes send with probability

p/Q in each phase of Algorithm 1). Therefore, v receives M from u w.h.p. after sending
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with probability p/Q for O( logn
µ′ ) rounds.16 Define the constant probability µ := p(1− p)k0 .

We find

µ′ = p

Q
(1− p

Q
)k0 ≥ p

Q
(1− p)k0 = µ

Q
.

Hence (logn)/µ′ ≤ (Q logn)/µ. Therefore, v also receivesM w.h.p. if u sends with probability
p/Q for O(Q logn

µ ) rounds (i.e. longer). Since u sends for Θ(Q logn) rounds in the inner loop
of Algorithm 1 (with an appropriately chosen constant factor), we have proven the claim. J

C Inequalities

For the sake of completeness, the following lemmas give the specific bounds which we use in
the proofs of Lemma 1, Lemma 12 and Lemma 13. We refer to [4] for the proof of Lemma 18.

I Lemma 17. Let δ ≥ 1 and k ∈ N. Then kδ − (k−1)δ ≤ δkδ−1.

Proof. Let f(k) := kδ. Then f ′(k) := df(k)
dk = δkδ−1 is monotonous increasing since δ ≥ 1.

The mean value theorem states that there is a ξ ∈ (k−1, k), such that f(k) − f(k−1) =
f ′(ξ)(k − (k−1)) = f ′(ξ) ≤ f ′(k). J

I Lemma 18 (cf. [4]). Let X1, . . . , Xk be independent random variables with P(Xi=ai) = p

and P(Xi = 0) = 1−p for ai > 0 and p ∈ (0, 1). Let A :=
∑k
i=1 ai and â := maxi∈[k] ai.

Further let X :=
∑k
i=1Xi and λ := E(X) = pA. For any δ > 0 it holds that

P(X ≤ (1− δ)λ) ≤ exp(− δ2λ
2â ).

I Lemma 19. Let ρ ≥ 0 and α ≥ 2. Then (1+ρ)α ≤ (1+ ρ
2 )α + αρ

2 .

Proof. Let f(x) := xα − (x+1
2 )α − αx−1

2 . We proof the claim by showing f(1+ρ) ≥ 0.
First we note that f(1) = 0 fulfills the claim for ρ = 0. The claim is proved for ρ ≥ 0
if we can show f ′(x) := df(x)

dx ≥ 0 for x ≥ 1. We have x ≥ x+1
2 (since x ≥ 1). This is

equivalent to xα−1 ≥
(
x+1

2
)α−1 (since α ≥ 2). Hence xα−1− 1

2
(
x+1

2
)α−1 ≥ xα−1− 1

2x
α−1 ≥ 1

2
(since x ≥ 1, α ≥ 2). Finally, we obtain that f ′(x) = α

(
xα−1 − 1

2
(
x+1

2
)α−1︸ ︷︷ ︸

≥1/2

− 1
2
)
≥ 0. J

16The math is similar to what we did it in the proof of Lemma 5.
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