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Abstract
We introduce succinct lossless representations of query results called covers. They are subsets of
the query results that correspond to minimal edge covers in the hypergraphs of these results.

We first study covers whose structures are given by fractional hypertree decompositions of
join queries. For any decomposition of a query, we give asymptotically tight size bounds for the
covers of the query result over that decomposition and show that such covers can be computed in
worst-case optimal time up to a logarithmic factor in the database size. For acyclic join queries,
we can compute covers compositionally using query plans with a new operator called cover-join.
The tuples in the query result can be enumerated from any of its covers with linearithmic pre-
computation time and constant delay.

We then generalize covers from joins to functional aggregate queries that express a host of
computational problems such as aggregate-join queries, in-database optimization, matrix chain
multiplication, and inference in probabilistic graphical models.
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1 Introduction

This paper introduces succinct lossless representations of query results called covers. Given a
database and a join query or, more generally, a functional aggregate query (FAQ) [18], a cover
is a subset of the query result that, together with a (fractional hypertree) decomposition of
the query [13], recovers the query result. Covers enjoy desirable properties.

First, they can be more succinct than the listing representation of the query result. For
a join query Q, database D, and a decomposition T of Q with fractional hypertree width
w [20], a cover over T has size O(|D|w). In contrast, there are arbitrarily large databases
for which the listing representation of the query result has size Ω(|D|ρ∗), where ρ∗ is the
fractional edge cover number of Q [4]. The gap between the fractional hypertree width and
the fractional edge cover number can be as large as the number of relation symbols in Q.
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16:2 Covers of Query Results

For an FAQ (and the special case of a join query) ϕ, any cover of its result can be computed
in time O(|D|w log |D|), where w is the FAQ-width [18] of ϕ. FAQs can express aggregates
over database joins [6], in-database optimization [24, 2], matrix chain multiplication, and
inference in probabilistic graphical models.

Second, the tuples in the query result can be enumerated from one of its covers with
linearithmic pre-computation time and constant delay. This is not the case for the represen-
tation defined by the pair of database and join query (unless W[1]=FPT) [25]. The benefits
of covers over the latter representation are less apparent for acyclic queries, for which both
representations share the same linear-size bound and desirable enumeration complexity [5].
For acyclic joins, the question thus becomes why to succinctly represent a query result by
one relation instead of the pair of a set of relations and the query. We next highlight three
practical benefits. Covers readily provide a subset of the query result without the need to
compute the join. This improves cache locality for subsequent operations, e.g., aggregates,
since we only need to read in tuple by tuple from the cover instead of reading tuples from
different relations stored at different locations in memory and then joining them. Similarly,
covers provide access locality for disk operations since tuples from the cover are stored on
the same disk page, whereas tuples from different relations are stored on different pages.
Furthermore, covers are samples of the query result that disregard the uninformative yet
exhaustive pairings brought by Cartesian products. In exploratory data analysis, the explicit
listing of Cartesian products is overwhelming to the user since it may be very large. An
alternative approach that would present the user with many relations and the query, would
have to rely on the user to figure out possible tuples in the query result, which is not desirable.
A cover, in contrast, is a compact relation that absolves the user from ad-hoc joining of
relations and from re-discovering Cartesian products in a large listing of tuples. Finally,
processing following the in-database joins may require a single relation as input, as it is the
case for machine learning over joins [24]. Indeed, instead of learning regression models over
the result of a join we can instead learn them over one of its covers.

Third, covers use the standard listing representation. Prior work introduced lossless
representations of query results called factorized databases that achieve the same succinctness
as covers, yet they are directed acyclic graphs that represent the query result as circuits
whose nodes are data values or the relational operators Cartesian product and union [23].
The graph representation makes difficult their adoption as a data representation model
by mainstream database systems that rely on relational storage (factorized computation is
however used in relational systems [2]). A relational alternative to factorized databases, as
metamorphosed in covers, can prove useful in a variety of settings. The intermediate results
in query plans can be represented as covers. In distributed query plans, covers can encode
succinctly the otherwise expensive intermediate query results that are communicated among
servers in each round [26] and can be processed as soon as each of their tuples is received.

The contributions of this paper are as follows:
Section 3 introduces covers of join query results and their correspondence to minimal
edge covers in the hypergraphs of the query results. We also give tight size bounds for
covers and show that the tuples in the query result can be enumerated from any cover
with linearithmic pre-computation time and constant delay.
Given a database and a join query, covers of its result can be computed in worst-case
optimal time (modulo a log factor). Section 4 focuses on the compositionality of cover
computation for acyclic join queries. We introduce cover-join plans to compute covers
in time linearithmic in their sizes and the size of the input database. A cover-join plan
is a binary plan that follows the structure of a join tree of the acyclic query. It uses a
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cover-join operator that computes covers of the join of two relations, which may be input
relations or covers for subqueries. Different plans may lead to different sets of covers.
There are covers that cannot be obtained using binary plans.
Section 5 generalizes our notion of covers from joins to functional aggregate queries by
representing succinctly both tuples and aggregates in the query result.

We consider natural join queries where each relation is used at most once. The appendix
extends our results to arbitrary equi-join queries and provides further details and examples.
The proofs of the formal statements are given in an extended version of this paper [17].

Related work. There are three strands of directly related work: cores in databases and
graph theory; succinct representations of query results; and normal forms for relational data.

Cores of graphs, queries, and universal solutions to data exchange problems revolve
around smaller yet lossless representations that are homomorphically minimal subgraphs [16],
subqueries [8], and universal solutions [11], respectively. A further application of graph cores
is in the context of the Semantic Web, where cores of RDF graphs are used to obtain minimal
representations and normal forms of such graphs [15]. Our notion of covers is different.
Covers rely on query decompositions to achieve succinctness, and they only become lossless
in conjunction with a decomposition. If we ignore the decomposition, the covers become
lossy as they are subsets of the result. Whereas in data exchange all universal solutions
have the same core (up to isomorphism), the result of a query may have exponentially many
incomparable covers. While not a defining component of cores in data exchange, generalized
hypertree decompositions can help derive improved algorithms for computing the core of a
relational instance with labeled nulls under different classes of dependencies [12].

Covers are relational encodings of d-representations, a lossless graph-based factorization
of the query result [23]. The structure of d-representations is given by variable orders called
d-trees, which are an alternative syntax for fractional hypertree decompositions. Whereas
d-representations are lossless on their own, covers need the decomposition to derive the
missing tuples. Decompositions are the data-independent price to pay for achieving the
data-dependent succinctness of factorized representations using the listing representation.
Both d-representations and covers achieve succinctness by avoiding the materialization of
Cartesian products. Whereas the former encode the products symbolically and losslessly, the
covers only keep a minimal subset of the product that is enough to reconstruct it entirely.

The goal of database design is to avoid redundancy in the input database. Existing normal
forms achieve this by decomposing one relation into several relations guided by functional
and join dependencies [9]. Covers exploit the join dependencies to avoid redundancy in the
query output. They do not decompose the result back into the (now globally consistent)
input database. Like factorized representations, covers are a normal form for relations
representing query results. From a cover of a join result over a decomposition, we can obtain
a decomposition of the join result in project-join normal form (5NF) [10] by taking one
projection of the cover onto the attributes of each bag of the decomposition.

2 Preliminaries

Databases. We assume an ordered domain of data values. A relation schema is a finite set
of attributes. For an attribute A, we denote by dom(A) its domain. A database schema is
a finite set of relation symbols. A tuple t over a relation schema S is a mapping from the
attributes in S to values in their respective domains. A relation over a relation schema S is a
finite set of tuples over S. A database D over a database schema S contains for each relation
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symbol in S, a relation over the same schema. For a relation (symbol) R and tuple t, we use
S(R) and S(t) to refer to their schemas and write R(S) to express that the schema of R is S.
The tuples t1, . . . , tn are joinable if πSi,j

ti = πSi,j
tj for all i, j ∈ [n] and Si,j = S(ti) ∩ S(tj).

The size |R| of a relation R is the number of its tuples. The size |D| of a database D is the
sum of the sizes of its relations.

Natural Join Queries. We consider natural join queries of the form Q = R1(S1) 1 . . . 1
Rn(Sn), where each Ri is a relation symbol over relation schema Si and refers to a database
relation over the same schema. Notation-wise we do not distinguish between a relation symbol
and the corresponding relation. The joins in Q are expressed by sharing attributes across
relation schemas. The schema S(Q) of Q is the set of relation symbols in Q: S(Q) = {Ri}i∈[n].
The set att(Q) of attributes of Q is the union of the schemas of its relation symbols:
att(Q) =

⋃
i∈[n] Si. The size |Q| of Q is the number of its relation symbols: |Q| = n. A

database is globally consistent with respect to a query Q if there are no (dangling) tuples
that do not contribute to the result of Q [1]. Two relations R1 and R2 are consistent if the
database {R1, R2} is globally consistent with respect to the query R1 1 R2. We assume
that the relation symbols in Q are non-repeating and each relation symbol corresponds to a
distinct relation. Appendix C extends our contributions to arbitrary equi-join queries.

Hypergraphs. Let H be a multi-hypergraph (hypergraph for short) whose edge multiset
E may contain multiple hyperedges (edges for short) with the same node set. A fractional
edge cover for H is a function γ mapping each edge in H to a positive number such that
Σe3vγ(e) ≥ 1 for each node v of H, i.e., the sum of the function values for all edges incident
to v is at least 1. We define the weight of a fractional edge cover γ as weight(γ) = Σe∈Eγ(e).
The fractional edge cover number ρ∗(H) of H is the minimum weight of fractional edge
covers of H. It can be obtained from a fractional edge cover where the edge weights are
rational numbers of bit-length polynomial in the size of H [4].

We use hypergraphs for queries and for relations representing their results. The hypergraph
H of a query Q consists of one node A for each attribute A in Q and one edge S(R) for each
relation symbol R ∈ S(Q). We define ρ∗(Q) = ρ∗(H).

Let R be a relation and P a set of (possibly overlapping) subsets of S(R) such that⋃
S∈P S = S(R). The hypergraph H of R over P consists of one node for each distinct tuple

in πSR for each attribute set S ∈ P and one edge for each tuple in R. The edge for a tuple
t thus consists of all nodes for tuples πS(t) with S ∈ P. We use tuple(v) to denote the
tuple represented by a node or edge v in H. Given a subset M of the edges in H, we define
rel (M) = {tuple(e)}e∈M as the relation represented by M . The set M is an edge cover of H
if each node in H is contained in at least one edge in M . The set M is a minimal edge cover
if it is an edge cover and any of its strict subsets is not.

I Example 1. Consider the path query Q = R1(A,B) 1 R2(B,C) 1 R3(C,D). Figure 1
depicts in the top row a database of the three relations R1, R2 and R3, the query result and a
subset of it. In the bottom row, the figure depicts the hypergraph of Q (and its decomposition
defined below), the hypergraph of its result over the attribute sets {{A,B}, {B,C}, {C,D}},
and the hypergraph of a subset of the query result over the same attribute sets.

Decompositions. A hypertree decomposition T of (the hypergraph H of) a query Q is a pair
(T, χ), where T is a tree and χ a function mapping each node in T to a subset of the nodes
of H. For a node t ∈ T , the set χ(t) is called a bag. A hypertree decomposition satisfies
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Figure 1 Top row: database D = {R1, R2, R3}, the result Q(D) of the path query Q in Example 1,
and a subset of Q(D); bottom row: the hypergraph of Q, the tree of a decomposition T of Q, the
hypergraph of Q(D) over attribute sets S(T ), and a minimal edge cover M of this hypergraph.

two properties. Coverage: For each edge e in H, there must be a node t in T with e ⊆ χ(t).
Connectivity: For each node v in H, the set {t | t ∈ T, v ∈ χ(t)} must be non-empty and
form a connected subtree in T . The schema of T is the set of its bags: S(T ) = {χ(t) | t ∈ T}.
The attributes of T are defined by att(T ) =

⋃
B∈S(T ) B.

A fractional hypertree decomposition [14] of (the hypergraph H of) a query Q is a triple
(T, χ, {γt}t∈T ) where (T, χ) is a hypertree decomposition of H and for each node t ∈ T , γt is
a fractional edge cover of minimal weight for the subgraph of H restricted to χ(t). We define
the fractional hypertree width of T = (T, χ, {γt}t∈T ) as maxt∈T {weight(γt)} and we denote
it by fhtw(T ). The fractional hypertree width fhtw(H) of the hypergraph H is the minimal
possible such width of any fractional hypertree decomposition of H. The fractional hypertree
width fhtw(Q) of a query Q is the fractional hypertree width fhtw(H) of its hypergraph H.
For simplicity, we use the terms decomposition and width in place of fractional hypertree
decomposition and fractional hypertree width, respectively.

A hypergraph H is α-acyclic (acyclic for short) if it has a decomposition in which each
bag is contained in an edge of H [7]. A query whose hypergraph is acyclic is also called
acyclic. The width of any acyclic hypergraph or query is one. A join tree of a query Q is
a labelled tree (T, `) where T = (S(Q), E) is a tree and ` is an edge labelling such that (i)
each edge e = (R,R′) ∈ E is labelled by `(e) = S(R) ∩ S(R′) and (ii) for every pair R, R′
of distinct nodes and for each attribute A ∈ S(R) ∩ S(R′), the label of each edge along the
unique path between R and R′ includes A (Section 6.4 in [1]). A query is acyclic if and only
if it admits a join tree (Theorem 6.4.5 in [1]). The decomposition T corresponding to the
join tree J of a query Q is constructed as follows. Each node in J , which corresponds to a
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16:6 Covers of Query Results

relation symbol R, is mapped to a node in T , which has the bag S(R). For each node t in T
with bag S(R), the function γt maps the hyperedge for R to 1.

I Example 2. Figure 1 gives the hypergraph (left, bottom row) of the path query in Example 1
along with one of its decompositions. This decomposition has width one, since each bag is
included in one edge of the hypergraph; the path query is acyclic. The decomposition, where
the top two bags are merged into one, has width two. For queries with cycles, the width can
be larger than one. For instance, the width of the triangle query is 3/2 [4].

Computational Model. We use the uniform-cost RAM model [3] where data values as well
as pointers to databases are of constant size. Our analysis is with respect to data complexity
where the query is assumed fixed. We use Õ to hide a log |D| factor.

Result-preserving Transformation. Let (Q, T ,D) denote a triple of a natural join query
Q, a decomposition T of Q, and a database D.

I Proposition 3. Given (Q, T ,D), we can compute (Q′, T ,D′) with size O(|D|fhtw(T )) and
in time Õ(|D|fhtw(T )) such that Q′ is an acyclic natural join query, T corresponds to a join
tree of Q′, D′ is globally consistent with respect to Q′ and Q′(D′) = Q(D).

I Example 4. Consider the path query Q, decomposition T , and database D in Example 2.
The application of Proposition 3 leaves Q unchanged, since Q is already acyclic and T
corresponds to a join tree of Q. The database in Figure 1 is not globally consistent with
respect to Q, since it contains tuples (under the thin lines) that do not contribute to the
result. We remove these dangling tuples to make it consistent.

Consider now the bowtie query Q1 = R1(A,B) 1 R2(B,C) 1 R3(A,C) 1 R4(A,D) 1
R5(D,E) 1 R6(A,E). A decomposition T1 with the lowest width of 3/2 has two bags
S1 = {A,B,C} and S2 = {A,D,E}, one for each clique (triangle) in the query. The
application of Proposition 3 constructs the acyclic query Q′ = B1(A,B,C) 1 B2(A,D,E).
The relations B1(A,B,C) and B2(A,D,E) are materializations of the two bags of T1. The
database D′ = {B1(A,B,C), B2(A,D,E)} is globally consistent with respect to Q′, i.e., each
tuple in B′1 has at least one joinable tuple in B′2 and vice versa. The decomposition T1

corresponds to a join tree of Q′.

3 Covers for Join Queries

In this section we introduce the notion of covers of join query results along with a characteri-
zation of their size bounds, the connection to minimal edge covers for hypergraphs of join
query results, and the complexity for enumerating the tuples in the query result from a cover.

Let (Q, T ,D) denote a triple of a natural join query Q, decomposition T of Q, and
database D. For an instance (Q, T ,D), covers of the query result Q(D) are relations that
are minimal while preserving the information in the query result Q(D) in the following sense.

IDefinition 5 (Result Preservation). A relationK is result-preserving with respect to (Q, T ,D)
if its schema S(K) is att(Q) and πBK = πBQ(D) for each B ∈ S(T ).

That is, for each bag B in the decomposition T of Q, both the relation K and the query
result Q(D) have the same projection onto B. This also means that the natural join of these
projections of K is precisely Q(D).

I Proposition 6. Given (Q, T ,D), a relation K with schema att(Q) is result-preserving
with respect to (Q, T ,D) if and only if 1B∈S(T ) πBK = Q(D).
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We further say that the relation K is minimal result-preserving with respect to (Q, T ,D)
if it is result-preserving with respect to (Q, T ,D), yet this is not the case for any strict subset
of it. We can now define the notion of covers of query results.

I Definition 7 (Covers). Given (Q, T ,D), a cover of the query result Q(D) over the decom-
position T is a minimal result-preserving relation with respect to (Q, T ,D).

I Example 8. Figure 1 gives the decomposition T of a path query and one cover rel(M) of
the query result over T . We give below four relations that are subsets of the query result.
The relations K1 and K2 are covers, while the relations N1 and N2 are not covers:

K1

A B C D

a1 b1 c1 d2

a2 b1 c1 d1

a1 b2 c2 d2

a2 b2 c2 d1

K2

A B C D

a1 b1 c1 d2

a2 b1 c1 d1

a1 b2 c2 d1

a2 b2 c2 d2

N1

A B C D

a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

N2

A B C D

a1 b1 c1 d1

a1 b1 c1 d2

a2 b1 c1 d1

a1 b2 c2 d2

a1 b2 c2 d1

To check the minimal result-preservation property, we take projections onto the bags
B1 = {A,B}, B2 = {B,C}, and B3 = {C,D}. The relation N1 is not result-preserving,
because (a2, b2) 6∈ πB1N1. The same argument also applies to relation N2.

Consider now the coarser decomposition T ′ with bags B′1,2 = {A,B,C} and B′3 = {C,D}.
The covers over T discussed above are also covers over T ′. The query result is the only cover
over the coarsest decomposition T ′′ with only one bag.

I Example 9. A query result may admit exponentially many covers over the same decompo-
sition. Consider for instance the product query R1(A) 1 R2(B) with relations R1 and R2
of size two and respectively n > 1. The query result has size 2 · n. To compute a cover, we
pair the first tuple in R1 with any non-empty and strict subset of the n tuples in R2, while
the second tuple in R1 is paired with the remaining tuples in R2. There are 2n − 2 possible
covers. The empty and the full sets are missing from the choice of a subset of R2 as they
would mean that one of the two tuples in R1 would have to be paired with tuples in R2 that
are already paired with the other tuple in R1 and that would violate the minimality criterion
of the covers. All covers have size n and none is contained in another.

We next give a characterization of covers via the hypergraph of the query result.

I Proposition 10. Given (Q, T ,D), a relation K is a cover of the query result Q(D) over
T if and only if the hypergraph of Q(D) over S(T ) has a minimal edge cover M such that
rel(M) = K.

I Example 11. Figure 1 gives a minimal edge cover M and the cover rel(M). By removing
any edge from M , it is not anymore an edge cover. By removing the tuple corresponding to
that edge from rel(M), it is not anymore a cover since it is not result preserving. By adding
an edge to M or the corresponding tuple to rel(M), they are not anymore minimal.

We now turn our investigation to sizes and first note the following immediate property.

I Proposition 12. Given (Q, T ,D), each cover of Q(D) over T is a subset of Q(D).

An implication of Proposition 12 is that the covers cannot be larger than the query result.
However, they can be much more succinct. We first give size bounds for covers using the
sizes of projections of the query result onto the bags of the underlying decomposition.
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16:8 Covers of Query Results

I Proposition 13. Given (Q, T ,D), the size of each cover K of Q(D) over T satisfies the
inequalities maxB∈S(T ){|πBQ(D)|} ≤ |K| ≤ ΣB∈S(T ) |πBQ(D)|.

We can now characterize the size of a cover using the width of the decomposition.

I Theorem 14. Let Q be a natural join query and T a decomposition of Q.
(i) For each database D, each cover of the query result Q(D) over T has size O(|D|fhtw(T )).
(ii) There are arbitrarily large databases D such that each cover of the query result Q(D)

over T has size Ω(|D|fhtw(T )).

The size gaps between query results and their covers can be arbitrarily large. For any
join query Q and database D, it holds that |Q(D)|= O(|D|ρ∗(Q)) and there are arbitrarily
large databases D for which |Q(D)|= Ω(|D|ρ∗(Q)) [4]. For acyclic queries, the fractional edge
cover number ρ∗ can be as large as |Q|, while the fractional hypertree width is one. Section 4
shows that the same gap also holds for time complexity.

I Example 15. We continue Example 8. The decomposition T has width one, which is
minimal. The covers over T , such as K1 and K2, have sizes upper bounded by the input
database size. The minimum size of a cover over T is the maximum size of a relation used in
the query (assuming the relations are globally consistent). In contrast, there are arbitrarily
large databases of size N for which the query result has size Ω(N2).

Proposition 10 and Theorem 14 give alternative equivalent characterizations of the size
of a cover of a query result. The former gives it as the size of a minimal edge cover of the
hypergraph of the query result over the attribute sets given by the bags of a decomposition
T , while the latter states it using the fractional hypertree width of T or equivalently the
maximum fractional edge cover number over all the bags of T . Most notably, whereas the
former is an integral number, the latter is a fractional number.

This size gap between query results and their covers is precisely the same as for query
results and their factorized representations called d-representations [23]. In this sense, covers
can be seen as relational encodings of factorized representations of query results. We can
easily translate covers into factorized representations. Appendix A gives a brief introduction
to d-representations and a translation example.

I Proposition 16. Given (Q, T ,D), each cover K of the query result Q(D) over T can be
translated into a d-representation of Q(D) of size O(|K|) and in time Õ(|K|).

The above translation allows us to extend the applicability of covers to known work-
loads over factorized representations, such as in-database optimization problems [2] and
in particular learning regression models [22]. Nevertheless, it is practically desirable to
process such workloads directly on covers, since this would avoid the indirection via factorized
representations that comes with extra space cost and non-relational data representation.
Aggregates, which are at the core of such workloads, can be computed directly on covers by
joint scans of the projections of the cover onto the bags of the decomposition; alternatively,
they can be computed by expressing any cover as the natural join of its bag projections and
then pushing the aggregates past the join.

I Example 17. We consider the query Q = R(A,B) 1 S(B,C) and its decomposition
T with bags {A,B} and {B,C}. To compute aggregates over the join result Q(D), we
can use any cover K of Q(D) over T . The expression for counting the number of re-
sult tuples is

∑
b∈dom(B)

∑
a∈dom(A)

∑
c∈dom(C) 1R(a,b) · 1S(b,c), where 1E is the Kronecker

delta that is evaluated to 1 if the event E is satisfied and 0 otherwise. We can com-
pute it in one scan over K if K is sorted on (B,A,C) or (B,C,A). For each B-value b,
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we multiply the distinct numbers of A-values and of C-values paired with b in K, and
we sum up these products over all B-values. We can rewrite this expression as follows:∑

b∈dom(B)(
∑
a∈dom(A) 1(a,b)∈π{A,B}K)(

∑
c∈dom(C) 1(b,c)∈π{B,C}K). This expression only uses

the pairs (a, b) and (b, c) in K. The pairs (a, c), which make the difference among covers and
are the culprits for the explosion in the size of the query result, are not needed.

Despite their succinctness over the explicit listing of tuples in a query result, any cover of
the query result can be used to enumerate the result tuples with constant delay and extra
space (data complexity) following linear-time pre-computation. In particular, the delay and
the space are linear in the number of attributes of the query result which is as good as
enumerating directly from the result. This complexity follows from Proposition 16 and the
enumeration for factorized representations [23] with constant delay and extra space.

I Corollary 18 (Proposition 16, Theorem 4.11 [23]). Given (Q, T ,D), the tuples in the
query result Q(D) can be enumerated from any cover K of Q(D) over T with Õ(|K|)
pre-computation time and O(1) delay and extra space.

An alternative way to achieve constant-delay enumeration with Õ(|K|) pre-computation
is by noting that the acyclic join queries considered in this paper are free-connex and thus
allow for enumeration with constant delay and Õ(|D|) pre-computation [5]. An acyclic
conjunctive query is called free-connex if its extension by a new relation symbol covering all
attributes of the result remains acyclic [25]. Moreover, given a cover K over a decomposition
T , the natural join of the projections of K onto the bags of T is an acyclic query that
computes the original query result (Proposition 6).

4 Computing Covers for Join Queries using Cover-Join Plans

Given an arbitrary join query and database, we can compute covers using a monolithic
algorithm akin to known algorithms for computing factorized representations of query
results [22]. However, is it possible to compute covers in a compositional way, by computing
covers for one join at a time? In this section, we answer this question in the affirmative for
acyclic natural join queries Q and globally consistent databases D with respect to Q.

For a triple (Q,J ,D), where Q is an acyclic natural join query, J is a join tree of Q, and
D is a database globally consistent with respect to Q, we use so-called cover-join plans to
compute covers of the query result Q(D) over the decomposition corresponding to the join
tree J . Such plans follow the structure of the join tree J and use a new binary join operator
called cover-join. The cover-join of two relations yields a cover of their natural join. This
approach is in the spirit of standard relational query evaluation. It is compositional in the
sense that to compute a cover of the query result, it suffices to repeatedly compute a cover
of the join of two relations. This is practical since it can be supported by existing query
engines extended with the cover-join operator. We also show that, due to the binary nature
of the cover-join operator, the cover-join plans cannot recover all possible covers of the query
result. Furthermore, different plans may lead to different covers. Plans that do not follow
the structure of a join tree may be unsound as they do not necessarily construct covers.

To compute covers for an arbitrary join query and database, we proceed in two stages.
We first materialize the bags of a decomposition of the query so as to reduce it to an acyclic
query Q over an extended database D that is now globally consistent with respect to Q
(Proposition 3). We then use a cover-join plan to compute covers of Q(D). The first step has
a non-trivial time complexity overhead, whereas the second step is linearithmic. Overall, this
strategy is worst-case optimal for computing covers for arbitrary join queries and databases.
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4.1 The Cover-Join Operator

The building block of our approach to computing covers is the binary cover-join operator.

I Definition 19 (Cover-Join). The cover-join of two relations R1 and R2, denoted by R11̊R2,
computes a cover of their join result over the decomposition with bags S(R1) and S(R2).

Following the alternative characterization of covers of a query result by minimal edge
covers in the hypergraph of the query result (Proposition 10), the cover-join defines the
relation rel(M) of a minimal edge cover M of the hypergraph H of the result of the join
R1 1 R2 over the attribute sets S(R1) and S(R2). The hypergraph H is bipartite and
consists of disjoint complete bipartite subgraphs. Since a cover is a minimal edge cover, it
corresponds to a bipartite subgraph with the same number of nodes but a subset of the
edges, where all paths can only have one or two edges. A cover cannot have unconnected
nodes, since it would not be an edge cover. A path of three (or more) edges violates the
minimality of the edge cover: Such a path a1 − b1 − a2 − b2 in a bipartite graph covers the
four nodes, yet a minimal cover would only have the two edges a1 − b1 and a2 − b2.

We can compute a cover of a join of two relations R1 and R2 in time Õ(|R1|+ |R2|), since
it amounts to computing a minimal edge cover in a collection of disjoint complete bipartite
graphs that encode the join result. The smallest size of a cover is given by the edge cover
number of the bipartite graph representing the join result, which is the maximum of the sizes
of the two sets of nodes in the graph [19]. The largest size can be achieved in case one of
the two node sets has size one, in which case this is paired with all nodes in the second set.
In case both sets have more than one node, the largest size is achieved when we pair one
node from one of the two node sets with all but one node in the second set and then the
remaining node in the second set with all but the already used node in the first set.

For the analysis in this paper, we assume that our cover-join algorithm may return any
cover of the natural join of two relations. In practice, however, it makes sense to compute
a cover of minimum size. We choose this cover as follows: For each complete bipartite
hypergraph in the join result with node sets V1 and V2 such that |V1| ≤ |V2|, we choose
a minimum edge cover by pairing each node in V1 with one distinct node in V2 and all
remaining nodes in V2 with one node in V1.

I Proposition 20. Given two consistent relations R1 and R2, the cover-join computes a
cover K of their join result over the decomposition with bags S(R1) and S(R2) in time
Õ(|R1|+ |R2|) and with size max{|R1|, |R2|} ≤ |K| ≤ |R1|+ |R2|.

I Example 21. Consider again the product R1(A) 1 R2(B) in Example 9, where R1 = [2]
and R2 = [n] with n > 1. Examples of covers of size n over the decomposition T with
bags {A} and {B} are: {(1, i) | i ∈ [n] − {k}} ∪ {(2, k)} for any k ∈ [n]; {(1, i) | i ∈
[k]} ∪ {(2, j + k) | j ∈ [n− k]} for any k ∈ [n− 1]. If R1 = [m] with m > n, then examples
of covers over T of minimum size m are: {(i, i) | i ∈ [k − 1]} ∪ {(k − 1 + i, k + i) | i ∈
[n− k]} ∪ {(n− 1 + i, k) | i ∈ [m− n+ 1]} for any k ∈ [n]. A cover over T of maximal size
n + m − 2 is: {(1, i) | i ∈ [n − 1]} ∪ {(j + 1, n) | j ∈ [m − 1]}. Below are depictions of the
complete bipartite graph corresponding to the query result for n = 4 and m = 5, where the
edges in a minimal edge cover are solid lines and all other edges are dotted. The left minimal
edge cover corresponds to a cover over T of minimum size m = 5, while the right minimal
edge cover corresponds to a cover over T of maximum size n+m− 2 = 7.
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4.2 Cover-join Plans
We now compose cover-join operators into so-called cover-join plans to compute covers for
acyclic natural join queries. Before we define such plans, we need to introduce some notation.

For a join tree J of a query Q, we write J = J1 ◦J2 if J can be split into two non-empty
subtrees J1 and J2 that are connected by a single edge in J . Any subtree J ′ of J defines
the subquery of Q that is the natural join of all relation symbols that are nodes in J ′.

I Definition 22 (Cover-Join Plan). Given (Q,J ,D), a cover-join plan ϕ over the join tree
J is defined recursively as follows:

If J consists of one node R, then ϕ = R. The plan ϕ returns R.
If J = J1 ◦J2 and ϕi is a cover-join plan over Ji, then ϕ = ϕ1 1̊ ϕ2. The plan ϕ returns
the result of R1 1̊ R2, where the relation Ri is returned by the plan ϕi (i ∈ [2]).

Lemma 23 states next that a cover-join plan computes a cover of the query result over
the decomposition corresponding to a given join tree of the query.

I Lemma 23. Given (Q,J ,D) where D = {Ri}i∈[n] is globally consistent with respect to Q,
each cover-join plan over the join tree J computes a cover K of Q(D) over the decomposition
corresponding to J in time Õ(|K|) and with size maxi∈[n]{|Ri|} ≤ |K| ≤

∑
i∈[n] |Ri|.

Lemma 23 states three remarkable properties of cover-join plans. First, they compute
covers compositionally: To obtain a cover of the entire query result it is sufficient to compute
covers of the results for subqueries. More precisely, for a cover-join plan ϕ1 1̊ ϕ2, the
sub-plans ϕ1 and ϕ2 compute covers for the subqueries defined by the joins of the relations
in the join trees J1 and respectively J2. Then, the plan ϕ1 1̊ ϕ2 computes a cover for the
join of the relations in the join tree J = J1 ◦ J2. Second, the output of a cover-join plan
is always a cover, regardless which cover is picked at each cover-join operator in the plan.
Third, it does not matter which cover-join plan we choose for a given join tree, the resulting
covers are computed with the same time guarantee. Nevertheless, different plans for the
same join tree may lead to different covers (Example 28).

These properties rely on the global consistency of the database and on the fact that the
plans follow the structure of the join tree. For arbitrary databases, a cover-join operator may
wrongly construct covers using dangling tuples at the expense of relevant tuples that are not
anymore covered and therefore lost. Furthermore, plans that do not follow the structure of a
join tree may be unsound (Example 26). Although each cover-join operator computes a cover
of minimum size for the join of its input relations, the overall cover computed by a cover-join
plan may not be a cover of minimum size of the query result (Example 35 in Appendix B).

I Example 24. A join tree that admits several splits can define many plans. For instance, the
join tree for the query R1(A,B) 1 R2(B,C) 1 R3(C,D) is the path R1−R2−R3 and admits
two possible splits that lead to the plans ϕ1 = (R1(A,B)1̊R2(B,C))1̊R3(C,D) and ϕ2 =
R1(A,B)1̊(R2(B,C)1̊R3(C,D)). The relations are those in Figure 1, now calibrated. For this
database, the covers computed by the sub-plans R1(A,B)1̊R2(B,C) and R2(B,C)1̊R3(C,D)
correspond to full join results, since all join values only occur once in the relations. By taking
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any possible cover at each cover-join operator in the plans, both plans yield the same four
possible covers of the query result: One of them is rel(M) in Figure 1 and two of them are
K1 and K2 in Example 8. The last cover is not depicted: It is the same as K1 with the
change that the values d1 and d2 are swapped between the first two rows.

A corollary of Proposition 3 and Lemma 23 is that covers over decompositions of arbitrary
natural join queries can be computed in time proportional to their sizes.

I Theorem 25 (Proposition 3, Lemma 23). Given a natural join query Q, decomposition T
of Q, and database D, a cover of the query result Q(D) over the decomposition T and with
size O(|D|fhtw(T )) can be computed in time Õ(|D|fhtw(T )).

Given (Q, T ,D) where Q is an arbitrary natural join query and D is an arbitrary database,
we can compute a cover in four steps: construct (Q′, T ,D′) such that Q′ is an acyclic natural
join query, T corresponds to a join tree of Q′ and D′ consists of materializations of the
bags of T ; turn D′ into a globally consistent database D′′ with respect to Q′; turn T into
a join tree J of Q′ by replacing each bag by the corresponding relation symbol in Q′; and
execute on D′′ a cover-join plan for Q′ over J . Since there are arbitrarily large databases for
which the size bounds on covers are tight (Theorem 14), the cover-join plans, together with
a worst-case optimal algorithm for materializing bags [21], represent a worst-case optimal
algorithm for computing covers.

We conclude this section with three insights into the ability of cover-join plans to compute
covers. We give an example of an unsound cover-join plan that does not follow the structure
of a join tree. We then note the incompleteness of our cover-join plans due to the binary
nature of the cover-join operator. We give an example of a cover that cannot be computed
with our cover-join plans, but can be computed using a multi-way cover-join operator. Finally,
we give an example showing that distinct cover-join plans over the same (or also distinct)
join trees can yield incomparable sets of covers.

I Example 26 (Unsound plan). Consider the query Q = R1(A,B) 1 R2(B,C) 1 R3(C,D),
the following database with relations R1, R2, and R3, and four relations computed by
cover-joining two of the three relations:

R1

A B

a b1

a b2

R2

B C

b1 c1

b2 c2

R3

C D

c1 d

c2 d

K1,3

A B C D

a b1 c1 d

a b2 c2 d

K′
1,3

A B C D

a b1 c2 d

a b2 c1 d

K1,2

A B C

a b1 c1

a b2 c2

K2,3

B C D

b1 c1 d

b2 c2 d

Following Definition 22, the plan (R1(A,B)1̊R3(C,D))1̊R2(B,C) would require a split
J1,3 ◦ J2 of a join tree, where the join tree J1,3 has two nodes R1 and R3 while the join tree
J2 has one node R2. However, there is no join tree that allows such a split.

The cover-join R1(A,B)1̊R3(C,D) computes one of the two covers K1,3 and K ′1,3. The
result of the join of K ′1,3 and R2 is empty and so is the cover-join. This means that this plan
does not always compute a cover, which makes it unsound.

This problem cannot occur with cover-join plans over join trees of Q. The only cover-join
plans over join trees of Q are (up to commutativity) (R1(A,B) 1̊ R2(B,C)) 1̊ R3(C,D)
and R1(A,B)1̊(R2(B,C)1̊R3(C,D)). The only cover of R1(A,B)1̊R2(B,C) is K1,2 above,
which can be cover-joined with R3. The only cover of R2(B,C)1̊R3(C,D) is K2,3 above,
which can be cover-joined with R1.
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I Example 27 (Cover-Join Incompleteness). Consider the product query Q = R1(A) 1
R2(B) 1 R3(C), the following database D with relations R1, R2, and R3 and one cover K
of the query result over the decomposition with bags {A}, {B}, and {C}:

R1

A

a1

a2

R2

B

b1

b2

R3

C

c1

c2

K

A B C

a1 b1 c1

a1 b2 c2

a2 b1 c2

A decomposition of Q can have up to three bags which are not included in other bags.
In case of decompositions with three bags, each bag consists of exactly one attribute.

These decompositions correspond to the join trees that are permutations of the three
relation symbols. There are three possible cover-join plans (up to commutativity) over
these join trees: ϕ1 = R1(A)1̊(R2(B)1̊R3(C)), ϕ2 = R2(B)1̊(R1(A)1̊R3(C)) and ϕ3 =
R3(C)1̊(R1(A)1̊R2(B)). None of these plans can yield the cover K above. As discussed after
Definition 19, a minimal edge cover corresponding to a cover computed by a binary cover-join
operator can only have paths of one or two edges. For instance, π{A,B}K, which should
correspond to a cover of R1(A)1̊R2(B), has the path of three edges b2 − a1 − b1 − a2. The
cover-join R1(A)1̊R2(B) would not create this path since it corresponds to a non-minimal
edge cover. Similarly, π{A,C}K and π{B,C}K have paths of three edges.

For decompositions with two bags, two of the three attributes are in the same bag.
Without loss of generality, assume A and B are in the same bag. Following Proposition 3,
this bag is covered by a new relation R1,2 that is the product of R1 and R2. This means
that K has to be the cover of R1,2(A,B)1̊R3(C), yet π{A,B}K is not R1,2!

The decomposition with one bag consisting of all three attributes has this bag covered
by a new relation that is the product of the three relations. This relation is the Cartesian
product of the three relations that is the full query result and different from K = π{A,B,C}K.

We conclude that K cannot be computed using (binary) cover-join plans.

I Example 28 (Incomparable Sets of Covers). Consider the product query Q = R1(A) 1
R2(B) 1 R3(C) and the following database {R1, R2, R3}:

R1

A

a1

a2

R2

B

b1

b2

R3

C

c1

c2

c3

K

A B C

a1 b1 c1

a2 b2 c2

a1 b2 c3

K1,2

A B

a1 b1

a2 b2

K′
1,2

A B

a1 b2

a2 b1

Let us consider the join tree J = R1 − R2 − R3 of Q. There are (up to commu-
tativity) two possible cover-join plans over J : ϕ1 = R1(A)1̊(R2(B)1̊R3(C)) and ϕ2 =
(R1(A)1̊R2(B))1̊R3(C). The above relation K is a cover of the result of Q and can be
computed by ϕ1, which cover-joins R1(A) and a cover of the join of R2(B) and R3(C). This
cover cannot be computed by ϕ2. Indeed, ϕ2 first cover-joins R1(A) and R2(B), yielding
K1,2 or K ′1,2 as the only possible covers. Then, cover-joining any of them with R3(C) does
not yield the cover K since π{A,B}K is different from both K1,2 and K ′1,2. Similarly, ϕ2
computes covers that cannot be computed by ϕ1.
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5 Covers for Functional Aggregate Queries

We first give a brief introduction to functional aggregate queries (FAQ) [18]. A detailed
description can be found in the extended report [17].

Given an attribute set S, we use aS to indicate that tuple a has schema S. For S′ ⊆ S,
we denote by aS′ the restriction of a to S′. A functional aggregate query has the following
form (slightly adapted to our notation):

ϕ(a{A1,...,Af}) =
⊕

(f+1)

af+1∈dom(Af+1)

· · ·
⊕

(n)

an∈dom(An)

⊗
S∈E

ψS(aS), where: (1)

H = (V, E) is the multi-hypergraph of the query with V = {Ai}i∈[n].
Dom is a fixed (output) domain, such as {true,false}, {0, 1}, or R+.
Vfree = {A1, . . . , Af} is the set of result or free attributes; all other attributes are bound.
For each attribute Ai with i > f , ⊕(i) is a binary (aggregate) operator on the domain
Dom. Different bound attributes may have different aggregate operators.
For each attribute Ai with i > f , either ⊕(i) is ⊗ or (Dom,⊕(i),⊗) forms a commutative
semiring with the same additive identity 0 and multiplicative identity 1 for all semirings.
For every hyperedge S in E , ψS :

∏
A∈S dom(A)→ Dom is an (input) function.

FAQs are a semiring generalization of aggregates over join queries, where the aggregates
are the operators ⊕(i) and the natural join is expressed by

⊗
S∈E ψS(aS). The listing

representation RψS
of a function ψS is a relation over the schema S ∪{ψS(S)} which consists

of all input-output pairs for ψS where the output is non-zero, i.e., RψS
contains a tuple

aS∪{ψS(S)} if and only if ψS(aS) = aψS(S) 6= 0. An input database for ϕ contains for each ψS
its listing representation. We say that T is a decomposition of ϕ if T is a decomposition of
the hypergraph H of ϕ. Given an FAQ ϕ and database D, the FAQ-problem is to compute
the query result ϕ(D).

Each FAQ ϕ has an FAQ-width faqw(ϕ) which is defined similarly to the fractional
hypertree width of the hypergraph of ϕ. For instance, in case where all attributes of ϕ are
free, faqw(ϕ) is equal to the fractional hypertree width of the hypergraph of ϕ.

Given an FAQ ϕ and a database D, the InsideOut algorithm [18] solves the FAQ-problem
as follows. First, it eliminates all bound attributes along with their corresponding aggregate
operators by performing equivalence-preserving transformations on ϕ. Then, it computes the
listing representation of the remaining query. The algorithm runs in time Õ(|D|faqw(ϕ) + Z)
where Z is the size of the output, i.e., the listing representation of ϕ.

We can compute a cover of the result of a given FAQ ϕ in time Õ(|D|faqw(ϕ)), which
does not depend on the size of the listing representation of ϕ. Our strategy is as follows.
We first eliminate all bound attributes in ϕ by using InsideOut resulting in an FAQ ϕ′.
We then take a decomposition T of ϕ′ and compute bag functions βB, B ∈ S(T ), with
ϕ′(aVfree) =

⊗
B∈S(T ) βB(aB). Finally, we compute a cover of the join result of the listing

representations of the bag functions over the extension of T that contains, for each bag B,
the attribute βB(B) for the values of the function βB . Keeping the βB(B)-values of the bag
functions in the cover is necessary for recovering the output values of ϕ when enumerating
the result of ϕ from the cover.

I Example 29. We consider the following FAQ ϕ over the sum-product semiring (N,+, ·)
(for simplicity we skip the explicit iteration over the domains of the attributes in ϕ):

ϕ(a, b, d) =
∑

c,e,f,g,h

ψ1(a, b, c) · ψ2(b, d, e) · ψ3(d, e, f) · ψ4(f, h) · ψ5(e, g), where
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ϕ, ψ1, ψ2, ψ3, ψ4 and ψ5 are over {A,B,D}, {A,B,C}, {B,D,E}, {D,E, F}, {F,H} and
{E,G}, respectively. We first run InsideOut on ϕ to eliminate the bound attributes and
obtain the following FAQ:

ϕ′(a, b, d) =
(∑

c

ψ1(a, b, c)
)

︸ ︷︷ ︸
ψ6(a,b)

·
∑
e

(
ψ2(b, d, e) ·

∑
f

(
ψ3(d, e, f) ·

∑
h

ψ4(f, h)︸ ︷︷ ︸
ψ7(f)

)
︸ ︷︷ ︸

ψ9(d,e)

·
∑
g

ψ5(e, g)︸ ︷︷ ︸
ψ8(e)

)

︸ ︷︷ ︸
ψ10(b,d)

.

We consider the decomposition T of ϕ′ with two bags B1 = {A,B} and B2 = {B,D} and
bag functions ψ6 and respectively ψ10. Then, we execute the cover-join plan Rψ6 1̊ Rψ10 over
the extended decomposition T ′ with bags {A,B, ψ6(A,B)} and {B,D,ψ10(B,D)}. While the
computation of the result of ϕ′ can take quadratic time, the above cover-join plan takes linear time.
We exemplify the computation of the cover-join plan. Assume the following tuples in ψ6 and ψ10,
where γ1, . . . , γ4, δ1, . . . , δ3 ∈ N:

ψ6

A B ψ6(A,B)

a1 b1 γ1

a2 b1 γ2

a3 b2 γ3

a4 b2 γ4

ψ10

B D ψ10(B,D)

b1 d1 δ1

b1 d2 δ2

b2 d3 δ3

K

A B D ψ6(A,B) ψ10(B,D)

a1 b1 d1 γ1 δ1

a2 b1 d2 γ2 δ2

a3 b2 d3 γ3 δ3

a4 b2 d3 γ4 δ3

The relation K is a possible cover computed by the cover-join plan. The cover carries over the
aggregates in columns ψ6(A,B) and ψ10(B,D), one per bag of T ′. The aggregate of the first tuple
in K is γ1 · δ1 (or γ1 ⊗ δ1 under a semiring with multiplication ⊗).

The following theorem relies on Lemma 23 and Theorem 25 that give an upper bound on
the time complexity for constructing covers of join results.

I Theorem 30. For each FAQ ϕ and database D, a cover of the query result ϕ(D) can be
computed in time Õ(|D|faqw(ϕ)).

Any enumeration algorithm for covers of join results can be used to enumerate the tuples
of an FAQ result from one of its covers. We thus have the following corollary:

I Corollary 31 (Corollary 18). Given a cover K of the result ϕ(D) of an FAQ ϕ over a database
D, the tuples in the query result ϕ(D) can be enumerated with Õ(|K|) pre-computation time
and O(1) delay and extra space.

6 Conclusion

Results of join and functional aggregate queries entail redundancy in both their computation
and representation. In this paper we propose the notion of covers of query results to reduce
such redundancy. While covers can be more succinct than the query results, they nevertheless
enjoy desirable properties such as listing representation and constant-delay enumeration of
result tuples. For a given database and a join or functional aggregate query, the query result
can be normalized as a globally consistent database over an acyclic schema. Covers represent
one-relational, lossless, linear-size encodings of such normalized databases.

I Definition 32. borged /bôrjd/ : Buy One Relation, Get Entire Database!
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A From Covers to D-Representations

We next give a brief introduction to d-representations; for a detailed description, we refer the
reader to the literature [23]. We then discuss a translation from covers to d-representations.

A.1 D-Representations in a Nutshell
D-representations are a lossless succinct representation for relational data. A d-representation
is a set of relational algebra expressions {N1 := E1, . . . , Nn := En}, where each Ni is a
unique name and each Ei is a relational algebra expression with unions, Cartesian products,
singleton relations, i.e., unary relations with one tuple, and name references in place of
singleton relations. The size |E| of a d-representation E is the number of its singletons.

We consider a special class of d-representations that encode results of join queries and
whose nesting structure is given by so-called d-trees. In the literature, d-trees are defined as
orderings on query variables. We give here an alternative, equivalent definition that is in
line with our notion of fractional hypertree decomposition. Given a query Q, a d-tree of Q
is a decomposition of Q where each bag is partitioned into one attribute A, called the bag
attribute, and a set of attributes, called the key of A and denoted by key(A). There is one bag
per distinct attribute A in Q. Each decomposition T of a query Q can be translated into a
d-tree T ′ of Q with fhtw(T ′) ≤ fhtw(T ) (Proposition 9.3 in [23]). Given a query Q, a d-tree
T of Q, and a database D, a d-representation E of Q(D) over T with size O(|D|fhtw(T )) can
be computed in time Õ(|D|fhtw(T )) (Theorem 7.13 and Proposition 8.2 in [23]).

I Example 33. We consider the path query Q = R1(A,B) 1 R2(B,C) 1 R3(C,D). Figure 2
depicts a database with relations R1, R2 and R3 and the result of Q over the input database
{R1, R2, R3}. It also shows a decomposition T of Q and a cover K of the query result over
T . Finally, it depicts a d-tree T ′ (right below) derived from T by using the translation in
the proof of Proposition 9.3 in [23].

D-representations can be encoded as parse graphs and sets of multi-maps. Figure 3
visualizes the two encodings for the d-representation of the query result from Figure 2 over
the d-tree T ′. The parse graph follows the structure of the d-tree. At the top level we have a
union of B-values. Then, given any B-value, the A-values are independent of the values for
C and D. Therefore, under each B-value, the A-values are represented in a different branch
than the values for C and D. Within the branches for C and D, the values are first grouped
by C and then by D. The information on keys is used to share subtrees across branches.
Since the key of attribute D is C, all C-nodes with the same value point to the same union
of D-values. In our example, both c1-nodes point to the same set {d1, d2} of D-values.

The cover K from Figure 2 can be mapped immediately to the parse graph: Under each
product node, we take a minimum number of combinations of its children to ensure that
every value under the product node occurs in one of these combinations. To enumerate
the tuples in the query result, it suffices to choose in turn one branch of each union node
and all branches of each product node. For instance, the left product node represents the
combinations of {a1, a2} with {d1, d2}, together with the values b1 and c1. There are four
combinations, so four tuples in the result. The first two tuples in the cover represent two of
them, yet they are sufficient to recover all these tuples.
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R1

A B

a1 b1

a2 b1

a3 b2

a4 b2

R2

B C

b1 c1

b2 c1

R3

C D

c1 d1

c1 d2

Q(D)
A B C D

a1 b1 c1 d1

a1 b1 c1 d2

a2 b1 c1 d1

a2 b1 c1 d2

a3 b2 c1 d1

a3 b2 c1 d2

a4 b2 c1 d1

a4 b2 c1 d2

K ⊆ Q(D)
A B C D

a1 b1 c1 d1

a2 b1 c1 d1

a3 b2 c1 d2

a4 b2 c1 d2

T : B

A,B B,C

C,D

T ′: B

A C

D

key(B) = ∅

key(A) = {B} key(C) = {B}

key(D) = {C}

Figure 2 Top row: database D = {R1, R2, R3}, the result Q(D) of the path query Q = R1 1
R2 1 R3, and a cover K ⊆ Q(D) over the decomposition T ; bottom row: decomposition T of Q
and an equivalent d-tree T ′.

∪

b1 b2

× ×

∪ ∪ ∪ ∪

a1 a2 c1 a3 a4

∪

c1

d1 d2

mB

key(B) B

() b1

() b2

mA

key(A) A

b1 a1

b1 a2

b2 a3

b2 a4

mC

key(C) C

b1 c1

b2 c1

mD

key(D) D

c1 d1

c1 d2

Figure 3 A d-representation encoded as a parse graph (left) and as a set of multimaps (right).
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cover2factorization (cover K, decomposition T )
convert T into an equivalent d-tree T ′ following Proposition 9.3 in [23];
let V be the set of attributes in T ′;
foreach attribute A ∈ V do

create multi-map mA :
∏
X∈key(A) dom(X) 7→ dom(A);

foreach tuple t ∈ K do
foreach attribute A ∈ V do

insert assignment πkey(A)t 7→ πAt into mA;
return {mA}A∈V;

Figure 4 Translating a cover K over a decomposition T into an equivalent d-representation.

The (multi-)map encoding of a d-representation consists of one map for each bag attribute:
mA maps tuples over the attributes in key(A) to values of A. Figure 3 shows these maps as
relations with columns for the key attributes (the map keys) and the column for the attribute
A itself (the map payload). For instance, mA(b1) = a1 and mA(b1) = a2, while mC(b1) = c1.
Since key(A) = {B} and there are two B-values in the d-representation leading to the sets
{a1, a2} and {a3, a4}, respectively, mA maps the B-value b1 to both A-values a1 and a2 and
the B-value b2 to both A-values a3 and a4.

A.2 Translating Covers into D-Representations

Figure 4 gives an algorithm that constructs an equivalent d-representation from a cover over
a decomposition. Both the cover K and the output d-representation are for the same query
result Q(D) of a query Q. The decomposition T is for the query Q.

The algorithm creates a multi-map for each attribute A and populates it with assignments
of tuples over the keys of A to the values of A as encountered in the tuples of the cover.

I Example 34. We consider the cover K over the decomposition T in Figure 2 and the d-tree
T ′ equivalent to T . The cover K is translated into a d-representation over T ′ as follows. On
the first tuple (a1, b1, c1, d1), we add () 7→ b1 to mB, b1 7→ a1 to mA, b1 7→ c1 to mC , and
c1 7→ d1 to mD, where () means the empty tuple. On the second tuple (a2, b1, c1, d1), we
only change mA by adding b1 7→ a2 to mA. On the third tuple (a3, b2, c1, d2), we add the
following new assignments: () 7→ b2 to mB , b2 7→ a3 to mA, b2 7→ c1 to mC , and c1 7→ d2 to
mD. On the last tuple (a4, b2, c1, d2), we add the new assignment b2 7→ a4 to mA.

B Cover-Join Plans Computing Covers of Non-Minimum Size

I Example 35. We consider the acyclic natural join query Q = R1(A,B) 1 R2(B,C) 1
R3(C,D), the database D = {R1, R2, R3} globally consistent with respect to Q, and the join
tree J = R1 −R2 −R3. The relations Ri are depicted below.

R1

A B

a1 b1

a2 b1

a3 b1

R2

B C

b1 c1

b1 c2

R3

C D

c1 d1

c2 d1

c2 d2

K

A B C D

a1 b1 c1 d1

a2 b1 c2 d1

a3 b1 c2 d2

K1,2

A B C

a1 b1 c1

a2 b1 c1

a3 b1 c2

K′

A B C D

a1 b1 c1 d1

a2 b1 c1 d1

a3 b1 c2 d1

a3 b1 c2 d2
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The relationK is a cover of the query result Q(D) over the decomposition T corresponding
to J . It follows from Proposition 13 that every cover of Q(D) over T must have size at least
three. Hence, K is a minimum-sized cover of Q(D) over T .

We take the cover-join plan (R11̊R2)1̊R3 over J and assume that the cover-join operator
computes for each two input relations R and R′, a minimum-sized cover of R 1 R′ over the
decomposition with bags S(R) and S(R′). Then, a possible output of the sub-plan R11̊R2
is the relation K1,2. A possible result of the cover-join of K1,2 with R3 is the relation K ′,
which is a valid cover of Q(D) over T , but not a minimum-sized cover of Q(D) over T .

C Covers for Equi-Join Queries

In this section, we extend the class of queries from natural join queries to arbitrary equi-join
queries, whose relation symbols may map to the same database relation.

Equi-join Queries. An equi-join query, aka full conjunctive query, has the form Q =
σψ(R1(S1)× . . .×Rn(Sn)), where each Ri is a relation symbol with schema Si and ψ is a
conjunction of equalities of the form A1 = A2 with attributes A1 and A2. We require that all
relation symbols in the query as well as all attributes occurring in the schemas of the relation
symbols are distinct. We assume that each query comes with mappings (λ, {µRi}i∈[n]), called
the signature mappings of Q, where λ maps the relation symbols in Q to relation symbols
in the schema of the database and each µRi is a bijective mapping from the attributes of
Ri to the attributes of λ(Ri). Since we do not require λ to be injective, distinct relation
symbols in Q might refer to the same relation in the database (cf. Example 36). The joins in
equi-join queries are expressed by the equalities in ψ. The transitive closure ψ+ of ψ under
the equality on attributes defines the attribute equivalence classes: The equivalence class A
of an attribute A is the set consisting of A and of all attributes equal to A in ψ+. For a set
S of attributes, S+ denotes the set of attributes transitively equivalent to those in S.

The Hypergraph and the hypertree decompositions of Q are defined just like for natural
join queries with the additional requirement that each hyperedge or bag is closed with respect
to the equivalence classes in ψ+. More formally, the hypergraph of Q consists of one node A
for each attribute A in Q and one edge S(R)+ for each relation symbol R ∈ S(Q). Similarly,
a hypertree decomposition T (of the hypergraph H) of Q is a pair (T, χ), where T is a tree
and χ is a function mapping each node in T to a set V + where V is a subset of the nodes of
H. All other notions and notations introduced in Section 2 as well as the definitions of result
preservation and covers in Section 3 carry over to equi-join queries without any change.

I Example 36. We consider the equi-join query Q = σψ(R1(A1, A2)× R2(A3, A4)) where
ψ = {A2 = A3}. Let (λ, {µR1 , µR2}) be the signature mappings of Q. Assume that
λ(R1) = λ(R2) = R, µR1(A1) = µR2(A4) = A and µR1(A2) = µR2(A3) = B, i.e., both
relation symbols are mapped to the same relation symbol R, attributes A1 and A4 are
mapped to attribute A and attributes A2 and A3 are mapped to attribute B. Let D = {R}
where R is defined as in Figure 5. The figure depicts in the top row the query result Q(D),
a cover K of the query result over the decomposition T depicted in the bottom row and two
relations R′1, R′2 obtained from R by the application of Proposition 37 (given below). The
bottom row shows the hypergraph of Q, the hypergraph H of Q(D) over the attribute sets
{{A1, A2, A3}, {A2, A3, A4}}, and a minimal edge cover M of H with rel(M) = K.
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R

A B

a1 b1

a2 b1

a1 b2

a2 b2

Q(D)
A1 A2 A3 A4

a1 b1 b1 a1

a1 b1 b1 a2

a2 b1 b1 a1

a2 b1 b1 a2

a1 b2 b2 a1

a1 b2 b2 a2

a2 b2 b2 a1

a2 b2 b2 a2

K = rel(M)
A1 A2 A3 A4

a1 b1 b1 a1

a2 b1 b1 a2

a1 b2 b2 a2

a2 b2 b2 a1

R′
1

A1 A2 A3

a1 b1 b1

a2 b1 b1

a1 b2 b2

a2 b2 b2

R′
2

A2 A3 A4

b1 b1 a1

b1 b1 a2

b2 b2 a1

b2 b2 a2

Hypergraph of query
& decomposition T

A1

A2, A3

A4

A1

A2, A3

A2, A3

A4

Hypergraph H of Q(D) over S(T )

a1 b1 b1

a2 b1 b1

a1 b2 b2

a2 b2 b2

b1 b1 a1

b1 b1 a2

b2 b2 a1

b2 b2 a2

Minimal edge cover M of H

a1 b1 b1

a2 b1 b1

a1 b2 b2

a2 b2 b2

b1 b1 a1

b1 b1 a2

b2 b2 a1

b2 b2 a2

Figure 5 Top row: database D = {R}, the result Q(D) of the query Q in Example 36, a cover K
of Q(D) over T , and relations R′

1, R
′
2 obtained from R by the application of Proposition 37; bottom

row: the hypergraph of Q, a decomposition T of Q, the hypergraph of Q(D) over the attribute sets
S(T ), and a minimal edge cover M of this hypergraph.

Adaption of the results on covers to equi-join queries. Due to the following two proposi-
tions, all results on covers in Sections 3 and 4 carry over to equi-join queries.

I Proposition 37. Given an equi-join query Q, a decomposition T of Q, and a database D,
there exist a natural join query Q′ and a database D′ such that: Q′(D′) = Q(D), Q′ has the
decomposition T and can be constructed in time O(|Q|), and D′ can be constructed in time
O(|D|).

We briefly explain the construction. The query Q′ is obtained from Q by replacing each
relation symbol R(S) in Q by a relation symbol R′(S+). The database D′ contains, for each
relation symbol R′(S+) in Q′, a relation over the same schema that is obtained from relation
λ(R(S)) as follows: for each attribute A contained in S+ but not in S, λ(R(S)) is extended
by a new A-column that is a copy of any B-column in λ(R(S)) such that A is equivalent to
B. Figure 5 gives in the top row two relations R′1 and R′2 that result from relation R by the
application of Proposition 37 in case Q is defined as in Example 36.

It follows from Proposition 37 that, since Q′(D′) = Q(D), any relation K is a cover of
Q(D) over T if and only if K is a cover of Q′(D′) over T . Given the construction times for
Q′ and D′, all our results on natural join queries in Sections 3 and 4, except the lower size
bound on covers in Theorem 14(ii), hold for equi-join queries, too.

The following proposition is the counterpart of Theorem 14(ii) for equi-join queries.
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I Proposition 38. For each equi-join query Q and decomposition T of Q, there are arbitrarily
large databases D such that each cover of Q(D) over T has size Ω(|D|fhtw(T )).

In Proposition 38, we first construct a natural join query Q′ from Q as in Proposition 37.
By Theorem 14(ii), there are arbitrarily large databases D′ such that each cover of Q′(D′)
over T has size Ω(|D′|fhtw(T )). Given such a database D′, it follows from Proposition 13, that
ΣB∈S(T )|πBQ′(D′)| = Ω(|D′|fhtw(T )), hence, maxB∈S(T ){|πBQ′(D′)|} = Ω(|D′|fhtw(T )). We
convert the database D′ into a database D of size O(|D′|) such that |πBQ(D)| ≥ |πBQ′(D′)|
for each B ∈ S(T ). By Proposition 13 (adapted to equi-join queries), each cover of Q(D)
over T must have size at least maxB∈S(T ){|πBQ(D)|}. Since maxB∈S(T ){|πBQ′(D′)|} =
Ω(|D′|fhtw(T )) and maxB∈S(T ){|πBQ(D)|} ≥maxB∈S(T ){|πBQ′(D′)|}, we conclude that each
cover of Q(D) over T is of size Ω(|D′|fhtw(T )) = Ω(|D|fhtw(T )).
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