
Enumeration on Trees under Relabelings
Antoine Amarilli
LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

Pierre Bourhis
CRIStAL, CNRS UMR 9189 & Inria Lille, Lille, France

Stefan Mengel
CNRS, CRIL UMR 8188, Lens, France

Abstract
We study how to evaluate MSO queries with free variables on trees, within the framework of
enumeration algorithms. Previous work has shown how to enumerate answers with linear-time
preprocessing and delay linear in the size of each output, i.e., constant-delay for free first-order
variables. We extend this result to support relabelings, a restricted kind of update operations on
trees which allows us to change the node labels. Our main result shows that we can enumerate the
answers of MSO queries on trees with linear-time preprocessing and delay linear in each answer,
while supporting node relabelings in logarithmic time. To prove this, we reuse the circuit-based
enumeration structure from our earlier work, and develop techniques to maintain its index under
node relabelings. We also show how enumeration under relabelings can be applied to evaluate
practical query languages, such as aggregate, group-by, and parameterized queries.
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1 Introduction

Enumeration algorithms are a common way to compute large query results on databases, see,
e.g., [28]. Instead of computing all results, these algorithms compute results one after the
other, while ensuring that the time between two successive results (the delay) remains small.
Ideally, the delay should be linear in the size of each produced solution, and independent of
the size of the input database. To make this possible, enumeration algorithms can build an
index structure on the database during a preprocessing phase that ideally runs in linear time.

Most enumeration algorithms assume that the input database will not change. If we update
the database, we must re-run the preprocessing phase from scratch, which is unreasonable in
practice. Losemann and Martens [24] proposed the first enumeration algorithm that addresses
this issue: they study monadic second-order (MSO) query evaluation on trees, and show
that the index structure for enumeration can be maintained under updates. More precisely,
they can update the index in time polylogarithmic in the input tree T (much better than
re-running the linear preprocessing). The tradeoff is that their delay is also polylogarithmic
in T , whereas the delay can be independent of T when there are no updates [8].

This result of [24] leads to a natural question: does the support for updates inherently
increase the delay of enumeration algorithms? This is not always the case: e.g., when
evaluating first-order queries (plus modulo-counting quantifiers) on bounded-degree databases,
updates can be applied in constant time [12] and the delay is constant, as in the case without
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5:2 Enumeration on Trees under Relabelings

updates [18, 22]. However, when evaluating conjunctive queries (CQs) on arbitrary databases,
supporting updates has a cost: under complexity-theoretic assumptions, the class of CQs
with efficient enumeration under updates [11] is a strict subclass of the class of CQs for the
case without updates [9]. Could the same be true of MSO on trees, as [24] would suggest?

In this work, we answer this question in the negative, for a restricted update language.
Specifically, we show an enumeration algorithm for MSO on trees with the same delay as in
the case without updates [8], while supporting updates with a better complexity than [24]
(see detailed comparison of results in Section 3). The tradeoff is that we only allow updates
that change the labels of nodes, called relabelings, unlike [24] where updates can also insert
and delete leaves. We still show how these relabelings are useful to evaluate practical
query languages, such as parameterized queries and group-by queries with aggregates. A
parameterized query allows the user to specify some parameters for the evaluation (e.g., select
some positions on the tree). Our results support such queries: we can model the parameters as
labels and apply relabeling updates when the user changes the parameters. A group-by query
with aggregates partitions the set of results into groups based on an attribute, and computes
some aggregate quantity on each group (e.g., a sum). We show how to enumerate the results
of such queries. For groups, our techniques can handle them with one single enumeration
structure using relabelings to switch groups. For aggregates, we can efficiently compute and
maintain them in arbitrary semirings; this problem was left open by [24] even for counting,
and is practically relevant in its own right [26]. Of course, by Courcelle’s theorem [15], our
results generalize to MSO queries on bounded-treewidth data (see [3]), where relabelings
mean adding or removing unary facts (i.e., the tree decomposition is unchanged).

The proof of our main result follows the approach of [4] and is inspired by knowledge
compilation in artificial intelligence and by factorized representations in database theory.
Specifically, we encode knowledge (in our case, the query result) as a circuit in a restricted
class, and we then use the circuit for efficient reasoning and for aggregates as in [17]. In [4],
we have used this circuit-based approach to recapture existing enumeration results for MSO
on trees [8, 23]. In this work, we refine the approach and show that it can support updates.
Our key new ingredient are hybrid circuits: they have both set-valued gates that represent
the values to enumerate, and Boolean gates that encode the tree labels which can be updated.
We first show that we can efficiently compute such circuits to capture the possible results
of an MSO query under all possible labelings of a tree. Second, we show how to efficiently
enumerate the set of assignments captured by these circuits, also supporting updates that
toggle the Boolean gates affected by a relabeling. We also introduce some standalone
tools, e.g., a lemma to balance the input trees to MSO queries (Lemma 4.3), ensuring that
hybrid circuits have logarithmic depth so that changes can be propagated quickly; and a
constant-delay enumeration algorithm for reachability in forests under updates (Section 7).

Paper structure. We start with preliminaries in Section 2, and define our problem and
give our main result in Section 3. In Section 4, we review the set-valued provenance circuits
of [4], and show our balancing lemma. We introduce hybrid circuits in Section 5, and show
in Section 6 how to use them for enumeration under updates, using a standalone reachability
indexing scheme on forests given in Section 7. Having shown our main result, we outline its
consequences for application-oriented query languages in Section 8 and conclude in Section 9.

2 Preliminaries

Trees, queries, answers, assignments. In this work, unless otherwise specified, a tree is
always binary, rooted, ordered, and full. Let Γ be a finite set called a tree alphabet. A Γ-tree
(T, λ) is a pair of a tree T and of a labeling function λ that maps each node n of T to a set
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of labels λ(n) ⊆ Γ. We often abuse notation and identify T to its node set, e.g., write λ as a
function from T to the powerset 2Γ of Γ; we may also omit λ and write the Γ-tree as just T .

We consider queries in monadic second-order logic (MSO) on the signature of Γ-trees: it
features two binary relations E1 and E2 denoting the first and second child of each internal
node, and a unary relation Pl for each l ∈ Γ denoting the nodes that carry label l (i.e.,
nodes n for which l ∈ λ(n)). MSO extends first-order logic, which builds formulas from atoms
of this signature and from equality atoms, using the Boolean connectives and existential and
universal quantification over nodes. Formulas in MSO can also use second-order quantification
over sets of nodes, written as second-order variables. For instance, on Γ = {l1, l2, l3}, we can
express in MSO that every node carrying labels l1 and l2 has a descendant carrying label l3.

In this work, we study MSO queries, i.e., MSO formulas with free variables. The free
variables can be first-order or second-order, but we can rewrite any MSO query Q(x,Y) to
ensure that all free variables are second-order: for instance as Q′(X,Y) : ∃x

∧
i Sing(Xi, xi)∧

Q(x,Y), where Sing(X,x) asserts that X is exactly the singleton set {x}. Hence, we usually
assume without loss of generality that MSO queries only have second-order free variables.

Given a Γ-tree T and an MSO query Q(X1, . . . , Xm), an m-tuple B = B1, . . . , Bm of
subsets of T is an answer of Q on T , written T |= Q(B), if T satisfies Q(B) in the usual
logical sense. It will be more convenient to represent each answer as an assignment, which
is a set of pairs called singletons that indicate that an element is in the interpretation of
a variable. Formally, given an m-tuple B of subsets of T , the corresponding assignment is
{〈Xi : n〉 | 1 ≤ i ≤ m and n ∈ Bi}. We can convert each assignment in linear time to the
corresponding answer and vice-versa, so we will use the assignment representation throughout
this work. Our goal is to compute the set of assignments of Q on T , which we call the output
of Q on T ; we abuse notation and write it Q(T ). We measure the complexity of this task in
data complexity, i.e., as a function of the input tree T , with the query Q being fixed.

Enumeration. The output of an MSO query can be huge, so we work in the setting of
enumeration algorithms [31, 28] which we present following [4]. As usual for enumeration
algorithms [28], we work in the RAM model with uniform cost measure (see, e.g., [1]), where
pointers, numbers, labels for elements and facts, etc., have constant size.

An enumeration algorithm with linear-time preprocessing for a fixed MSO query Q(X)
on Γ-trees takes as input a Γ-tree T and computes the output Q(T ) of Q on T . It consists
of two phases. First, the preprocessing phase takes T as input and produces in linear time
a data structure J called the index, and an initial state s. Second, the enumeration phase
repeatedly calls an algorithm A. Each call to A takes as input the index J and the current
state s, and returns one assignment and a new state s′: a special state value indicates that
the enumeration is over so A should not be called again. The assignments produced by the
successive calls to A must be exactly the elements of Q(T ), with no duplicates.

We say that the enumeration algorithm has linear delay if the time to produce each new
assignment A is linear in its cardinality |A|, and is independent of T . In particular, if all
answers to Q are tuples of singleton sets (for instance, if Q is the translation of a MSO query
where all free variables are first-order), then the cardinality of each assignment is constant
(it is the arity of Q). In this case, the enumeration algorithm must produce each assignment
with constant delay: this is called constant-delay enumeration. The memory usage of an
enumeration algorithm is the maximum number of memory cells used during the enumeration
phase (not counting the index J , which resides in read-only memory), expressed as a function
of the size of the largest assignment (as in [8]): we say that the enumeration algorithm has
linear memory if its memory usage is linear in the size of the largest assignment.
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5:4 Enumeration on Trees under Relabelings

Previous works have studied enumeration for MSO on trees. Bagan [8] showed that for any
fixed MSO query Q(X), given a Γ-tree T , we can enumerate the output of Q on T with linear
delay and memory, i.e., constant delay and memory when all free variables are first-order.
This result was re-proven by Kazana and Segoufin [23] via a result of Colcombet [14], and a
third proof via provenance circuits was recently proposed by the present authors [4].

3 Problem Statement and Main Result

Our goal is to address a limitation of these existing results, namely, the assumption that the
input Γ-tree T will never change. Indeed, if T is updated, these results must discard the
index J and re-run the preprocessing phase on the new tree. To improve on this, we want
our enumeration algorithm to support update operations on T , and to update J accordingly
instead of recomputing it from scratch. Specifically, an algorithm for enumeration under
updates on a tree T has a preprocessing phase that produces the index J as usual, but has
two algorithms during the enumeration phase: (i.) an enumeration algorithm A as presented
before, and (ii.) an update algorithm U . When we want to change the tree T , we call U with
a description of the changes: U modifies T accordingly, updates the index J , and resets the
enumeration state (so enumeration starts over on the new tree, and all working memory of the
enumeration phase is freed). The update time of the enumeration algorithm is the complexity
of U : like preprocessing, but unlike delay, it is a function of the size of the (current) tree T .

To our knowledge, the only published result on enumeration for MSO queries under
updates is the work of Losemann and Martens [24], which applies to words and to trees, for
MSO queries with only free first-order variables. They show an enumeration algorithm with
linear-time preprocessing: on words, the update complexity and delay is O(log |T |); on trees,
these complexities become O(log2 |T |). Thus the delay is worse than in the case without
updates [8], and in particular it is no longer independent from T .

Main result. In this work, we show that enumeration under updates for MSO queries on
trees can be performed with a better complexity that matches the case without updates:
linear-time preprocessing, linear delay and memory (in the assignments), and update time
in O(log |T |). This improves on the bounds of [24] (and uses entirely different techniques).
However, in exchange for the better complexity, we only support a weaker update language:
we can change the labels of tree nodes, called a relabeling, but we cannot insert or delete leaf
nodes as in [24], which we leave for future work (see the conclusion in Section 9). We show in
Section 8 that relabelings are still useful to derive results for some practical query languages.

Formally, a relabeling on a Γ-tree T is a pair of a node n ∈ T and a label l ∈ Γ. To apply
it, we change the label λ(n) of n by adding l if l /∈ λ(n), and removing it if l ∈ λ(n). In other
words, the tree T never changes, and updates only modify λ. Our main result is then:

I Theorem 3.1. For any fixed tree alphabet Γ and MSO query Q(X) on Γ-trees, given a
Γ-tree T , we can enumerate the output Q(T ) of Q on T with linear-time preprocessing, linear
delay and memory, and logarithmic update time for relabelings.

In other words, after preprocessing T in time O(|T |) to compute the index J , we can:
Enumerate the assignments of Q on T , using J , with delay linear in the size of each
assignment, so constant if the assignments to Q have constant size.
Toggle a label of a node of T , update J , and reset the enumeration, in time O(log |T |).

We show this result in Sections 4–7, and then give consequences of this result in Section 8.
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4 Provenance Circuits

Our general technique for enumeration follows our earlier work [4]: from the query and input
tree, we compute in linear time a structure called a provenance circuit to represent the
results to enumerate, we observe that it falls in a restricted circuit class, and we conclude
by showing a general enumeration result for circuits of this class. In this section, we review
our construction of provenance circuits in [4], with some additional observations that will be
useful for updates. In particular, we show an independent balancing lemma on input trees,
which allows us to bound a parameter of the circuit called dependency size. We will extend
the formalism of this section to so-called hybrid circuits in the next section; and we will show
our enumeration result for such circuits in Sections 6 and 7.

Set circuits. We start with some preliminaries about circuits. A circuit C = (G,W, g0, µ)
is a directed acyclic graph (G,W ) whose vertices G are called gates, whose edges W are
called wires, where g0 ∈ G is the output gate, and where µ is a function giving a type to each
gate of G (the possible types depend on the kind of circuit). The inputs to a gate g ∈ G are
inp(g) := {g′ ∈ G | (g′, g) ∈W} and the fan-in of g is its number of inputs |inp(g)|.

We define set-valued circuits, which are an equivalent rephrasing of the circuits in zero-
suppressed semantics used in [4]. They can also be seen to be isomorphic to arithmetic
circuits, and generalize factorized representations used in database theory [27]. The type
function µ of a set-valued circuit maps each gate to one of ∪, ×, var. We require that ×-gates
have fan-in 0 or 2, and that var-gates have fan-in 0: the latter are called the variables of C,
with Cvar denoting the set of variables. Each gate g of C captures a set S(g) of assignments,
where each assignment is a subset of Cvar. These sets are defined bottom-up as follows:

For a variable gate g, we have S(g) := {{g}}.
For a ∪-gate g, we have S(g) :=

⋃
g′∈inp(g) S(g′). In particular, if inp(g) = ∅ then S(g) = ∅.

For a ×-gate g with no inputs, we have S(g) := {{}}.
For a ×-gate g with two inputs g1 and g2, we have S(g) := {A1 ∪ A2 | (A1, A2) ∈
S(g1)× S(g2)}, which we write S(g) := S(g1)×rel S(g2) (this is the relational product).

The set S(C) captured by C is S(g0) for g0 the output gate of C. Note that each assignment
of S(C) is a satisfying assignment of C when seen in the usual semantics of monotone circuits.

Structural requirements. Before defining our provenance circuits, we introduce some struc-
tural restrictions that they will respect, and that will be useful for enumeration.

The first requirement is that the circuit is a d-DNNF. Our definition of d-DNNF is
inspired by [16] but applies to set-valued circuits, as in [4] (see also the z-st-d-DNNFs of [30]).
For each gate g of a set-valued circuit C, we define the domain dom(g) of g as the variable
gates having a directed path to g. In particular, for g ∈ Cvar, we have dom(g) = {g}, and
if inp(g) = ∅ then dom(g) = ∅. We now call a ×-gate g decomposable if it has no inputs or
if, letting g′1 6= g′2 be its two inputs, the domains dom(g′1) and dom(g′2) are disjoint. This
ensures that no variable of C occurs both in an assignment of S(g′1) and in an assignment
of S(g′2). We call a ∪-gate g deterministic if, for any two inputs g′1 6= g′2 of g, the sets S(g′1)
and S(g′2) are disjoint, i.e., there is no assignment that occurs in both sets. We call C a
d-DNNF if every ×-gate g is decomposable and every ∪-gate g is deterministic. Under this
assumption, we can tractably compute the cardinality of the set S(C) captured by C.

The second requirement on circuits is called upwards-determinism and was introduced
in [3]. In that paper, it was used to show an improved memory bound; in the present paper,
we will always be able to enforce it. A wire (g, g′) in a set-valued circuit C is called pure if:
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5:6 Enumeration on Trees under Relabelings

g′ is a ∪-gate; or
g′ is a ×-gate and, letting g′′ be the other input of g′, we have {} ∈ S(g′′), i.e., g′′ captures
the empty assignment.

We say that a gate g is upwards-deterministic if there is at most one gate g′ such that (g, g′)
is pure. We call C upwards-deterministic if every gate of C is.

The third requirement concerns the maximal fan-in of circuits, which is simply defined
for a set-valued circuit C as the maximal fan-in of a gate of C. We will require that the
maximal fan-in is bounded by a constant.

The fourth and last requirement concerns a new parameter called dependency size. To
introduce this, we define the dependent gates ∆(g′) of a gate g′ in a set-valued circuit C
as the gates g such that there is a directed path from g′ to g. Intuitively, the set S(g)
captured by g may then depend on the set S(g′) captured by g′. The dependency size of C is
∆(C) := maxg∈C |∆(g)|, i.e., the maximal number of gates that are dependent on any given
gate g. We will require this parameter to be connected to the height of the input tree.

Set-valued provenance circuits. We can now define provenance circuits like in [4]. A
set-valued circuit C is a provenance circuit of a MSO query Q(X1, . . . , Xm) on a Γ-tree T if:

The variables of C correspond to the possible singletons, formally: Cvar = {〈Xi : n〉 | 1 ≤
i ≤ m and n ∈ T}; and
The set of assignments captured by C is the output of Q on T , formally: S(C) = Q(T ).
Equivalently, for any tuple B = (B1, . . . , Bm) of subsets of T , we have T |= Q(B) iff the
assignment {〈Xi : n〉 | 1 ≤ i ≤ m and n ∈ Bi} is in S(C).

I Example 4.1. Consider the unlabeled tree T of Figure 1, the alphabet Γ = {B}, and
the MSO query Q(x) with one free first-order variable asking for the leaf nodes whose
B-annotation is different from that of its parent (i.e., the node carries label B and the parent
does not, or vice-versa). Consider the labeling λ mapping 1 to {B} and 2 and 3 to ∅. A
set-valued circuit capturing the provenance of Q on (T, λ) is given in Figure 2.

We then know from [3] that provenance circuits can be computed efficiently, and they
can be made to respect our structural requirements:

I Theorem 4.2 (from [4], Theorem 7.3). For any fixed MSO query Q(X) on Γ-trees, given
a Γ-tree T , we can compute in time O(|T |) a set-valued provenance circuit C of Q on T .
Further, C is a d-DNNF, it is upwards-deterministic, its maximal fan-in is constant, and its
dependency size is in O(h(T )), where h denotes the height of T .

Proof sketch. We recall the main proof technique: we convert Q to a bottom-up deterministic
tree automaton A on Γ-trees, and we add nodes to T to describe the possible valuations
of variables. The provenance circuit C then captures the possible ways that A can read T
depending on the valuation: we compute it with the construction of [6], and is a d-DNNF
thanks to automaton determinism (see [2]). Upwards-determinism is shown like in [3].

The bounds on fan-in and dependency size are not stated in [4, 3] but already hold there.
Specifically, the maximal fan-in is a function of the transition function of A, i.e., it does not
depend on T . The bound on dependency size holds because C is constructed following the
structure of T : we create for each tree node a gadget whose size depends only on A, and
we connect these gadgets precisely following the structure of T , so that ∆(g) for any gate g
of C can only contain gates from the node n of g or from ancestors of n in the tree. J

In the context of updates, the bound of dependency size will be crucial: intuitively, it
describes how many gates need to be updated when an update operation modifies a gate
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of the circuit. As this bound depends on the height of the input tree, we will conclude this
section by a balancing lemma that ensures that this height can always be made logarithmic
(which matches our desired update complexity). We will then add support for updates in the
next section by extending circuits to hybrid circuits.

Balancing lemma. Our balancing lemma is a general observation on MSO query evaluation
on trees, and is in fact completely independent from provenance circuits. It essentially says
that the input tree can be assumed to be balanced. Formally, we will show that we can
rewrite any MSO query Q on Γ-trees to an MSO query Q′ on a larger tree alphabet Γ′ so
that any input tree T for Q can be rewritten in linear time to a balanced tree T ′ on which Q′
returns exactly the same output. Because we intend to support update operations, the input
tree T will be unlabeled, and the rewritten tree T ′ will work for any labeling of T . Formally:

I Lemma 4.3. For any tree alphabet Γ and MSO query Q(X) on Γ-trees, we can compute a
tree alphabet Γ′ ⊇ Γ and MSO query Q′(X) on Γ′-trees such that the following holds. Given
any unlabeled tree T with node set N , we can compute in linear time a Γ′-tree (T ′, λ′) with
node set N ′ ⊇ N , such that h(T ′) = O(log |T |) and such that, for any labeling function
λ : T → 2Γ, we have Q(λ(T )) = Q′(λ′′(T ′)), where λ′′(n) maps n ∈ T ′ to λ(n) if n ∈ T and
λ′(n) otherwise.

Proof sketch. We prove Lemma 4.3 by seeing the input tree T as a relational structure I
of treewidth 1, and invoking the result by Bodlaender [13] to compute in linear time a
constant-width tree decomposition of I which is of logarithmic height. We then translate the
query Q to a MSO query Q′ on tree encodings of this width, and compute from T the tree
encoding T ′ corresponding to the tree decomposition (we rename some nodes of T ′ to ensure
that the nodes of T are reflected in T ′). Note that the balanced tree decompositions of [13]
were already used for similar purposes elsewhere, e.g., in [19], end of Section 2.3. J

5 Hybrid Circuits for Updates

In this section, we extend set-valued circuits to support updates, defining hybrid circuits.
We then extend Theorem 4.2 for these circuits. Last, we introduce a new structural notion
of homogenization of hybrid circuits and show how to enforce it. We close the section by
stating our main enumeration result on hybrid circuits, which implies our main theorem
(Theorem 3.1), and is proved in the two next sections.

Hybrid circuits. A hybrid circuit is intuitively similar to a set-valued circuit, but it addi-
tionally has Boolean variables (which can be toggled when updating), Boolean gates (∧, ∨,
¬), and gates labeled � which keep or discard a set of assignments depending on a Boolean
value. Formally, a hybrid circuit C = (G,W, g0, µ) is a circuit where the possible gate types
are svar (set-valued variables), bvar (Boolean variables), ∪, ×, �, ∧, ∨, and ¬. We call a
gate Boolean if its type is bvar, ∧, ∨, or ¬; and set-valued otherwise. We require that the
output gate g0 is set-valued and that the following conditions hold:

svar-gates and bvar-gates have fan-in exactly 0;
All inputs to ∧-gates, ∨-gates, and ¬-gates are Boolean, and ¬-gates have fan-in exactly 1;
All inputs to ∪ and ×-gates are set-valued, and ×-gates have fan-in either 0 or 2;
�-gates have one set-valued input and one Boolean input (so they have fan-in exactly 2).

We write Cbvar to denote the gates of C of type bvar, called the Boolean variables, and define
likewise the set-valued variables Csvar. An example hybrid circuit is illustrated in Figure 3.

ICDT 2018



5:8 Enumeration on Trees under Relabelings

1

2 3

Figure 1 Example unlabeled tree.

∪

〈x:2〉 〈x:3〉

Figure 2 Example set circuit.

∪
� �

〈B:1〉
∪ ¬

〈B:1〉
∪

� � � �
¬

〈B:2〉 〈x:2〉
¬

〈B:3〉 〈x:3〉 〈B:2〉 〈x:2〉 〈B:3〉 〈x:3〉

Figure 3 Example hybrid circuit. Boolean gates are squared,
set-valued gates are circled, and variables are repeated.

∪

∪ ∪

〈x:2〉 〈x:3〉

Figure 4 Example
switchboard.

Unlike set-valued circuits, which capture only one set of assignments, hybrid circuits
capture several different sets of assignments, depending on the value of the Boolean variables
(intuitively corresponding to the tree labels). This value is given by a valuation of C, i.e.,
a function ν : Cbvar → {0, 1}. Given such a valuation ν, each Boolean gate g captures a
Boolean value Vν(g) ∈ {0, 1}, computed bottom-up in the usual way: we set Vν(g) := ν(g)
for g ∈ Cbvar, and otherwise Vν(g) is the result of the Boolean operation given by the type
µ(g) of g, applied to the Boolean values Vν(g′) captured by the inputs g′ of g (in particular,
a ∧-gate with no inputs always has value 1, and a ∨-gate with no inputs always has value 0).

We then define the evaluation of C under ν as the set-valued circuit ν(C) obtained as
follows. First, replace each Boolean gate g of C by a ×-gate with no inputs (capturing {{}})
if Vν(g) = 1, and by a ∪-gate with no inputs (capturing ∅) if Vν(g) = 0. Second, relabel
each �-gate g of C to be a ×-gate. Using ν(C), for each set-valued gate g of C, we define
the set captured by g under ν: it is the set of assignments (subsets of Csvar) that g captures
in ν(C). The set Sν(C) captured by C under ν is then Sν(g0), for g0 the output gate of C.

We last lift the structural definitions from set-valued circuits to hybrid circuits. The
maximal fan-in and dependency size of a hybrid circuit are defined like before (these definitions
do not depend on the kind of circuit). A hybrid circuit C is a d-DNNF, resp. is upwards-
deterministic, if for every valuation ν of C, the set-valued circuit ν(C) has the same property.
For instance, the hybrid circuit in Figure 3 is upwards-deterministic and is a d-DNNF.

Hybrid provenance circuits. We can now use hybrid circuits to define provenance with
support for updates. The set-valued variables of the circuit will correspond to singletons
as before, describing the interpretation of the free variables of the query; and the Boolean
variables stand for a different kind of singletons, describing which labels are carried by each
node. To describe this formally, we will consider an unlabeled tree T , and define a labeling
assignment of T for a tree alphabet Γ as a set of singletons of the form 〈l : n〉 where l ∈ Γ
and n ∈ T . Given a labeling assignment α, we can define a labeling function λα for T , which
maps each node n ∈ T to λ(n) := {l ∈ Γ | 〈l : n〉 ∈ α}. Now, we say that a hybrid circuit C
is a provenance circuit of a MSO query Q(X1, . . . , Xm) on an unlabeled tree T if:

The set-valued variables of C correspond to the possible singletons in an assignment,
formally Csvar = {〈Xi : n〉 | 1 ≤ i ≤ m and n ∈ T};
The Boolean variables of C correspond to the possible singletons in an update assignment,
formally Cbvar = {〈l : n〉 | l ∈ Γ and n ∈ T};
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For any labeling assignment α, let να be the Boolean valuation of Cbvar mapping each
〈l : n〉 to 0 or 1 depending on whether 〈l : n〉 ∈ α or not, and let λα be the labeling function
on T defined as above. Then we require that the set of assignments Sνα(C) captured
by C under να is exactly the output of Q on λα(T ), formally, Sνα(C) = Q(λα(T )).

In other words, for each labeling λ of the tree T , considering the valuation ν that sets the
Boolean variables of C accordingly, then ν(C) is a provenance circuit for Q on λ(T ).

I Example 5.1. Recall the query Q(x) and alphabet Γ = {B} of Example 4.1, and the tree T
of Figure 1. A hybrid circuit C capturing the provenance of Q on T is given in Figure 3
(with variable gates being drawn at multiple places for legibility): square leaves correspond
to Boolean variables testing node labels, and circle leaves correspond to set-valued variables
capturing a singleton of the form 〈x:n〉 for some n ∈ T . In particular, for the labeling λ of
Example 4.1, the corresponding valuation ν maps 〈B:1〉 to 1 and 〈B:2〉 and 〈B:3〉 to 0, and
the evaluation ν(C) of C under ν captures the same set as the circuit of Figure 2.

We can now extend Theorem 4.2 to compute a hybrid provenance circuit as follows:

I Theorem 5.2. For any fixed MSO query Q(X) on Γ-trees, given an unlabeled tree T ,
we can compute in time O(|T |) a hybrid provenance circuit C which is a d-DNNF, is
upwards-deterministic, has constant maximal fan-in, and has dependency size in O(h(T )).

Proof sketch. The proof is analogous to that of Theorem 4.2. The only difference is that the
automaton now reads the label of each node as if it were a variable, so that the provenance
circuit C also reflects these label choices as Boolean variables. J

Homogenization. We will make enumeration simpler by imposing one last requirement
on hybrid circuits. A hybrid circuit C is homogenized if there is no valuation ν of C and
set-valued gate g of C such that {} ∈ Sν(g). Note that the requirement does not apply to
the Boolean gates of C, nor to the gates that replace them in evaluations ν(C) of C, so it
equivalently means that C does not contain ×-gates with no inputs. Intuitively, set-valued
gates in C that capture the empty assignment would waste time in the enumeration. We will
show that we can rewrite circuits in linear time to make them homogenized, while preserving
our requirements; but we need to change our definitions slightly to ensure that the circuit can
still capture the empty assignment overall. To do so, we add the possibility of distinguishing
a Boolean gate g1 of a hybrid circuit C as its secondary output; in this case, given a valuation
ν of C, the set Sν(C) captured by C under ν is Sν(C) plus the empty assignment {} if the
secondary output g1 evaluates to 1, i.e., if Vν(g1) = 1. We say that two hybrid circuits C
and C ′ (with or without secondary outputs) are equivalent if Cbvar = C ′bvar, Csvar = C ′svar,
and for any valuation ν of C, we have Sν(C) = Sν(C ′). We then have:

I Lemma 5.3. For any hybrid circuit C, we can build in linear time a hybrid circuit C ′ with
a secondary output g1, such that C ′ is homogenized and it is equivalent to C. Further, if C
is a d-DNNF and is upwards-deterministic, then so is C ′; if C has bounded fan-in then the
same holds of C ′; and we have ∆(C ′) = O(∆(C)).

Proof sketch. This is shown analogously to homogenization in [4], which follows the technique
of Strassen [29] (only done for two “layers”, namely, empty and non-empty assignments). J

Hence, up to linear-time processing, we can additionally assume that the circuits of
Theorem 5.2 are homogenized. We can now use this theorem, the lemma above, and
Lemma 4.3, to reduce enumeration for MSO on trees (as in our main theorem, Theorem 3.1)
to the task of enumerating the set captured by a hybrid circuit satisfying some structural
properties. The result that we need is the following (we prove it in the next two sections):
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I Theorem 5.4. Given an upwards-deterministic, d-DNNF, homogenized hybrid circuit C
with constant fan-in, given an initial Boolean valuation ν of Cbvar, there is an enumeration
algorithm with linear-time preprocessing to enumerate the set Sν(C) captured by C under ν,
with linear delay and memory in each produced assignment, and with update time in O(∆(C)):
an update consists here of toggling one value in ν.

6 Enumerating Assignments of Hybrid Circuits

In this section and the next, we prove Theorem 5.4 by giving an algorithm for enumeration
under updates. We start by describing the preprocessing phase, computing two simple
structures: a shortcut function and a partial evaluation; we also explain how this index can
be efficiently updated. We then describe an algorithm for the enumeration phase, which
needs an additional index structure to achieve the required delay. We close the section by
presenting the missing index, called a switchboard. The switchboard must support a kind
of reachability queries with a specific algorithm for enumeration under updates: we give a
self-contained presentation of this scheme in the next section.

Preprocessing phase: shortcuts and partial evaluation. The first index structure that we
precompute on our hybrid circuit C consists of a shortcut function to avoid wasting time in
chains of �-gates. For each �-gate g, we precompute the one set-valued gate, called δ(g)
which is not a �-gate and which has a directed path to g going only through �-gates. The
function δ can clearly be computed in a linear-time bottom-up pass during the preprocessing,
and it will never need to be updated (it does not depend on ν). For notational convenience,
we extend δ by setting δ(g) := g for any set-valued gate g which is not a �-gate.

The second index structure that we precompute is a partial evaluation, which depends on
the valuation ν: it is a function ων from the gates of C to {0, 1} satisfying the following:

For every Boolean gate g, we have ων(g) = Vν(g).
For every set-valued gate g, we have ων(g) = 1 iff Sν(g) is non-empty.

The function ων is intuitively an evaluation of the Boolean gates in the circuit, extended to
the set-valued gates to determine whether their set is empty or not. We can easily compute ων
bottom-up from ν. Further, whenever ν is changed on a Boolean variable gate g, we can
update ων by recomputing it bottom-up on ∆(g). Formally:

I Lemma 6.1. Given a hybrid circuit C of constant fan-in, given a valuation ν of C, we
can compute ων in linear time from ν and C. Further, for any g ∈ Cbvar, letting ν′ be the
result of toggling the value of ν on g, we can update ων to ων′ in time O(∆(g)).

Hence, we can compute ων and δ in the preprocessing and maintain them under updates.

Enumeration phase. We can use the shortcut function and partial evaluation to enumerate
the assignments in the set Sν(C) of our hybrid circuit C. Of course, if ων(g0) = 0 then we
detect in constant time that there is nothing to enumerate. Otherwise, the enumeration
scheme proceeds essentially like in [4]; to achieve the right delay bounds, it will need an
additional index that we will present later. We start by enumerating Sν(g0), and describe
what happens when we try to enumerate Sν(g) for a set-valued gate g; we will always ensure
that ων(g) = 1. The base case is when g is a set-valued variable, in which case the only
assignment to enumerate is {g}. There are three induction cases: ×-gates, �-gates, and
∪-gates.



A. Amarilli, P. Bourhis, and S. Mengel 5:11

First, assume that g is a ×-gate. As C is homogenized, g has two inputs g1 and g2. Then
we have Sν(g) = Sν(g1)×relSν(g2). Hence, we can simply enumerate Sν(g) as the lexicographic
product of Sν(g1) and Sν(g2). In particular, as ων(g) = 1, we have ων(g1) = ων(g2) = 1, so
neither set is empty. Formally, we have the following lemma:

I Lemma 6.2. For any ×-gate g with inputs g1 and g2, if we can enumerate Sν(g1) and
Sν(g2) with delay and memory respectively θ1 and θ2, then we can enumerate Sν(g) with
delay and memory θ1 + θ2 + c for some constant c.

Note that the constant c paid at the ×-gate is not a problem to achieve linear delay
and memory, because it is paid at most n− 1 times when enumerating an assignment A of
size n. Indeed, C is homogenized, so A is always split non-trivially at each ×-gate, and g is
decomposable in ν(C), so the two sub-assignments never share any variable.

Second, assume that g is a �-gate. As ων(g) = 1, we clearly have Sν(g) = Sν(δ(g)).
Hence, we can simply follow the pointer to δ(g) and enumerate Sν(δ(g)). Intuitively, the cost
of this operation can be covered by that of g, because δ(g) can no longer be a �-gate.

I Lemma 6.3. For any �-gate g, if we can enumerate Sν(δ(g)) with delay and memory θ,
then we can enumerate Sν(g) with delay and memory θ + c for some constant c.

Third, assume that g is a ∪-gate g. Naively, we can enumerate Sν(g) as the union
of the Sν(g′) for the inputs g′ of g for which ων(g′) = 1 (this union is disjoint thanks to
determinism). This is correct, but does not satisfy the delay bounds, because g′ may be
another ∪-gate. A more clever scheme is to to “jump” to the ×-gate or set-valued variable
gates on which Sν(g) depends. Let us accordingly call exits the gates of these two types.
The set Sν(g) can then be expressed as a union of Sν(g′) for the exits g′ that have a directed
path of ∪-gates and �-gates to g. We introduce definitions to “collapse” these paths.

The first definition collapses paths of �-gates. There is a �-path from a set-valued gate g′
to a set-valued gate g 6= g′, written g′ →∗� g, if there is a directed path g′ = g1 → · · · → gn = g

in C such that g2, . . . , gn−1 are all �-gates. In particular, a wire (g′, g) between set-valued
gates implies g′ →∗� g (take n = 2), and δ(g) →∗� g whenever δ(g) 6= g. When g is a
∪-gate, there are two cases, depending on ν. First, we may have ων(gn−1) = 1, and then
ων(g′) = 1 and Sν(g′) contributes to Sν(g): we call the path live under ν. Second, we may
have ων(gn−1) = 0, and then Sν(g′) does not contribute to Sν(g) via this path.

The second definition collapses paths of ∪-gates. An ∪-path from a set-valued gate g′ to
a set-valued gate g 6= g′ is a sequence g′ = g1 →∗� · · · →∗� gn = g in C, where g2, . . . , gn−1
are all ∪-gates and there is a �-path between any two consecutive gates. The path is live
under ν if there is a live �-path under ν between any two consecutive gates.

We now use these definitions to express Sν(g) as a function of the set of exits under ν
of g in C, written Dν

g , which is the set of exits g′ having a live ∪-path to g under ν in C:

I Lemma 6.4. For any valuation ν and ∪-gate g, we have Sν(g) =
⋃
g′∈Dνg

Sν(g′). Further,
this union is disjoint and all its terms are nonempty.

Hence, we can enumerate Sµ(g) for a ∪-gate g by enumerating Dν
g and the set Sν(g′) for

each g′ in Dν
g . Note that g′ is an exit, i.e., a variable or a ×-gate; so we make progress.

I Lemma 6.5. For any ∪-gate g, if we can enumerate Dν
g with delay and memory c, and

can enumerate Sν(g′) for every g′ ∈ Dν
g with delay and memory θ, then we can enumerate

Sν(g) with delay and memory θ + c+ c′ for some constant c′.
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We have described our enumeration scheme in Lemmas 6.2, 6.3, and 6.5. The only
missing piece is to enumerate, for each ∪-gate g, the set Dν

g of exits under ν of g, with
constant delay and memory. To do so, we will need additional preprocessing. We will rely on
upwards-determinism, and extend the tree-based index of [3] to support updates. We first
present an additional structure, called the switchboard, that we compute in the preprocessing;
and we explain in the next section an indexing scheme that we perform on this structure.

Switchboard. Our third index component in the preprocessing is called the switchboard. It
consists of a directed graph B = (V,E) called the panel, which does not depend on ν (so
it does not need to be updated), and a valuation βν : E → {0, 1} called the wiring. The
panel B = (V,E) is defined as follows: V consists of all ∪-gates, ×-gates, and svar-gates,
and E ⊆ V × V contains the edge (δ(g′), g) for each wire (g′, g) of C such that g is a ∪-gate.
This implies that the maximal fan-in of B is no greater than that of C, and it implies that B
is a DAG. The wiring βν maps every edge (g′, g) of B to 1 if there is a �-path from g′ to g
in C which is live under ν, and 0 otherwise. We can use ων to compute the switchboard, and
to update it in time O(∆(C)) whenever ν is updated by toggling a gate of Cbvar. Formally:

I Lemma 6.6. The switchboard can be computed in linear time given C and ν, and we can
update it in time O(∆(C)) when toggling any gate in ν.

We now explain how we use the switchboard to enumerate, given a ∪-gate g, the set Dν
g

of the exits g′ having a live ∪-path to g under ν. In terms of the switchboard, we must
enumerate the exits g′ that have a path to g in B whose edges are all mapped to 1 by βν .
Hence, we must solve the following enumeration task on the switchboard: letting βν(B)
be the DAG of edges of B mapped to 1 by βν , we are given a gate g of B, and we must
enumerate all exit gates g′ of B (i.e., the ×-gates or svar-gates) that have a directed path
to g in βν(B). Further, we must be able to handle updates on βν(B), as given by updates
on ν. Fortunately, thanks to upwards-determinism, this problem is easier than it looks:

I Claim 6.7. For any valuation ν of the hybrid circuit C, the DAG βν(B) is a forest.

I Example 6.8. Figure 4 describes the switchboard for the hybrid circuit C of Figure 3.
The edges of the switchboard correspond to �-paths. The switchboard itself is not a forest;
however, for every valuation of C, the �-paths that are live must always form a forest.

Thus, what we need is a constant-delay reachability index on forests that can be updated
efficiently when adding and removing edges to the forest. This is the focus of the next section.

7 Reachability Indexing under Updates

In this section, we present our indexing scheme for reachability on forests under updates.
The construction in this section is independent from what precedes. For convenience, we will
orient the edges of the forest downwards, i.e., the reverse of the previous section (so g is the
parent of g′ in the forest if there is an edge from g′ to g in the switchboard). We first define
the problem and state the enumeration result, and then sketch the proof.

Definitions and main result. A reachability forest F = (V,E,X) is a directed graph (V,E)
where V is the vertex set, E ⊆ V × V are the edges, and X ⊆ V is a subset of vertices
called exits. When (v, v′) ∈ E, we call v a parent of v′, and v′ a child of v. We impose three
requirements on F : (i.) the graph (V,E) is a forest, i.e., each vertex of V has at most one
parent; (ii.) there is a constant degree bound c ∈ N such that every vertex has at most c
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children; (iii.) every exit v ∈ X is a leaf, i.e., a vertex with no children. We will call trees
the connected components of F . For convenience, we assume that F is ordered, i.e., there is
some total order < on the children of every node.

Given a reachability forest F = (V,E,X) and a vertex v ∈ V , we write reach(v) for the
set of exits reachable in F from v, i.e., the vertices of X to which v has a directed path.
These are the sets that we wish to enumerate efficiently, allowing two kinds of updates on the
edges E of F . First, a delete operation is written −E′ for a set E′ ⊆ E, and F = (V,E,X)
is updated to F − E′ := (V,E \ E′, X); it is still a reachability forest. Second, an insert
operation is written +E′ for some E′ ⊆ V × V , and we require that the update result
F +E′ := (V,E ∪E′, X) still satisfies the three requirements above (with the same degree
bound). In terms of the order < on children, when we remove edges, we take the restriction
of < in the expected way, and when we insert edges, we add each new child at an arbitrary
position in <. We then introduce ancestry to measure the impact of updates (analogously to
dependency size): the ancestry AF (v) of v ∈ V is the set of vertices of F that have a directed
path to v, and the ancestry AF (E′) for E′ ⊆ V × V is

⋃
(v,w)∈E′ AF (v). We then have:

I Theorem 7.1. Given a reachability forest F , there is an enumeration algorithm with
linear-time preprocessing such that: (i.) given any v ∈ V , we can enumerate reach(v) with
constant delay and memory; (ii.) given an update ±E′, we can apply it (replacing F by
F ± E′ and updating the index) with update time in O(AF (E′)).

Note how we can insert (or delete) many edges at the same time, paying only once the
price AF (E′): this point is used in the proof of Theorem 5.4 to bound the total cost of each
update on the circuit. We sketch the proof of Theorem 7.1 in the rest of this section.

Construction for Theorem 7.1. Our index structure follows the one used to prove Propo-
sition F.4 of [3]: it maps every v ∈ V to a pointer firstF (v) and a pointer lastF (v), called the
first and last pointer ; and maps every exit v ∈ X to a pointer nextF (v) called the next pointer.
These pointers are defined using the order <′ given by a preorder traversal of F following <.
Specifically, firstF (v) is the first exit v′ ∈ reachF (v) according to <′, and lastF (v) is the last
such exit; if reachF (v) = ∅ then both pointers are null. Now, nextF (v) for v ∈ X is the exit
v′ ∈ X in the tree of v which is the successor of v according to <′; if v is the last exit of its
tree, then nextF (v) is null. If we know these pointers, we can enumerate reachF (v) for any
v ∈ V with constant delay and memory as in [3]: if firstF (v) is null then there is nothing to
enumerate, otherwise start at v− := firstF (v), memorize v+ := lastF (v), and enumerate the
reachable exits following the next pointers from v− until reaching v+. Hence, to conclude
the proof of Theorem 7.1, it suffices to compute and update these pointers efficiently:

I Lemma 7.2. Given a reachability forest F , we can compute the first, last, and next pointers
of all vertices in time O(|F |). Further, for any update ±E′, we can apply it and update the
pointers in time O(AF (E′)).

Proof sketch. The first and last pointers are computed bottom-up in linear time: for a leaf v,
they either point to v if v ∈ X or to null otherwise; for an internal vertex v, we set firstF (v)
as firstF (v′) for the smallest child v′ of v in the order <′ with a non-null first pointer (or null
if all first pointers of children are null), and we set lastF (v) analogously, using the last pointer
of the largest child of v in the order <′ for which the last pointer is non-null. Further, given
an update ±E′, the first and last pointers need only to be updated in AF (E′), and we can
recompute them there with the same bottom-up scheme.

The next pointers are also computed bottom-up in linear time: at each internal vertex v,
we go over its children and stitch together the sequences of next pointers of their subtrees.
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Specifically, when lastF (v1) is not null for a child v1, we find the next child v2 for which
firstF (v2) is not null, and set nextF (lastF (v1)) := firstF (v2). Again, for an update ±E′, we
recompute the next pointers by processing AF (E′) bottom-up in a similar fashion. J

8 Applications

We have finished the proof of our main result (Theorem 3.1), and now explain how it applies
to query languages motivated by applications. Specifically, we show how to extend our
techniques to support aggregate queries in arbitrary semirings, following the ideas of semiring
provenance [21] and provenance circuits [17]. We then extend this to group-by queries, and
last explain how updates are useful to support parameterized queries. Throughout this section,
unlike the rest of the paper, we only study MSO queries with free first-order variables.

Aggregate queries. We will describe aggregation operators using a general structure called
a semiring (always assumed to be commutative). It consists of a set K (finite or infinite),
two binary operations ⊕ and ⊗, and distinguished elements 0K , 1K ∈ K. We require that
(K,⊕) and (K,⊗) are commutative monoids with neutral elements respectively 0K and 1K ;
that ⊗ distributes over ⊕, and that 0K is absorptive for ⊗, i.e., 0K ⊗ a = 0K for all a ∈ K.
We always assume that evaluating ⊕ or ⊗ take constant time, and that elements from K take
constant space. Examples of semirings include the natural numbers N with usual addition
and product (assumed to take unit time in the RAM model); or the security semiring [20],
the tropical semiring [17], etc. Note that sets of assignments with union and relational
product are also a semiring, but one that does not satisfy our constant-space assumption.

To define aggregation in a semiring K on a tree T , we consider a mapping ρ : T → K

giving a value in K to each node. We extend ρ to tuples b of T by setting ρ(b) :=
⊗

n∈b ρ(n);
to assignments A on some first-order variable set x by setting ρ(A) :=

⊗
〈xi:n〉∈A ρ(n); and to

sets S of assignments by setting ρ(S) :=
⊕

A∈S ρ(A). An aggregate query on Γ-trees consists
of a semiring K (satisfying our assumptions) and of a MSO query Q(x) on Γ-trees. Given a
Γ-tree T and a mapping ρ : T → K, the aggregate output Qρ(T ) of Q on T under ρ is ρ(Q(T )),
where Q(T ) is the output of Q on T as we studied so far, i.e., the set of assignments A such
that T |= Q(A). Aggregate MSO queries on trees were already studied, e.g., by Arnborg and
Lagergren [7], but our techniques allow us to handle updates:

I Theorem 8.1. For any aggregate query Q(x) on Γ-trees with semiring K, given a Γ-tree T
and mapping ρ : T → K, we can compute Qρ(T ) in time O(|T |), and recompute it in time
O(log |T |) after any update that relabels a node of T or that changes ρ(n) for a node n of T .

Proof sketch. We adapt hybrid circuits by replacing set-valued gates by K-valued gates.
Now, the set Sν(g) captured by a gate g under a Boolean valuation ν is an element of K,
so we can simplify our linear-time preprocessing by making ων compute exactly Sν(g) for
each gate g. We can then handle updates to ν as before, and handle updates to ρ by
recomputing ων bottom-up. All of this still relies on the balancing lemma (Lemma 4.3). J

One important application of this result is maintaining the number of query answers
under updates, a question left open by [24]. We answer the question for relabeling updates
(and in the set semantics), using the semiring N and mapping each node to 1 with ρ:

I Corollary 8.2. For any MSO query Q(x) on Γ-trees, given a Γ-tree T , we can compute the
number |Q(T )| of answers of Q on T in time O(|T |), and we can update it in time O(log |T |)
after a relabeling of T .
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However, we can also use Theorem 8.1 for more complex aggregation semirings:

I Example 8.3. Let Γ = {A,B}, let Q(x) be a MSO query with one variable that selects
some tree nodes (e.g., select the B-labeled nodes which are descendants of some A-labeled
node), let (T, λ) be a Γ-tree, and let χ be a function that maps each node of T to an element
of the set D of floating-point numbers (with fixed precision). We can compute in linear time
the average of χ(n) for the nodes n such that T |= Q(n), and update it in logarithmic time
when relabeling a node of T or changing a value of χ. This follows from Theorem 8.1: we use
the semiring of pairs in N× D and the mapping ρ : n 7→ (1, χ(n)) to compute and maintain
the number of selected nodes and the sum of their χ-images, from which we can deduce the
average in constant time.

Group-by. We have adapted our techniques to show results for aggregate queries under
updates. However, supporting updates is also useful for group-by queries. A group-by query
consists of a MSO query Q(x,y) on Γ-trees with two tuples of first-order variables, and of a
semiring K. A group on a Γ-tree T is a set of tuples G(b) := {(b, c) | T |= Q(b, c)} for some
tuple b of nodes of T . The output Qρ(T ) of Q on T under a mapping ρ : T → K contains
one pair (b, ρ(G(b))) for each tuple b such that G(b) is non-empty.

I Example 8.4. Consider a MSO query Q(x, y) and the semiring N. The output of Q on a
Γ-tree T under a mapping ρ contains one pair per n ∈ T , annotated with the sum of ρ(n′) for
n′ ∈ T such that T |= Q(n, n′), where we exclude the nodes n for which the sum is empty.

I Theorem 8.5. For any group-by query Q(x,y) and semiring K, given a Γ-tree T and
ρ : T → K, we can enumerate Qρ(T ) with linear-time preprocessing and delay in O(log |T |)

Proof sketch. We use two enumeration structures. First, we prepare the structure of
Theorem 8.1 for Q(x,y) but writing the valuation of x as part of the tree label. Second, we
enumerate the non-empty groups with constant delay using Theorem 3.1 on ∃y Q(x,y). For
each tuple b in the output of the second structure, letting G(b) be the corresponding group,
we update the first structure to compute ρ(G(b)) in time O(log |T |). J

Parameterized queries. We conclude by presenting another kind of practical queries that
we can support thanks to updates. A parameterized MSO query Q(x,y) on Γ-trees has
two kinds of first-order variables, like group-by: we call x the parameters. The idea is that,
given a Γ-tree T , the user chooses a tuple b to instantiate the parameters x, and we must
enumerate efficiently the results of Q(b,y); however the user can change their mind and
modify b to change the value of the parameters. We know by Theorem 3.1 that we can
support these queries efficiently: after a linear-time preprocessing of T , we can enumerate the
results of Q(b,y) with constant delay; and we can react to changes to b in time O(log |T |)
by performing an update on the enumeration structure.

9 Conclusion

We have studied MSO queries on trees under relabeling updates, and shown how to enumerate
their answers with linear-time preprocessing, delay and memory linear in each valuation,
and update time logarithmic in the input tree. We have shown this by extending our circuit-
based approach [4] to hybrid circuits, and we have deduced consequences for practical query
languages, in particular for efficient aggregation. Our results have another technical property
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that we have not presented in the main text: like those of [24], they are also tractable in the
size of the query when representing it as a deterministic automaton.

The main direction for future work would be to extend our result to support insertions and
deletions of leaves, like [24], hopefully preserving our improved bounds: while deletions can
be emulated with relabelings, insertions are trickier. Such a result was very recently shown
in [25] for the case of words rather than trees. We believe that many of our constructions on
trees should adapt to insertions and deletions. The main challenge is to extend Lemma 4.3,
which we believe to be an interesting question in its own right: the technique of [10] may be
applicable here, although it would lead to an O(log2 n) update time.
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