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Abstract
We investigate the expressive power of MATLANG, a formal language for matrix manipulation
based on common matrix operations and linear algebra. The language can be extended with the
operation inv of inverting a matrix. In MATLANG + inv we can compute the transitive closure of
directed graphs, whereas we show that this is not possible without inversion. Indeed we show that
the basic language can be simulated in the relational algebra with arithmetic operations, grouping,
and summation. We also consider an operation eigen for diagonalizing a matrix, which is defined
so that different eigenvectors returned for a same eigenvalue are orthogonal. We show that inv can
be expressed in MATLANG+ eigen. We put forward the open question whether there are boolean
queries about matrices, or generic queries about graphs, expressible in MATLANG + eigen but
not in MATLANG + inv. The evaluation problem for MATLANG + eigen is shown to be complete
for the complexity class ∃R.
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1 Introduction

Data scientists often use matrices to represent their data, as opposed to using the relational
data model. These matrices are then manipulated in programming languages such as R or
MATLAB. These languages have common operations on matrices built-in, notably matrix
multiplication; matrix transposition; elementwise operations on the entries of matrices; solving
nonsingular systems of linear equations (matrix inversion); and diagonalization (eigenvalues
and eigenvectors). Such programming languages trace back to the APL language [20].
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Providing database support for matrices and multidimensional arrays has been a long-standing
research topic [31], originally geared towards applications in scientific data management, and
more recently motivated by machine learning over big data [5, 36, 8, 29].

Database theory and finite model theory provide a rich picture of the expressive power
of query languages [1, 24]. In this paper we would like to bring matrix languages into this
picture. There is a lot of current interest in languages that combine matrix operations
with relational query languages or logics, both in database systems [19] and in finite model
theory [10, 11, 18]. In the present study, however, we focus on matrices alone. Indeed, given
their popularity, we believe the expressive power of matrix sublanguages also deserves to be
understood in its own right.

The contents of this paper can be introduced as follows. We begin the paper by defining
the language MATLANG as an analog for matrices of the relational algebra for relations. This
language is based on five elementary operations reflecting basic matrix operations available
in R, namely, the one-vector; turning a vector in a diagonal matrix; matrix multiplication;
matrix transposition; and pointwise function application. We give examples showing that
this basic language is capable of expressing common matrix manipulations. For example, the
Google matrix of any directed graph G can be computed in MATLANG, starting from the
adjacency matrix of G.

Well-typedness and well-definedness notions of MATLANG expressions are captured via
a simple data model for matrices. In analogy to the relational model, a schema consists of
a number of matrix names, and an instance assigns matrices to the names. Recall that in
a relational schema, a relation name is typed by a set of attribute symbols. In our case, a
matrix name is typed by a pair α× β, where α and β are size symbols that indicate, in a
generic manner, the number of rows and columns of the matrix.

In Section 3 we show that our language can be simulated in the relational algebra with
aggregates [23, 28], using a standard representation of matrices as relations. The only
aggregate function that is needed is summation. In fact, MATLANG is already subsumed by
aggregate logic with only three nonnumerical variables. Conversely, MATLANG can express
all queries from graph databases (binary relational structures) to binary relations that can
be expressed in first-order logic with three variables. In contrast, the four-variable query
asking if the graph contains a four-clique, is not expressible.

In Section 4 we extend MATLANG with an operation for inverting a matrix, and we
show that the extended language is strictly more expressive. Indeed, the transitive closure
of binary relations becomes expressible. The possibility of reducing transitive closure to
matrix inversion has been pointed out by several researchers [26, 9, 33]. We show that the
restricted setting of MATLANG suffices for this reduction to work. That transitive closure
is not expressible without inversion, follows from the locality of relational algebra with
aggregates [28].

Another prominent operation of linear algebra, with many applications in data mining
and graph analysis [16, 27], is to return eigenvectors and eigenvalues. There are various ways
to define this operator formally. In Section 5 we define the operation eigen to return a basis
of eigenvectors, in which eigenvectors for a same eigenvalue are orthogonal. We show that
the resulting language MATLANG + eigen can express inversion. The argument is well known
from linear algebra, but our result shows that it can be carried out in MATLANG, once more
attesting that we have defined an adequate matrix language. It is natural to conjecture that
MATLANG + eigen is actually strictly more powerful than MATLANG + inv in expressing, say,
boolean queries about matrices. Proving this is an interesting open problem.
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Finally, in Section 6 we look into the evaluation problem for MATLANG+eigen expressions.
In practice, matrix computations are performed using techniques from numerical mathemat-
ics [14]. It remains of foundational interest, however, to know whether the evaluation of
expressions is effectively computable. We need to define this problem with some care, since we
work with arbitrary complex numbers. Even if the inputs are, say, 0-1 matrices, the outputs of
the eigen operation can be complex numbers. Moreover, until now we have allowed arbitrary
pointwise functions, which we should restrict somehow if we want to discuss computability.
Our approach is to restrict pointwise functions to be semi-algebraic, i.e., definable over the
real numbers. We will observe that the input-output relation of an expression e, applied to
input matrices of given dimensions, is definable in the existential theory of the real numbers,
by a formula of size polynomial in the size of e and the given dimensions. This places
natural decision versions of the evaluation problem for MATLANG + eigen in the complexity
class ∃R (combined complexity). We show moreover that there exists a fixed expression
(data complexity) for which the evaluation problem is ∃R-complete, even restricted to input
matrices with integer entries. It also follows that equivalence of expressions, over inputs of
given dimensions, is decidable.

2 MATLANG

We assume a sufficient supply of matrix variables, which serve to indicate the inputs to
expressions in MATLANG. Variables can also be introduced in let-constructs inside expressions.
The syntax of MATLANG expressions is defined by the grammar:

e ::= M (matrix variable)
| let M = e1 in e2 (local binding)
| e∗ (conjugate transpose)
| 1(e) (one-vector)
| diag(e) (diagonalization of a vector)
| e1 · e2 (matrix multiplication)
| apply[f ](e1, . . . , en) (pointwise application, f ∈ Ω)

In the last rule, f is the name of a function f : Cn → C, where C denotes the complex
numbers. Formally, the syntax of MATLANG is parameterized by a repertoire Ω of such
functions, but for simplicity we will not reflect this in the notation.

I Example 1. Let c ∈ C be a constant; we also use c as a name for the constant function
c : C→ C : z 7→ c. Then

let N = 1(M)∗ in apply[c](1(N))

is an example of an expression. At this point, this is a purely syntactical example; we will
see its semantics shortly. The expression is actually equivalent to apply[c](1(1(M)∗)). The
let-construct is useful to give names to intermediate results, but is not essential for now. It
will become essential later, when we enrich MATLANG with the eigen operation. J

In defining the semantics of the language, we begin by defining the basic matrix operations.
Following practical matrix sublanguages such as R or MATLAB, we will work throughout
with matrices over the complex numbers. However, a real-number version of the language
could be defined as well.
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 0 1 + i

2 3− i
4 + 4i 5

∗ =
(

0 2 4− 4i
1− i 3 + i 5

)
1
(

2 3 4
4 5 6

)
=
(

1
1

)
1 2

3 4
5 6

 · (6 5 4 3
2 1 0 −1

)
=

10 7 4 1
26 19 12 5
42 31 20 9

 diag
(

6
7

)
=
(

6 0
0 7

)

apply[−̇](

1 1 1
0 1 1
0 0 0

 ,

0 0 1
0 1 0
1 0 1

) =

1 1 0
0 0 1
0 0 0


Figure 1 Basic matrix operations of MATLANG. The matrix multiplication example is taken

from Axler’s book [3].

Transpose: If A is a matrix then A∗ is its conjugate transpose. So, if A is an m× n matrix
then A∗ is an n×m matrix and the entry A∗i,j is the complex conjugate of the entry Aj,i.

One-vector: If A is an m× n matrix then 1(A) is the m× 1 column vector consisting of all
ones.

Diag: If v is an m× 1 column vector then diag(v) is the m×m diagonal square matrix with
v on the diagonal and zero everywhere else.

Matrix multiplication: If A is an m×n matrix and B is an n×p matrix then the well known
matrix multiplicationAB is defined to be them×pmatrix where (AB)i,j =

∑n
k=1 Ai,kBk,j .

In MATLANG we explicitly denote this as A ·B.
Pointwise application: If A(1), . . . , A(n) are matrices of the same dimensions m × p, then

apply[f ](A(1), . . . , A(n)) is the m× p matrix C where Ci,j = f(A(1)
i,j , . . . , A

(n)
i,j ).

I Example 2. The operations are illustrated in Figure 1. In the pointwise application
example, we use the function −̇ defined by x −̇ y = x− y if x and y are both real numbers
and x ≥ y, and x −̇ y = 0 otherwise.

2.1 Formal semantics
The formal semantics of expressions is defined in a straightforward manner, as shown in
Figure 2. An instance I is a function, defined on a nonempty finite set var(I) of matrix
variables, that assigns a matrix to each element of var(I). Figure 2 provides the rules that
allow to derive that an expression e, on an instance I, successfully evaluates to a matrix A.
We denote this success by e(I) = A. The reason why an evaluation may not succeed can
be found in the rules that have a condition attached to them. The rule for variables fails
when an instance simply does not provide a value for some input variable. The rules for diag,
apply, and matrix multiplication have conditions on the dimensions of matrices, that need to
be satisfied for the operations to be well-defined.

I Example 3 (Scalars). The expression from Example 1, regardless of the matrix assigned
to M , evaluates to the 1× 1 matrix whose single entry equals c. We introduce the shorthand
c for this constant expression. Obviously, in practice, scalars would be built in the language
and would not be computed in such a roundabout manner. In this paper, however, we
are interested in expressiveness, so we start from a minimal language and then see what is
already expressible in this language.
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M ∈ var(I)
M(I) = I(M)

e1(I) = A e2(I[M := A]) = B

(let M = e1 in e2)(I) = B

e(I) = A

e∗(I) = A∗
e(I) = A

1(e)(I) = 1(A)

e(I) = A A is a column vector
diag(e)(I) = diag(A)

e1(I) = A e2(I) = B number of columns of A equals the number of rows of B
e1 · e2(I) = A ·B

∀k = 1, . . . , n : (ek(I) = Ak) all Ak have the same dimensions
apply[f ](e1, . . . , en)(I) = apply[f ](A1, . . . , An)

Figure 2 Big-step operational semantics of MATLANG. The notation I[M := A] denotes the
instance that is equal to I, except that M is mapped to the matrix A.

I Example 4 (Scalar multiplication). Let A be any matrix and let C be a 1× 1 matrix; let c
be the value of C’s single entry. Viewing C as a scalar, we define the operation C � A as
multiplying every entry of A by c. We can express C �A as

let M = 1(A) · C · 1(A∗)∗ in apply[×](M,A).

If A is an m × n matrix, we compute in variable M the m × n matrix where every entry
equals c. Then pointwise multiplication is used to do the scalar multiplication.

I Example 5 (Google matrix). Let A be the adjacency matrix of a directed graph (modeling
the Web graph) on n nodes numbered 1, . . . , n. Let 0 < d < 1 be a fixed “damping factor”.
Let ki denote the outdegree of node i. For simplicity, we assume ki is nonzero for every i.
Then the Google matrix [7, 6] of A is the n× n matrix G defined by

Gi,j = d
Aij

ki
+ 1− d

n
.

The calculation of G from A can be expressed in MATLANG as follows:

let J = 1(A) · 1(A)∗ in
let K = A · J in
let B = apply[/](A,K) in
let N = 1(A)∗ · 1(A) in
apply[+](d�B, (1− d)� apply[1/x](N)� J)

In variable J we compute the n× n matrix where every entry equals one. In K we compute
the n×n matrix where all entries in the ith row equal ki. In N we compute the 1× 1 matrix
containing the value n. The pointwise functions applied are addition, division, and reciprocal.
We use the shorthand for constants (d and 1− d) from Example 3, and the shorthand � for
scalar multiplication from Example 4.

ICDT 2018
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I Example 6 (Minimum of a vector). Let v = (v1, . . . , vn)∗ be a column vector of real
numbers; we would like to extract the minimum from v. This can be done as follows:

let V = v · 1(v)∗ in
let C = apply[≤](V, V ∗) · 1(v) in
let N = 1(v)∗ · 1(v) in
let S = apply[=](C,1(v) ·N) in
let M = apply[1/x](S∗ · 1(v)) in
M · v∗ · S

The pointwise functions applied are ≤, which returns 1 on (x, y) if x ≤ y and 0 otherwise; =,
defined analogously; and the reciprocal function. In variable V we compute a square matrix
holding n copies of v. Then in variable C we compute the n × 1 column vector where Ci

counts the number of vj such that vi ≤ vj . If Ci = n then vi equals the minimum. Variable
N computes the scalar n and column vector S is a selector where Si = 1 if vi equals the
minimum, and Si = 0 otherwise. Since the minimum may appear multiple times in v, we
compute in M the inverse of the multiplicity. Finally we sum the different occurrences of the
minimum in v and divide by the multiplicity.

2.2 Types and schemas
We have already remarked that, due to conditions on the dimensions of matrices, MATLANG
expressions are not well-defined on all instances. For example, if I is an instance where
I(M) is a 3× 4 matrix and I(N) is a 2× 4 matrix, then the expression M ·N is not defined
on I. The expression M · N∗, however, is well-defined on I. We now introduce a notion
of schema, which assigns types to matrix names, so that expressions can be type-checked
against schemas.

Our types need to be able to guarantee equalities between numbers of rows or numbers
of columns, so that apply and matrix multiplication can be typechecked. Our types also need
to be able to recognize vectors, so that diag can be typechecked.

Formally, we assume a sufficient supply of size symbols, which we will denote by the letters
α, β, γ. A size symbol represents the number of rows or columns of a matrix. Together with
an explicit 1, we can indicate arbitrary matrices as α× β, square matrices as α× α, column
vectors as α× 1, row vectors as 1× α, and scalars as 1× 1. Formally, a size term is either a
size symbol or an explicit 1. A type is then an expression of the form s1 × s2 where s1 and
s2 are size terms. Finally, a schema S is a function, defined on a nonempty finite set var(S)
of matrix variables, that assigns a type to each element of var(S).

The typechecking of expressions is now shown in Figure 3. The figure provides the rules
that allow to infer an output type τ for an expression e over a schema S. To indicate that a
type can be successfully inferred, we use the notation S ` e : τ . When we cannot infer a type,
we say e is not well-typed over S. For example, when S(M) = α × β and S(N) = γ × β,
then the expression M · N is not well-typed over S. The expression M · N∗, however, is
well-typed with output type α× γ.

To establish the soundness of the type system, we need a notion of conformance of an
instance to a schema.

Formally, a size assignment σ is a function from size symbols to positive natural numbers.
We extend σ to any size term by setting σ(1) = 1. Now, let S be a schema and I an instance
with var(I) = var(S). We say that I is an instance of S if there is a size assignment σ such
that for all M ∈ var(S), if S(M) = s1 × s2, then I(M) is a σ(s1) × σ(s2) matrix. In that
case we also say that I conforms to S by the size assignment σ.
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M ∈ var(S)
S `M : S(M)

S ` e1 : τ1 S[M := τ1] ` e2 : τ2

S ` let M = e1 in e2 : τ2

S ` e : s1 × s2

S ` e∗ : s2 × s1

S ` e : s1 × s2

S ` 1(e) : s1 × 1
S ` e : s× 1

S ` diag(e) : s× s
S ` e1 : s1 × s2 S ` e2 : s2 × s3

S ` e1 · e2 : s1 × s3

n > 0 f : Cn → C ∀k = 1, . . . , n : (S ` ek : τ)
S ` apply[f ](e1, . . . , en) : τ

Figure 3 Typechecking MATLANG. The notation S[M := τ ] denotes the schema that is equal to
S, except that M is mapped to the type τ .

We now obtain the following obvious but desirable property.

I Proposition 7 (Safety). If S ` e : s1 × s2, then for every instance I conforming to S, by
size assignment σ, the matrix e(I) is well-defined and has dimensions σ(s1)× σ(s2).

3 Expressive power of MATLANG

It is natural to represent an m× n matrix A by a ternary relation

Rel2(A) := {(i, j, Ai,j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}.

In the special case where A is an m× 1 matrix (column vector), A can also be represented
by a binary relation Rel1(A) := {(i, Ai,1) | i ∈ {1, . . . ,m}}. Similarly, a 1× n matrix (row
vector) A can be represented by Rel1(A) := {(j, A1,j) | j ∈ {1, . . . , n}}. Finally, a 1 × 1
matrix (scalar) A can be represented by the unary singleton relation Rel0(A) := {(A1,1)}.

Note that in MATLANG, we perform calculations on matrix entries, but not on row or
column indices. This fits well to the relational model with aggregates as formalized by
Libkin [28]. In this model, the columns of relations are typed as “base”, indicated by b, or
“numerical”, indicated by n. In the relational representations of matrices presented above,
the last column is of type n and the other columns (if any) are of type b. In particular, in
our setting, numerical columns hold complex numbers.

Given this representation of matrices by relations, MATLANG can be simulated in the
relational algebra with aggregates. Actually, the only aggregate operation we need is
summation. We will not reproduce the formal definition of the relational algebra with
summation [28], but note the following salient points:

Expressions are built up from relation names using the classical operations union, set dif-
ference, cartesian product (×), selection (σ), and projection (π), plus two new operations:
function application and summation.
For selection, we only use equality and nonequality comparisons on base columns. No
selection on numerical columns will be needed in our setting.
For any function f : Cn → C, the operation apply[f ; i1, . . . , in] can be applied to any
relation r having columns i1, . . . , in, which must be numerical. The result is the relation
{(t, f(t(i1), . . . , t(in))) | t ∈ r}, appending a numerical column to r. We allow n = 0, in
which case f is a constant.

ICDT 2018
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The operation sum[i; i1, . . . , in] can be applied to any relation r having columns i, i1, . . . ,
in, where column i must be numerical. In our setting we only need the operation in cases
where columns i1, . . . , in are base columns. The result of the operation is the relation

{(t(i1), . . . , t(in),
∑

t′∈group[i1,...,in](r,t)

t′(i)) | t ∈ r},

where

group[i1, . . . , in](r, t) = {t′ ∈ r | t′(i1) = t(i1) ∧ · · · ∧ t′(in) = t(in)}.

Again, n can be zero, in which case the result is a singleton.

3.1 From MATLANG to relational algebra with summation
To state the translation formally, we assume a supply of relation variables, which, for
convenience, we can take to be the same as the matrix variables. A relation type is a tuple of
b’s and n’s. A relational schema S is a function, defined on a nonempty finite set var(S) of
relation variables, that assigns a relation type to each element of var(S).

One can define well-typedness for expressions in the relation algebra with summation, and
define the output type. We omit this definition here, as it follows a well-known methodology
[37] and is analogous to what we have already done for MATLANG in Section 2.2.

To define relational instances, we assume a countably infinite universe dom of abstract
atomic data elements. It is convenient to assume that the natural numbers are contained
in dom. We stress that this assumption is not essential but simplifies the presentation.
Alternatively, we would have to work with explicit embeddings from the natural numbers
into dom.

Let τ be a relation type. A tuple of type τ is a tuple (t(1), . . . , t(n)) of the same arity
as τ , such that t(i) ∈ dom when τ(i) = b, and t(i) is a complex number when τ(i) = n. A
relation of type τ is a finite set of tuples of type τ . An instance of a relational schema S is a
function I defined on var(S) so that I(R) is a relation of type S(R) for every R ∈ var(S).

We must connect the matrix data model to the relational data model. Let τ = s1 × s2 be
a matrix type. Let us call τ a general type if s1 and s2 are both size symbols; a vector type
if s1 is a size symbol and s2 is 1, or vice versa; and the scalar type if τ is 1× 1. To every
matrix type τ we associate a relation type

Rel(τ) :=


(b,b,n) if τ is general;
(b,n) if τ is a vector type;
(n) if τ is scalar.

Then to every matrix schema S we associate the relational schema Rel(S) where Rel(S)(M) =
Rel(S(M)) for every M ∈ var(S). For each instance I of S, we define the instance Rel(I)
over Rel(S) by

Rel(I)(M) =


Rel2(I(M)) if S(M) is a general type;
Rel1(I(M)) if S(M) is a vector type;
Rel0(I(M)) if S(M) is the scalar type.

Here we use the relational representations Rel2, Rel1 and Rel0 of matrices introduced in the
beginning of Section 3.
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I Theorem 8. Let S be a matrix schema, and let e be a MATLANG expression that is
well-typed over S with output type τ . Let ` = 2, 1, or 0, depending on whether τ is general,
a vector type, or scalar, respectively.
1. There exists an expression Rel(e) in the relational algebra with summation, that is well-

typed over Rel(S) with output type Rel(τ), such that for every instance I of S, we have
Rel`(e(I)) = Rel(e)(Rel(I)).

2. The expression Rel(e) uses neither set difference, nor selection conditions on numerical
columns.

3. The only functions used in Rel(e) are those used in pointwise applications in e; complex
conjugation; multiplication of two numbers; and the constant functions 0 and 1.

Proof. We only give a few representative examples.
If M is of type α × β then Rel(M∗) is apply[z; 3]π2,1,3(M), where z is the complex
conjugate. If M is of type α× 1, however, Rel(M∗) is apply[z; 2](M).
IfM is of type 1×α then Rel(1(M)) is π3(apply[1; 2](M)). Here, 1 stands for the constant
1 function.
If M is of type α× 1 then Rel(diag(M)) is

σ$1=$2(π1(M)×M) ∪ apply[0; ]σ$1 6=$2(π1(M)× π1(M)).

If M is of type α× β and N is of type β × γ, then Rel(M ·N) is

sum[7; 1, 5] apply[×; 3, 6]σ$2=$4(M ×N).

If, however, M is of type α× 1 and N is of type 1× 1, then Rel(M ·N) is

π1,4 apply[×; 2, 3](M ×N).

We use pointwise multiplication.
IfM and N are of type 1×β then Rel(apply[f ](M,N)) is π1,5 apply[f ; 2, 4]σ$1=$3(M×N).

We may ignore the let-construct as it does not add expressive power. J

I Remark. The different treatment of general types, vector types, and scalar types is necessary
because in our version of the relational algebra, selections can only compare base columns
for equality; in particular we can not select for the value 1.
I Remark. We can sharpen the above theorem a bit if we work in the relational calculus
with aggregates. Every MATLANG expression can already be expressed by a formula in the
relational calculus with summation that uses only three distinct base variables (variables
ranging over values in base columns).

3.2 Expressing graph queries
So far we have looked at expressing matrix queries in terms of relational queries. It is also
natural to express relational queries as matrix queries. This works best for binary relations,
or graphs, which we can represent by their adjacency matrices.

Formally, define a graph schema to be a relational schema where every relation variable is
assigned the type (b,b) of arity two. We define a graph instance as an instance I of a graph
schema, where the active domain of I equals {1, . . . , n} for some positive natural number
n. The assumption that the active domain always equals an initial segment of the natural
numbers is convenient for forming the bridge to matrices. This assumption, however, is not
essential for our results to hold. Indeed, the logics we consider do not have any built-in

ICDT 2018



10:10 On the Expressive Power of Query Languages for Matrices

predicates on base variables, besides equality. Hence, they view the active domain elements
as abstract data values.

To every graph schema S we associate a matrix schema Mat(S), where Mat(S)(R) = α×α
for every R ∈ var(S), for a fixed size symbol α. So, all matrices are square matrices of
the same dimension. Let I be a graph instance of S, with active domain {1, . . . , n}. We
will denote the n × n adjacency matrix of a binary relation r over {1, . . . , n} by AdjI(r).
Now any such instance I is represented by the matrix instance Mat(I) over Mat(S), where
Mat(I)(R) = AdjI(I(R)) for every R ∈ var(S).

A graph query over a graph schema S is a function that maps each graph instance I of
S to a binary relation on the active domain of I. We say that a MATLANG expression e
expresses the graph query q if e is well-typed over Mat(S) with output type α× α, and for
every graph instance I of S, we have AdjI(q(I)) = e(Mat(I)).

We can now give a partial converse to Theorem 8. We assume active-domain semantics
for first-order logic [1]. Please note that the following result deals only with pure first-order
logic, without aggregates or numerical columns.

I Theorem 9. Every graph query expressible in FO3 (first-order logic with equality, using
at most three distinct variables) is expressible in MATLANG. The only functions needed in
pointwise applications are boolean functions on {0, 1}, and testing if a number is positive.

We can complement the above theorem by showing that the quintessential first-order
query requiring four variables is not expressible.

I Proposition 10. The graph query over a single binary relation R that maps I to I(R)
if I(R) contains a four-clique, and to the empty relation otherwise, is not expressible in
MATLANG.

4 Matrix inversion

Matrix inversion (solving nonsingular systems of linear equations) is an ubiquitous operation
in data analysis. We can extend MATLANG with matrix inversion as follows. Let S be a
schema and e be an expression that is well-typed over S, with output type of the form α×α.
Then the expression e−1 is also well-typed over S, with the same output type α× α. The
semantics is defined as follows. For an instance I, if e(I) is an invertible matrix, then e−1(I)
is defined to be the inverse of e(I); otherwise, it is defined to be the zero square matrix
of the same dimensions as e(I). The extension of MATLANG with inversion is denoted by
MATLANG + inv.

I Example 11 (PageRank). Recall Example 5 where we computed the Google matrix of A. In
the process we already showed how to compute the n×n matrix B defined by Bi,j = Ai,j/ki,
and the scalar N holding the value n. So, in the following expression, we assume we already
have B and N . Let I be the n× n identity matrix, and let 1 denote the n× 1 column vector
consisting of all ones. The PageRank vector v of A can be computed as follows [12]:

v = 1− d
n

(I − dB)−11.

This calculation is readily expressed in MATLANG + inv as

(1− d)� apply[1/x](N)� apply[−](diag(1(A)), d�B)−1 · 1(A).
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I Example 12 (Transitive closure). We next show that the reflexive-transitive closure of a
binary relation is expressible in MATLANG + inv. Let A be the adjacency matrix of a binary
relation r on {1, . . . , n}. Let I be the n× n identity matrix, expressible as diag(1(A)). From
earlier examples we know how to compute the scalar 1× 1 matrix N holding the value n.
The matrix B = 1

n+1A has 1-norm strictly less than 1, so S =
∑∞

k=0 B
k converges, and is

equal to (I −B)−1 [14, Lemma 2.3.3]. Now (i, j) belongs to the reflexive-transitive closure of
r if and only if Si,j is nonzero. Thus, we can express the reflexive-transitive closure of r as

apply[ 6= 0]
(
apply[−](diag(1(A)), apply[1/(x+ 1)](N)�A)−1),

where x 6= 0 is 1 if x 6= 0 and 0 otherwise. We can obtain the transitive closure by multiplying
the above expression with A. J

By Theorem 8, any graph query expressible in MATLANG is expressible in the relational
algebra with aggregates. It is known [17, 28] that such queries are local. The transitive-closure
query from Example 12, however, is not local. We thus conclude:

I Theorem 13. MATLANG + inv is strictly more powerful than MATLANG in expressing
graph queries.

Once we have the transitive closure, we can do many other things such as checking
bipartiteness of undirected graphs, checking connectivity, checking cyclicity. MATLANG
is expressive enough to reduce these queries to the transitive-closure query, as shown in
the following example for bipartiteness. The same approach via FO3 can be used for
connectedness or cyclicity.

I Example 14 (Bipartiteness). To check bipartiteness of an undirected graph, given as a
symmetric binary relation R without self-loops, we first compute the transitive closure T of
the composition of R with itself. Then the FO3 condition ¬∃x∃y(R(x, y)∧T (y, x)) expresses
that R is bipartite (no odd cycles). The result now follows from Theorem 9.

I Example 15 (Number of connected components). Using transitive closure we can also easily
compute the number of connected components of a binary relation R on {1, . . . , n}, given as
an adjacency matrix. We start from the union of R and its converse. This union, denoted
by S, is expressible by Theorem 9. We then compute the reflexive-transitive closure C of S.
Now the number of connected components of R equals

∑n
i=1 1/ki, where ki is the degree of

node i in C. This sum is simply expressible as 1(C)∗ · apply[1/x](C · 1(C)).

5 Eigenvalues

Another workhorse in data analysis is diagonalizing a matrix, i.e., finding a basis of eigenvec-
tors. Formally, we define the operation eigen as follows. Let A be an n× n matrix. Recall
that A is called diagonalizable if there exists a basis of Cn consisting of eigenvectors of
A. In that case, there also exists such a basis where eigenvectors corresponding to a same
eigenvalue are orthogonal. Accordingly, we define eigen(A) to return an n× n matrix, the
columns of which form a basis of Cn consisting of eigenvectors of A, where eigenvectors
corresponding to a same eigenvalue are orthogonal. If A is not diagonalizable, we define
eigen(A) to be the n× n zero matrix.

Note that eigen is nondeterministic; in principle there are infinitely many possible results.
This models the situation in practice where numerical packages such as R or MATLAB return
approximations to the eigenvalues and a set of corresponding eigenvectors. Eigenvectors,
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however, are not unique. Hence, some care must be taken in extending MATLANG with
the eigen operator. Syntactically, as for inversion, whenever e is a well-typed expression
with a square output type, we now also allow the expression eigen(e), with the same output
type. Semantically, however, the rules of Figure 2 must be adapted so that they do not infer
statements of the form e(I) = B, but rather of the form B ∈ e(I), i.e., B is a possible result
of e(I). The let-construct now becomes crucial; it allows us to assign a possible result of
eigen to a new variable, and work with that intermediate result consistently.

In this and the next section, we assume notions from linear algebra. An excellent
introduction to the subject has been given by Axler [3].
I Remark (Eigenvalues). We can easily recover the eigenvalues from the eigenvectors, using
inversion. Indeed, if A is diagonalizable and B ∈ eigen(A), then Λ = B−1AB is a diagonal
matrix with all eigenvalues of A on the diagonal, so that the ith eigenvector in B corresponds
to the eigenvalue in the ith column of Λ. This is the well-known eigendecomposition. However,
the same can also be accomplished without using inversion. Indeed, suppose B = (v1, . . . , vn),
and let λi be the eigenvalue to which vi corresponds. Then AB = (λ1v1, . . . , λnvn). Each
eigenvector is nonzero, so we can divide away the entries from B in AB (setting division
by zero to zero). We thus obtain a matrix where the ith column consists of zeros or λi,
with at least one occurrence of λi. By counting multiplicities, dividing them out, and finally
summing, we obtain λ1, . . . , λn in a column vector. We can apply a final diag to get it back
into diagonal form. The MATLANG expression for doing all this uses similar tricks as those
shown in Examples 5 and 6. J

The above remark suggests a shorthand in MATLANG + eigen where we return both B
and Λ together:

let (B,Λ) = eigen(A) in . . .

This models how the eigen operation works in the languages R and MATLAB. We agree that
Λ, like B, is the zero matrix if A is not diagonalizable.

I Example 16 (Rank of a matrix). Since the rank of a diagonalizable matrix equals the
number of nonzero entries in its diagonal form, we can express the rank of a diagonalizable
matrix A as follows:

let (B,Λ) = eigen(A) in 1(A)∗ · apply[ 6= 0](Λ) · 1(A).

I Example 17 (Graph partitioning). A well-known heuristic for partitioning an undirected
graph without self-loops is based on an eigenvector corresponding to the second-smallest
eigenvalue of the Laplacian matrix [27]. The Laplacian L can be derived from the adjacency
matrix A as let D = diag(A ·1(A)) in apply[−](D,A). (Here D is the degree matrix.) Now let
(B,Λ) ∈ eigen(L). In an analogous way to Example 6, we can compute a matrix E, obtained
from Λ by replacing the occurrences of the second-smallest eigenvalue by 1 and all other
entries by 0. Then the eigenvectors corresponding to this eigenvalue can be isolated from B

(and the other eigenvectors zeroed out) by multiplying B · E. J

It turns out that MATLANG + inv is subsumed by MATLANG + eigen.

I Theorem 18. Matrix inversion is expressible in MATLANG + eigen.

A very interesting open problem is the following: Are there graph queries expressible
deterministically in MATLANG + eigen, but not in MATLANG + inv? This is an interesting
question for further research. The answer may depend on the functions that can be used in
pointwise applications.
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I Remark (Determinacy). The stipulation deterministically in the above open question is
important. Ideally, we use the nondeterministic eigen operation only as an intermediate
construct. It is an aid to achieve a powerful computation, but the final expression should have
only a single possible output on every input. The expression of Example 16 is deterministic
in this sense, as is the expression for inversion underlying the proof of Theorem 18.

6 The evaluation problem

The evaluation problem asks, given an input instance I and an expression e, to compute the
result e(I). There are some issues with this naive formulation, however. Indeed, in our theory
we have been working with arbitrary complex numbers. How do we even represent the input?
Notably, the eigen operation on a matrix with only rational entries may produce irrational
entries. In fact, the eigenvalues of an adjacency matrix (even of a tree) need not even be
definable in radicals [13]. Practical systems, of course, apply techniques from numerical
mathematics to compute rational approximations. But it is still theoretically interesting to
consider the exact evaluation problem.

Our approach is to represent the output symbolically, following the idea of constraint
query languages [21, 25]. Specifically, we can define the input-output relation of an expression,
for given dimensions of the input matrices, by an existential first-order logic formula over the
reals. Such formulas are built from real variables, integer constants, addition, multiplication,
equality, inequality (<), disjunction, conjunction, and existential quantification.

I Example 19. Consider the expression eigen(M) over the schema consisting of a single
matrix variable M . Any instance I where I(M) is an n × n matrix A can be represented
by a tuple of 2× n× n real numbers. Indeed, let ai,j = <Ai,j (the real part of a complex
number), and let bi,j = =Ai,j (the imaginary part). Then I(M) can be represented by
the tuple (a1,1, b1,1, a1,2, b1,2, . . . , an,n, bn,n). Similarly, any B ∈ eigen(A) can be represented
by a similar tuple. We introduce the variables xM,i,j,<, xM,i,j,=, yi,j,<, and yi,j,=, for
i, j ∈ {1, . . . , n}, where the x-variables describe an arbitrary input matrix and the y-variables
describe an arbitrary possible output matrix. Denoting the input matrix by [x̄] and the
output matrix by [ȳ], we can now write an existential formula expressing that [ȳ] is a possible
result of eigen applied to [x̄]:

To express that [ȳ] is a basis, we write that there exists a nonzero matrix [z̄] such that
[ȳ] · [z̄] is the identity matrix. It is straightforward to express this condition by a formula.
To express, for each column vector v of [ȳ], that v is an eigenvector of [x̄], we write that
there exists λ such that [x̄] · v = λ[x̄].
The final and most difficult condition to express is that distinct eigenvectors v and w
that correspond to a same eigenvalue are orthogonal. We cannot write ∃λ([x̄] · v =
λv ∧ [x̄] · w = λw) → v∗ · w = 0, as this is not a proper existential formula. (Note
though that the conjugate transpose of v is readily expressed.) Instead, we avoid an
explicit quantifier and replace the antecedent by the conjunction, over all positions i, of
vi 6= 0 6= wi → ([x̄] · v)i/vi = ([x̄] · w)i/wi.
A final detail is that we should also be able to express that [x̄] is not diagonalizable,
for in that case we need to define [ȳ] to be the zero matrix. Nondiagonalizability is
equivalent to the existence of a Jordan form with at least one 1 on the superdiagonal. We
can express this as follows. We postulate the existence of an invertible matrix [z̄] such
that the product [z̄] · [x̄] · [z̄]−1 has all entries zero, except those on the diagonal and the
superdiagonal. The entries on the superdiagonal can only by 0 or 1, with at least one 1.
Moreover, if an entry i, j on the superdiagonal is nonzero, the entries i, i and j, j must be
equal. J
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The approach taken in the above example leads to the following general result. The
operations of MATLANG are handled using similar ideas as illustrated above for the eigen
operation, and are actually easier. The let-construct, and the composition of subexpressions
into larger expression, are handled by existential quantification.

I Theorem 20. An input-sized expression consists of a schema S, an expression e in
MATLANG + eigen that is well-typed over S with output type t1 × t2, and a size assignment
σ defined on the size symbols occurring in S. There exists a polynomial-time computable
translation that maps any input-sized expression as above to an existential first-order formula
ψ over the vocabulary of the reals, expanded with symbols for the functions used in pointwise
applications in e, such that
1. Formula ψ has the following free variables:

For every M ∈ var(S), let S(M) = s1× s2. Then ψ has the free variables xM,i,j,< and
xM,i,j,=, for i = 1, . . . , σ(s1) and j = 1, . . . , σ(s2).
In addition, ψ has the free variables yi,j,< and yi,j,=, for i = 1, . . . , σ(t1) and j =
1, . . . , σ(t2).

The set of these free variables is denoted by FV(S, e, σ).
2. Any assignment ρ of real numbers to these variables specifies, through the x-variables, an

instance I conforming to S by σ, and through the y-variables, a σ(t1)× σ(t2) matrix B.
3. Formula ψ is true over the reals under such an assignment ρ, if and only if B ∈ e(I).

The existential theory of the reals is decidable; actually, the full first-order theory of
the reals is decidable [2, 4]. But, specifically the class of problems that can be reduced in
polynomial time to the existential theory of the reals forms a complexity class on its own,
known as ∃R [34, 35]. The above theorem implies that the partial evaluation problem for
MATLANG + eigen belongs to this complexity class. We define this problem as follows. The
idea is that an arbitrary specification, expressed as an existential formula χ over the reals,
can be imposed on the input-output relation of an input-sized expression.

I Definition 21. The partial evaluation problem is a decision problem that takes as input:
an input-sized expression (S, e, σ), where all functions used in pointwise applications are
explicitly defined using existential formulas over the reals;
an existential formula χ with free variables in FV(S, e, σ) (see Theorem 20).

The problem asks if there exists an instance I conforming to S by σ and a matrix B ∈ e(I)
such that (I,B) satisfies χ.

For example, χ may completely specify the matrices in I by giving the values of the entries
as rational numbers, and may express that the output matrix has at least one nonzero entry.

An input (S, e, σ, χ) is a yes-instance to the partial evaluation problem precisely when the
existential sentence ∃FV(S, e, σ)(ψ ∧ χ) is true in the reals, where ψ is the formula obtained
by Theorem 20. Hence we can conclude:

I Corollary 22. The partial evaluation problem for MATLANG + eigen belongs to ∃R.

Since the full theory of the reals is decidable, our theorem implies many other decidability
results. We give just two examples.

I Corollary 23. The equivalence problem for input-sized expressions is decidable. This
problem takes as input two input-sized expressions (S, e1, σ) and (S, e2, σ) (with the same S
and σ) and asks if for all instances I conforming to S by σ, we have B ∈ e1(I) ⇔ B ∈ e2(I).
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Note that the equivalence problem for MATLANG expressions on arbitrary instances (size not
fixed) is undecidable by Theorem 9, since equivalence of FO3 formulas over binary relational
vocabularies is undecidable [15].

I Corollary 24. The determinacy problem for input-sized expressions is decidable. This
problem takes as input an input-sized expression (S, e, σ) and asks if for every instance I
conforming to S by σ, there exists at most one B ∈ e(I).

Corollary 22 gives an ∃R upper bound on the combined complexity of query evaluation
[38]. Our final result is a matching lower bound, already for data complexity alone.

I Theorem 25. There exists a fixed schema S and a fixed expression e in MATLANG+ eigen,
well-typed over S, such that the following problem is hard for ∃R: Given an integer instance I
over S, decide whether the zero matrix is a possible result of e(I). The pointwise applications
in e use only simple functions definable by quantifier-free formulas over the reals.

I Remark (Complexity of deterministic expressions). Our proof of Theorem 25 relies on the
nondeterminism of the eigen operation. Coming back to our remark on determinacy at the
end of the previous section, it is an interesting question for further research to understand not
only the expressive power but also the complexity of the evaluation problem for deterministic
MATLANG + eigen expressions.

7 Conclusion

There is a commendable trend in contemporary database research to leverage, and considerably
extend, techniques from database query processing and optimization, to support large-scale
linear algebra computations. In principle, data scientists could then work directly in SQL or
related languages. Still, some users will prefer to continue using the matrix sublanguages
they are more familiar with. Supporting these languages is also important so that existing
code need not be rewritten.

From the perspective of database theory, it then becomes relevant to understand the
expressive power of these languages as well as possible. In this paper we have proposed a
framework for viewing matrix manipulation from the point of view of expressive power of
database query languages. Moreover, our results formally confirm that the basic set of matrix
operations offered by systems in practice, formalized here in the language MATLANG + inv +
eigen, really is adequate for expressing a range of linear algebra techniques and procedures.

In the paper we have already mentioned some intriguing questions for further research.
Deep inexpressibility results have been developed for logics with rank operators [30]. Although
these results are mainly concerned with finite fields, they might still provide valuable insight
in our open questions. Also, we have not covered all standard constructs from linear algebra.
For instance, it may be worthwhile to extend our framework with the operation of putting
matrices in upper triangular form, with the Gram-Schmidt procedure (which is now partly
hidden in the eigen operation), and with the singular value decomposition.

Finally, we note that various authors have proposed to go beyond matrices, introducing
data models and algebra for tensors or multidimensional arrays [31, 22, 32]. When moving to
more and more powerful and complicated languages, however, it becomes less clear at what
point we should simply move all the way to full SQL, or extensions of SQL with recursion.
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