
Rewriting Guarded Existential Rules into Small
Datalog Programs
Shqiponja Ahmetaj
TU Wien, Vienna, Austria

Magdalena Ortiz
TU Wien, Vienna, Austria

Mantas Šimkus
TU Wien, Vienna, Austria

Abstract
The goal of this paper is to understand the relative expressiveness of the query language in which
queries are specified by a set of guarded (disjunctive) tuple-generating dependencies (TGDs)
and an output (or ‘answer’) predicate. Our main result is to show that every such query can be
translated into a (disjunctive) Datalog program, which has polynomial size if the maximal number
of variables in the (disjunctive) TGDs is bounded by a constant. To overcome the challenge that
Datalog has no direct means to express the existential quantification present in TGDs, we define
a two-player game that characterizes the satisfaction of the dependencies, and design a Datalog
query that can decide the existence of a winning strategy for the game. For guarded disjunctive
TGDs, we can obtain Datalog rules with disjunction in the heads. However, the use of disjunction
is limited, and the resulting rules fall into a fragment that can be evaluated in deterministic single
exponential time. We proceed quite differently for the case when the TGDs are not disjunctive
and we show that we can obtain a plain Datalog query. Notably, unlike previous translations for
related fragments, our translation requires only polynomial time under the reasonable assumption
that the maximal number of variables in the (disjunctive) TGDs is bounded by a constant.

2012 ACM Subject Classification Theory of computation → Database query languages (prin-
ciples), Theory of computation → Logic and databases, Theory of computation → Incomplete,
inconsistent, and uncertain databases

Keywords and phrases Existential rules, Expressiveness, Query Rewriting

Digital Object Identifier 10.4230/LIPIcs.ICDT.2018.4

Acknowledgements This work was supported by the Austrian Science Fund (FWF) projects
P30360, P30873, and W1255.

1 Introduction

This paper contributes to the understanding of the relative expressiveness and succinctness of
tuple-generating dependencies (TGDs) [6] and their extension with disjunction (DTGDs) [11]
as query languages for possibly incomplete data. TGDs and DTGDs are families of existential
rules that play a crucial role as constraint languages for databases, especially in areas like
data exchange and data integration. In recent years, they have also gained popularity in
knowledge representation, where they are used as languages for writing ontologies, which can
enrich possibly incomplete extensional data with intensional domain knowledge that can be
leveraged at query time to obtain more complete and accurate answers.

When (D)TGDs are viewed as a query language for incomplete data, a query takes the
form Q = (Σ, q), where Σ is a set of DTGDs and q is a predicate. Q can be seen as a close

© Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Šimkus;
licensed under Creative Commons License CC-BY

21st International Conference on Database Theory (ICDT 2018).
Editors: Benny Kimelfeld and Yael Amsterdamer; Article No. 4; pp. 4:1–4:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Rewriting Guarded Existential Rules into Small Datalog Programs

relative of the ontology-mediated queries (OMQs) considered in the literature on Description
Logics (DLs) [25, 26, 1]. Given a database instance D, such a query asks to retrieve all tuples
of values that are present in the relation q, over all databases that contain D and satisfy
the dependencies in Σ. The corresponding query answering problem is only decidable if
suitable restrictions are imposed on Σ. Guardedness is one of the best known such restrictions.
Inspired by modal and first order logic [2], it yields a computationally robust family of TGDs
whose complexity is quite well understood [9].

The problem that we study is the rewritability into Datalog. That is, given such a query
Q = (Σ, q), we want to build from it a Datalog query (PQ, qQ) that has the same certain
answers over every input database instance over the signature of Σ. From the theoretical
perspective, this problem is important: the existence of such a rewriting in the general case,
and its size, allow us to understand the relative expressiveness and succinctness of guarded
(D)TGDs as a query language. It also has practical relevance. Rewriting into standard query
languages is considered one the most promising approaches to achieve scalability of expressive
query languages, by reusing existing optimized database technologies. In the field of ontology
mediated querying, for instance, rewritings have been a major research line for most of the
last decade. Even ‘impracticable’ rewritings developed only for theoretical purposes can lay
the groundwork for practical rewriting techniques, and shed light on their limits.

Our central result is a novel translation of such queries into ‘small’ Datalog programs.
Our translation is non-trivial because guarded DTGDs allow for existential quantification in
rule heads, while disjunctive Datalog (Datalog∨) does not support it. To overcome this
challenge, the paper employs a game-theoretic characterization of answers to guarded DTGD
queries. In particular, we tie the inclusion of a tuple in a query answer to the existence
of a winning strategy in a two-player game. The Datalog∨ query that results from the
translation aims to compute the answer to the input query by actually checking the existence
of such winning strategies.

The translation takes polynomial time in the size of Q, if we assume that the guarded
DTGDs only use a bounded number of variables. In particular, since our dependencies are
guarded, this applies to theories where the arities of predicates are bounded by a constant,
and no arbitrary conjunctions of atoms occur in the consequent of the dependencies. We
stress that this case, although apparently restrictive, is very relevant, since in practice the
arities of predicates are often not high, especially in settings that are tailored to deal with
incomplete information (e.g., standard DLs use at most binary predicate symbols). If the
number of variables per rule are not bounded, the translation is exponential in the size of
Q, which is unavoidable under common assumptions in complexity theory (see Section 6).
From the translation and the combined complexity of Datalog∨ queries, we can easily infer
a coNExpTime upper bound for answering guarded DTGD queries under the assumption of
bounded number of variables. However, we can do better: by analyzing the shape of the
Datalog∨ queries resulting from our translation, we conclude that the program can be
evaluated in deterministic exponential time in its size, which yields a new worst-case optimal
algorithm for answering guarded DTGD queries with bounded number of variables.

Finally, we show that when the dependencies in the query are expressed using non-
disjunctive guarded TGDs, we can provide a data-independent translation into plain Datalog
queries. Again, the translation takes only polynomial time, assuming bounded number of
variables. We note that translations into plain (resp., disjunctive) Datalog from guarded
TGDs (resp., guarded DTGDs) do exist in the literature (see Related Work), but their
techniques are quite different from ours, and more importantly, they are all exponential even
under bounded number of variables.

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:3

Related Work. In the database community, there is a considerable amount of works on query
rewritings for variants of guarded TGDs. For instance, it is known that when q is a (union of)
conjunctive queries (rather than a predicate), (Σ, q) can be rewritten into a plain Datalog
program, for Σ a set of guarded TGDs or more general classes of dependencies [3, 18]. For
guarded disjunctive TGDs and q a union of conjunctive queries, a disjunctive Datalog
rewriting can be found in [7]. The rewritings in [3, 18, 7] take exponential time, even if the
number of variables in each TGD is bounded by a constant. In [16], the authors provide a
translation into non-recursive Datalog for guarded TGDs, which is polynomial if the size of
the schema of the input theory is bounded, which is a significantly stronger restriction that
bounding the arity only. Moreover, this rewriting adopts a so-called combined approach that
modifies the data incorporating inferences from the TGDs. The same authors proposed in
[17] a rewriting into non-recursive Datalog queries of polynomial size for linear existential
rules, without bounding the schema, or the arity. We remark that, for the case of bounded
arity, this result follows from [19, 14]. The polynomial rewritings into non-recursive Datalog
in [19, 17, 14] assume that the data contains some fixed number of constants. Our rewritings
also use a few constants, which are supported by the Datalog variants we employ as target
query languages.

In the context of DLs, rewritability into traditional query languages of queries enriched
with an ontology is considered one of the most central questions. For instance, the DL-
Lite family of DLs is popular because they often support rewritability into first-order
(FO) queries [10]. In [23], the authors introduced the combined approach as a means to
obtain rewritings into FO queries for more expressive languages like EL. The authors of
[19] proposed a rewriting into non-recursive Datalog queries of polynomial size for the
prominent DL-LiteR. The succinctness problem of this and related FO rewritings has been
thoroughly investigated in [14]. For more expressive DLs and (unions of) conjunctive queries
(UCQs), which are often not FO-rewritable, there is a considerable amount of work on
rewritings into Datalog queries. The authors in [21] first showed that instance queries
in an expressive DL with disjunction can be rewritten into in a disjunctive Datalog a
program of exponential size. For variants of expressive DLs with disjunction and (U)CQs the
existence of exponential rewritings into disjunctive Datalog is known [7, 22]. The authors
of [27] propose a polynomial time Datalog translation of instance queries for an expressive
Horn-DL without disjunction. Some of the above rewritings lie at the core of implemented
systems, e.g., [28, 13, 29].

This paper is inspired by the technique in [1], where it was shown that instance queries
mediated by ontologies in the expressive Description Logic ALCHIO can be rewritten in
polynomial time into a Datalog∨ program. Guarded DTGDs can be seen as an ontology
language that is orthogonal to ALCHIO, which only supports unary and binary predicates
and has a rather restricted syntax, yet it features nominals (essentially, constants). The
guarded DTGDs considered here allow for predicates of arbitrary arities, but we disallow
constants. In general, the higher arities and the rather relaxed syntax of guarded DTGDs
makes the adaptation of the results in [1] highly non-trivial.

2 Preliminaries

General Technical Definitions. Let ∆c,∆n and ∆v be infinite mutually disjoint sets of
constants, labeled nulls, and variables, respectively. Elements in ∆c ∪∆n ∪∆v are terms.
If no confusion arises, we may abuse notation and write a tuple of terms in the place of
the set of its elements. An atom α is an expression of the form R(t1, . . . , tn), where R is a

ICDT 2018

4:4 Rewriting Guarded Existential Rules into Small Datalog Programs

predicate name with arity n, and t1, . . . , tn are terms. We let terms(α) = {t1, . . . , tn} and
vars(α) = terms(α) ∩∆v. If terms(α) ⊆ ∆c, then α is ground. For a set Γ of atoms, we let
terms(Γ) =

⋃
α∈Γ terms(α) and vars(Γ) = terms(Γ)∩∆v. An instance I is a (possibly infinite)

set of atoms with terms from ∆n ∪∆c. A database D is a finite instance with only ground
atoms. We denote with dom(I) the set of terms that occur in I. A substitution is a partial
function h from a set of symbols S to a set of symbols S′. We let h(~t) = (h(t1), . . . , h(tn))
for a tuple ~t, h(R(~t)) = R(h(~t)) for an atom R(~t), and h(Γ) = {h(R1(~t), . . . , h(Rn(~t))} for a
set of atoms Γ = {R1(~t), . . . , Rn(~t)}.

Disjunctive Tuple-Generating Dependencies. A disjunctive tuple-generating dependency
(DTGD) (a.k.a. disjunctive existential rule) σ is an expression of the form

∀~x(ϕ(~x)→
n∨
i=1
∃~yi.ψi(~x, ~yi)), (1)

where n ≥ 1, ~x, ~y1, . . . , ~yn ⊆ ∆v, and ϕ,ψ1 . . . ψn, are conjunctions of atoms with terms
from ∆v only. If n = 1, then σ is simply called a tuple-generating dependency (TGD) (a.k.a.
existential rule). For simplicity, we use a comma for conjoining atoms and we omit the
universal quantifiers in front of DTGDs. An instance I satisfies σ, denoted I |= σ, if for
every substitution h from the variables in ~x to dom(I) such that h(ϕ) ⊆ I there exists an
i ∈ [n] and a substitution h′ from the variables in vars(ψi) to dom(I) such that h′(ψi) ∈ I
and h′(x) = h(x) for all x ∈ ~x. We say σ is guarded if there exists an atom α in ϕ, called a
guard, such that ~x ⊆ vars(α). We refer the reader to [9] and [8] for more details on guarded
(D)TGDs.

A set Σ of (D)TGDs is called a theory. The schema of Σ, denoted by sch(Σ), is the set of
predicate names that appear in Σ, and for a set of atoms Γ, sch(Γ), is the set of all predicates
that occur in Γ. A theory is guarded if all its (D)TGDs are guarded. An instance I satisfies
a theory Σ, written I |= Σ, if I |= σ for each σ ∈ Σ. For theories Σ, Σ′, we say Σ entails Σ′,
written Σ |= Σ′, if for all instances I, I |= Σ implies I |= Σ′.

For a database D, we write I |= D if D ⊆ I. Given a database D and a theory Σ, a
model of (Σ, D) is an instance I, denoted I |= (Σ, D), such that I |= D and I |= Σ. Given
a ground atom α, we say α is entailed by Σ and D, written (Σ, D) |= α, if α ∈ I for every
model I of (Σ, D).

Queries. A query is a pair (Σ, q), where Σ is a theory and q is a predicate symbol. Given a
query (Σ, q) and a database D, we let

ans(Σ, q,D) = {~c ∈ (∆c)n | (Σ, D) |= q(~c)},

where n is the arity of q. We call ans(Σ, q,D) the (certain) answer to (Σ, q) over D.

Normal Form. To simplify some technical constructions, we focus on guarded DTGDs with
a restricted syntactic structure:

I Definition 1. (Normalized DTGDs) A theory Σ of DTGDs is in normal form if each σ ∈ Σ
is of one of the following forms:

B → ∃~y.H where B,H are atoms with terms from ∆v (2)

ϕ→
n∨
i=1

Hi where each Hi is an atom and ϕ is a set of atoms over terms in ∆v (3)

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:5

In other words, a normalized theory Σ of DTGDs consists of a set of TGDs with one atom
in the body and one atom in the head, and a set of guarded DTGDs without existentially
quantified variables. By means of fresh predicate names, a theory of guarded DTGDs can be
converted into the above normal form while preserving atom entailment (see, e.g., [18]). We
state this more precisely next.

I Proposition 2. Every query (Σ, q) can be transformed in polynomial time into a query
(Σ′, q) such that
(a) ans(Σ, q,D) = ans(Σ′, q,D) for every database D over sch(Σ);
(b) Σ′ is in normal form;
(c) if Σ is disjunctive guarded, then Σ′ is disjunctive guarded;
(d) if Σ has only guarded (non-disjunctive) TGDs, then Σ′ also has only TGDs.

Proof sketch. Assume a query (Σ, q). The idea is to replace every DTGD of the form (1)
that appears in Σ by

the DTGD ∀~x(ϕ(~x)→
∨n
i=1 Fi(~xi)), were ~xi is a list of variables from ~x that appear in

ψi(~x, ~yi), and each Fi is a fresh predicate symbol with arity |~xi|,
for all 1≤ i≤n, the TGD ∀~xi(Fi(~xi) → ∃~yi.F ′i (~xi, ~yi)), where F ′i is a fresh predicate
name of arity |~xi|+ |~yi|, and
for all 1≤ i≤n and each atom H in ψi(~x, ~yi), the TGD ∀~xi∀~yi(F ′i (~xi, ~yi)→ H).

The points (b), (c), and (d) follow easily. The point (a) holds because (Σ′, D) is a conservative
extension of (Σ, D) for any database D over sch(Σ). In particular, (i) any model of (Σ′, D)
is a model of (Σ, D), and (ii) every model of (Σ, D) that is over sch(Σ) can be extended
to a model of (Σ′, D) by properly populating the predicates Fi, F ′i introduced during the
normalization process. J

In the rest of the paper, we consider only normalized guarded theories Σ. We let Σ∃ and Σ∀
denote the guarded DTGDs of the form (2) and of the form (3) that appear in Σ, respectively.
The width of Σ, written width(Σ), is the maximal arity over the predicate in sch(Σ).

In the discussion below, and in particular in the complexity upper bounds, we often
refer to (normalized) theories with bounded width (or bounded predicate arity), in which
width(Σ) is bounded by a constant. We remark that the normalization process increases the
predicate arities (the Fi and F ′i may exceed the width of the original theory). The width
of a normalized theory, however, is bounded whenever there is only a bounded number of
variables in each DTGD. It is also bounded if the original theory (before normalization) has
bounded width, and in the consequent of DTGDs, ψi(~x, ~yi) is a single atom rather than
a conjunction of atoms. Therefore, the results below that refer to normalized theories of
bounded width apply to these relevant cases.

Datalog with Disjunction (Datalog∨). A rule ρ is an expression of the formH1∨. . .∨Hn ←
B1, . . . , Bk, where H1, . . . ,Hn, B1, . . . , Bk are atoms with terms from ∆v ∪∆c. The atoms
H1, . . . ,Hn are called head atoms, and B1, . . . , Bk are called body atoms. We require that
each variable that appears in ρ also occurs in a body atom. A rule with no body atoms
of the form H ← is called a fact. A rule ρ with no head atoms of the form ← B1, . . . , Bk
is a constraint. A finite set P of rules is called a program. If every rule in a program P

has at most one head atom, then P is called a (plain) Datalog program. The grounding
ground(P) of a program P is the ground (i.e., variable-free) program that is obtained from
P by replacing each rule ρ of P by its ground instances, i.e., rules that can be obtained from
ρ by substituting its variables with constants of P .

ICDT 2018

4:6 Rewriting Guarded Existential Rules into Small Datalog Programs

A database D is a model of a program P , if {B1, . . . , Bk} ⊆ D implies D∩{H1, . . . ,Hn} 6=
∅ for all rules H1 ∨ . . .∨Hn ← B1, . . . , Bk in ground(P). A Datalog∨ query is a pair (P, q),
where P is a program, and q is a predicate symbol from P . We let ans(P, q,D) denote the
set of all n-tuples ~c of values from ∆c, where n is the arity of q, such that q(~c) ∈ D′ for all
models D′ of P ∪ {α←| α ∈ D}. If P is a plain Datalog program, then (P, q) is a plain
Datalog query.

3 Counter Models

Assume Σ is a guarded theory of DTGDs. We want to decide whether (Σ, D) 6|= α for a given
database D and a ground atom α. That is, we want to decide the existence of a model I of
Σ and D such that α 6∈ I. Rather than aiming at constructing such a (possibly infinite) I,
we proceed as follows:
(1) We search for a ‘small’ part of such a possible I, which we call a core instance Dc for

(Σ, D). Intuitively, core instances are databases that extend D to ensure the satisfaction
of Σ∀ (but no nulls are added, and the satisfaction of Σ∃ is not guaranteed). They fix
how the constants of D participate in all predicates, while ensuring that α is false.

(2) For each candidate core instance Dc, we verify if it can be extended to also satisfy Σ∃,
while preserving satisfaction of Σ∀. When extending Dc, entailment of ground atoms is
preserved, and hence so are the satisfaction of D and the non-entailment of α.

Core instances and their extensions are defined next:

I Definition 3. (Core instances) A core instance for (Σ, D) is a database Dc with predicates
from sch(Σ) such that:
(c1) dom(D) = dom(Dc), and
(c2) Dc |= (Σ∀, D)
An instance I is called an extension of Dc, if Dc is the result of restricting I to dom(D).

A core and its extensions coincide on the ground atoms they entail over dom(D). Hence, for
a given query (Σ, q) and a tuple ~c, deciding that ~c /∈ ans(Σ, q,D) amounts to deciding whether
there is a core instance that does not entail q(~c), and that can be extended into a model
of (Σ, D). Defining a disjunctive Datalog program whose models are the core instances
described above is not hard. The second part, that is, verifying if a core can be extended to
a full model, is more challenging. In fact, it corresponds to testing satisfiability of a database
(in this case, a candidate Dc) w.r.t. a theory Σ of guarded DTGDs, which is known to be
ExpTime-complete when predicate arities are bounded, and 2ExpTime-complete otherwise
[20, 15].

In order to obtain a set of rules that solves this problem (and that has polynomial size if
width(Σ) is bounded), we characterize it as a game, revealing a simple algorithm that admits
an elegant implementation in Datalog∨. The game relies on types which we define next.

I Definition 4. (Types) For a theory Σ, we assume an order over some special variables
x1, . . . ,xw, such that w = width(Σ). A type τ over a theory Σ is a set of atoms over sch(Σ)
such that terms(τ) ⊆ {x1, . . . ,xw}. We denote by types(Σ) the set of all types over Σ.

Given an instance I and a tuple ~c = (c1, . . . , ck) with k ≤ w and ~c ⊆ dom(I), we let
the type type(~c, I) = {R(xi1 , . . . ,xij) | R(ci1 , . . . , cij) ∈ I, {ci1 , . . . , cij} ⊆ ~c}. A type τ is
realized in I if there is some tuple ~c ⊆ dom(I) such that type(~c, I) = τ .

For a given Σ, the number of possible types that one can construct is bounded by 2n(ww),
where n is the number of predicates occurring in sch(Σ), and w is the width(Σ); if w is

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:7

bounded, there are only exponentially many types. In the rest of the paper, we write X to
denote the set of special variables {x1, . . . ,xw} and ~x to denote the tuple (x1, . . . ,xw).

I Definition 5. Let τ ∈ types(Σ) be a type over the special variables X and let Y ⊆ X. We
denote by τ |Y ⊆ τ the type that contains each atom R(~t) ∈ τ with ~t ⊆ Y.

We now describe a game to decide whether a given core Dc can be extended into a model
of (Σ, D). The game is played by Bob (the builder), who wants to extend Dc into a model,
and Sam (the spoiler), who wants to spoil all of Bob’s attempts. Sam starts by picking a
tuple ~c such that R(~c) ∈ Dc. They look at its type type(~c,Dc) and if it does not satisfy the
DTGDs in Σ∀, Sam is declared the winner. Otherwise, in each turn Sam chooses a TGD
σ ∈ Σ∃ of the form B → ∃~y.H and a substitution h such that h(B) is satisfied by the current
type, forcing Bob to pick a type that satisfies H and that coincides with the current type on
the shared variables of B and H. The game continues for as long as Bob can respond to the
challenges of Sam.

Formally, for a theory Σ with Σ = Σ∃ ∪ Σ∀ and an instance I, we define the set LC(Σ, I)
of locally consistent types as the set that contains each type τ ∈ types(Σ) such that the
following condition holds.

(LC∀) For all DTGDs σ ∈ Σ∀ of the form ϕ →
∨n
i=1Hi, and for all substitutions h from

vars(ϕ) to X, h(ϕ) ⊆ τ implies that there exists i ∈ [n] such that h(Hi) ∈ τ .

The game on an instance I and a theory Σ starts by Sam choosing a tuple ~c such that
R(~c) ∈ I and τ = type(~c, I) is set to be the current type. Then:

(�) If τ /∈ LC(Σ, I) then Sam is declared winner.
Otherwise, Sam chooses a TGD σ ∈ Σ∃ of the form B → ∃~y.H and a substitution
h : vars(B)→ X such that h(B) ∈ τ ; if there is no such TGD in Σ, Bob is declared the
winner. Otherwise, let Z = vars(B) ∩ vars(H). Bob has to choose a type τ ′ such that the
following conditions hold:

(C1) τ |h(Z) = τ ′|h(Z),
(C2) there exists a substitution h′ : vars(H)→ X with h(Z) = h′(Z) such that h′(H) ∈ τ ′.

The type τ ′ is set to be the current type, and the game continues with a new round,
i.e. we go back to �.

A run of the game on an instance I is a (possibly infinite) sequence ~cσ1h1τ1σ2h2τ2 . . .

where ~c is a tuple initially picked by Sam such that some atom R(~c) ∈ I, and each σi, hi and
τi are the TGD and the substitution picked by Sam and the type picked by Bob in round
i, respectively. A strategy for Bob, to play on I and Σ, is a partial function str that maps
a type τ , a TGD σ ∈ Σ∃ of the form B → ∃~y.H, and a substitution h : vars(B)→ X with
h(B) ∈ τ to a type τ ′ that satisfies (C1) and (C2); intuitively, the strategy gives a move for
Bob in response to the moves of Sam. A run ~cσ1h1τ1σ2h2τ2 . . . with type(~c, I) = τ0 follows a
strategy str if τi = str(τi−1, σi, hi) for every i ≥ 1.

For a finite run r, we let tail(r) = type(~c, I) if r = ~c, and tail(r) = τ` if r = ~c . . . σ`h`τ`
with ` ≥ 1. The strategy str is called non-losing on I if for every finite run r that follows str:
(i) tail(r) ∈ LC(Σ, I), and
(ii) str(tail(r), σ, hσ) is defined for every σ ∈ Σ∃ of the form B → ∃~y.H and every substitu-

tion hσ : vars(B)→ X with hσ(B) ∈ tail(r).

ICDT 2018

4:8 Rewriting Guarded Existential Rules into Small Datalog Programs

The correctness of the game is shown in the following theorem.

I Theorem 6. Let Σ be a theory of guarded DTGDs, D a database, and α a ground atom.
Then (Σ, D) 6|= α iff there is a core instance Dc for (Σ, D) such that:
(1) α /∈ Dc, and
(2) there is a non-losing strategy for Bob on Dc.

Proof sketch. We focus on showing that for any given core Dc, there is a non-losing strategy
str for Bob on Dc if and only if Dc can be extended into an instance I that satisfies (Σ, D).

For “⇐”, assume an arbitrary model I of (Σ, D) that is an extension of Dc. We extract
from I a non-losing strategy str for Bob as follows. First, let rlz(I) be the set of all types
realized in I. Observe that rlz(I) ⊆ LC(Σ, Dc) holds since the core Dc must satisfy all the
rules in Σ∀. It suffices to set, for each type τ ∈ rlz(I) and each σ ∈ Σ∃ of the form B → ∃~y.H
with h(B) ∈ τ , str(τ, σ, h) = τ ′ for an arbitrarily chosen type τ ′ ∈ rlz(I) that satisfies (C1)
and (C2) which exists because I is a model, thus it satisfies all the DTGDs in Σ.

For the “⇒” direction, from an arbitrary non-losing str for Dc, we build I as follows.
We write ~cτ to denote a tuple of constants realizing τ ; rn(Dc, str) to denote the set of all
finite runs ~cτσ1h1τ1σ2h2τ2 . . . that follow str; and fv(σ) to denote the set vars(B) ∩ vars(H)
of variables where σ ∈ Σ is a TGD of the form B → ∃~y.H. We let I be the set of atoms
R(t1, . . . , t`) such that one of the following holds:
(a) there exists a run r = ~cτ in rn(Dc, str) with R(xi1 , . . . ,xi`) ∈ τ and tj = cij ∈ ~cτ for

each j ∈ [1, `] or
(b) there exists a run r = ~cτ . . . σihiτi in rn(Dc, str), where i ≥ 1 and σi is of the form

B → ∃~y.H such that R(xi1 , . . . ,xi`) ∈ τi and for each tj with j ∈ [1, `] the following
holds:

(1) tj is the labelled null r′xij , if
(i) r′ = ~cτ . . . σkhkτk and r = r′ . . . σihiτi with 1 ≤ k ≤ i,
(ii) xij 6∈ hk(fv(σk)), and
(iii) xij ∈ hl(fv(σl)) for each k < l ≤ i if i 6= k.

(2) tj is the constant cij if xij ∈ hl(fv(σl)) for each l ∈ [1, i].

This I satisfies (Σ, D) and it is an extension of Dc. For more details, see Appendix A. J

To decide whether Bob has a non-losing strategy on a given core, we use the type
elimination procedure Mark presented in Algorithm 1. Intuitively, the algorithm marks all
types from which Bob does not have a non-losing strategy. It takes as input a theory Σ, and
an instance I which intuitively is the core being checked. The algorithm builds the set of all
types, and then it starts marking the types that are not a winning choice for Bob. First, in
step (M∀), the algorithm marks the types that are not in LC(Σ, I). Then it iterates using
(M∃) to exhaustively mark types τ that allow Sam to pick a TGD for which Bob cannot
reply with any type τ ′.

The formal relationship between the game and the marking algorithm is established next.

I Theorem 7. Let Dc be a core instance for (Σ, D). Then Bob has a non-losing strategy on
Dc iff none of the types realized in Dc is marked by Mark(Σ).

Proof sketch. For the “⇒” direction, we can show that if a type τ is marked, then it cannot
occur in a non-losing str for Bob. The proof is by induction in the number of iterations that
the algorithm Mark(Σ) requires to mark τ . For the “⇐” direction, a non-losing str for Dc is
obtained by first taking all unmarked types τ ∈ types(Σ) (which are all contained in LC(Σ, I),

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:9

Algorithm 1: Mark.
input : theory Σ of guarded DTGDs
output : Set of (possibly) marked types

N ← {τ | τ ∈ types(Σ)}

(M∀) Mark each τ ∈ N such that there exists:
σ ∈ Σ∀ of the form ϕ→

∨n
i=1Hi, and

h from vars(ϕ) to X, s.t. h(ϕ) ⊆ τ , and h(Hi) 6∈ τ for each i ∈ [n].

repeat
(M∃) Mark τ ∈ N if there exists a TGD B → ∃~y.H ∈ Σ∃ and a substitution
h : vars(B)→ X with h(B) ∈ τ s.t. for each τ ′ ∈ N , at least one of the following
holds:
(C0) τ ′ is marked,
(C1′) τ |h(Z) 6= τ ′|h(Z), or
(C2′) h′(H) 6∈ τ ′ for each h′ : vars(H)→ X with h(Z) = h′(Z)

where Z = vars(B) ∩ vars(H).
until no new type is marked
return N

as otherwise they would be marked by (M∀). Then, for each unmarked type τ , each TGD
σ ∈ Σ∃ of the form B → ∃~y.H and each substitution h : vars(B)→ X with h(B) ∈ τ , we set
str(τ, σ, h) = τ ′ for an arbitrarily chosen unmarked type τ ′ that satisfies (C1) and (C2). J

4 Translation into Datalog∨

The goal of this section is to build, from a given query (Σ, q), a Datalog∨ program P such
that (Σ, q) and (P, q) have the same answers for all databases D over sch(Σ). Moreover, the
size of P is polynomial in Σ whenever width(Σ) is bounded. P has three major components:
(a) rules that non-deterministically generate a core instance Dc for (Σ, D), where D is an

input database;
(b) rules that implement the marking algorithm presented in the previous section;
(c) rules that ‘glue’ (a) and (b), by ensuring that all types that occur in Dc are not marked.

We emphasize that the construction of P depends exclusively on (Σ, q), and is independent
from a particular database D. In what follows, we let w = width(Σ), and let n be the number
of distinct predicate symbols occurring in sch(Σ).

(I) Collecting the constants. We first add rules to collect in the unary predicate const all
the constants that occur in the input database. For each R ∈ sch(Σ) with arity `, and for
each 1 ≤ i ≤ ` we add the rule:

const(ui)← R(u1, . . . , u`)

For each 1 < i ≤ w we have an i-ary version of const that stores i-ary tuples of constants:

consti(u1, . . . , ui)← const(u1), . . . , const(ui)

ICDT 2018

4:10 Rewriting Guarded Existential Rules into Small Datalog Programs

(II) Generating core instances. We use a fresh predicate R for each R ∈ sch(Σ), and add
the following rules to P for each `-ary predicate R ∈ sch(Σ), where ~u is an `-ary tuple of
variables:

R(~u) ∨R(~u)← const`(~u) ← R(~u), R(~u)

To ensure (c2) in Definition 3, for each σ ∈ Σ∀ of the form ϕ →
∨n
i=1Hi we add the rule∨n

i=1Hi ← ϕ. For any input D, the models of the above rules (when restricted to the
predicates in sch(Σ)) are the core instances Dc of (Σ, D).

Towards checking whether Dc can be extended to satisfy all rules in Σ, we implement
the algorithm Mark from Section 3. We assume a fixed, arbitrary enumeration α1, . . . ,αm

of all the atoms that can be constructed over the predicate symbols in sch(Σ) and the
special variables in X. The set of all these atoms {α1, . . . ,αm} is denoted by A. Note that
1 ≤ m ≤ n(ww), hence if w is bounded by a constant, then |A| is polynomially bounded.

We assume also a pair 0, 1 of special constants. Intuitively, we use an m-ary predicate
symbol Type = {0, 1}m to store all types in types(Σ). For instance, a tuple (r1, . . . , rm) ∈ Type,
encodes the type τ = {αi | ri = 1, 1 ≤ i ≤ m}. This relation is the basis to compute another
m-ary relation Marked ⊆ {0, 1}m that contains precisely the types marked by the Mark
algorithm. We next define the rules to compute Type and Marked, and other relevant relations.

(III) A linear order over types. The first ingredient is a linear order over all possible types.
Of course, we could hardcode the list of exponentially many types in the Datalog program,
but then the program would not be of polynomial size, and, therefore, we need to compute
it instead. To this end, for every 1 ≤ i ≤ m, we inductively define i-ary relations firsti and
lasti, and a 2i-ary relation nexti, which provide the first, the last, and the successor elements
from a linear order on {0, 1}i. In particular, given ~u,~v ∈ {0, 1}i, the fact nexti(~u,~v) will be
true if ~v follows ~u in the ordering of {0, 1}i. The rules to populate nexti are quite standard
(see, e.g., Theorem 4.5 in [5]). For the case i = 1, we simply add the following facts:

first1(0)← last1(1)← next1(0, 1)←

Then, for all 1 < i ≤ m− 1 we add the following rules:

nexti+1(0, ~u, 0, ~v) ← nexti(~u,~v) firsti+1(0, ~u) ← firsti(~u)
nexti+1(1, ~u, 1, ~v) ← nexti(~u,~v) lasti+1(1, ~u) ← lasti(~u)
nexti+1(0, ~u, 1, ~v) ← lasti(~u), firsti(~v)

We can now collect in the relation Type all types in types(Σ):

Type(~u)← firstm(~u) Type(~v)← nextm(~u,~v)

(IV) Implementing Step (M∀). First, we add the auxiliary facts F(0)← and T(1)← to
P . For an m-tuple of variables ~u and an atom αj in the enumeration α1, . . .αm, we use
αj ∈ ~u to denote the atom T(uj), and αj 6∈ ~u to denote the atom F(uj). Then the step
(M∀), which marks types violating some rule of Σ∀, is implemented using the following rule
for every DTGD ϕ →

∨n
i=1Hi ∈ Σ∀. Assume ϕ is a set of atoms B1, . . . Bl. Then, for all

substitutions h : vars(ϕ)→ X, add the rule:

Marked(~u)← Type(~u), h(B1) ∈ ~u, . . . , h(Bl) ∈ ~u, h(H1) 6∈ ~u, . . . , h(Hn) 6∈ ~u

There are at most wk possible substitutions, where k is the arity of the guard atom in ϕ.

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:11

(V) Implementing Step (M∃). The following rules are added for all TGDs σ = B →
∃~y.H ∈ Σ∃ and for all substitutions h : vars(B)→ X. Assume Z = vars(B)∩ vars(H). Recall
that we need to mark a type τ if there exists a substitution h : vars(B) → X such that
h(B) ∈ τ , and for each type τ ′, either τ ′ is marked or at least one of (C1′) or (C2′) holds.
First, for each TGD σ and substitution h, we use an auxiliary 2m-ary relation MarkedOneσ,h
to collect all such types τ ′.

For collecting each τ ′ that satisfies condition (C0), we add:

MarkedOneσ,h(~u,~v)← Type(~u),Marked(~v)

For (C1′) we add a rule for each R(~x), such that ~x ⊆ h(Z):

MarkedOneσ,h(~u,~v) ← Type(~u),Type(~v), R(~x) ∈ ~u,R(~x) 6∈ ~v
MarkedOneσ,h(~u,~v) ← Type(~u),Type(~v), R(~x) /∈ ~u,R(~x) ∈ ~v

To implement condition (C2′), we collect each τ ′ such that h′i(H) 6∈ τ for each substitution
h′i : vars(H)→ X with h(Z) = h′i(Z). Notice that for k variables in ~y, there are wk possible
substitutions, that is 1 ≤ i ≤ wk. We add:

MarkedOneσ,h(~u,~v)← Type(~u),Type(~v), h′1(H) /∈ ~v, . . . , h′wk (H) /∈ ~v

Intuitively, we want to infer Marked(~u) if h(B) is set to true in ~u and MarkedOneσ,h(~u,~v) is
true for all types (bit vectors) ~v. To this aim, we need another 2k-ary relation MarkedUntilσ,h.
We add:

MarkedUntilσ,h(~u,~t) ← MarkedOneσ,h(~u,~t), firstm(~t)
MarkedUntilσ,h(~u,~v) ← MarkedUntilσ,h(~u,~t), nextm(~t,~v),MarkedOneσ,h(~u,~v)

Intuitively, with the above rules we traverse all types checking the conditions (C0), (C1′)
and (C2′) described in (M∃). If we manage to reach the last type, and if h(B) ∈ ~u, we know
the condition is satisfied. We add the following rule:

Marked(~u)← MarkedUntilσ,h(~u,~t), h(B) ∈ ~u, lastm(~t)

(VI) Forbidding marked types in the core. Finally, we need to forbid each tuple of constants
in the generated core database from having a type from Marked. For all 0 ≤ j ≤ m we take
a fresh (j + w)-ary relation symbol Projj . We first add:

Projm(~x, ~u)← constw(~x),Marked(~u)

Intuitively, we collect in constw(~x) all the possible w-ary tuples of constants from the core
database. We now project away bits from the Projj relations by looking at the actual types
of tuples of constants. We add the following rules for all 1 ≤ j ≤ m:

Projj−1(~x, ~u) ← Projj(~x, ~u, 1),αj Projj−1(~x, ~u) ← Projj(~x, ~u, 0),αj

Finally, we need to rule out situations when the extracted type of a tuple of constants over
the core database is marked by adding the constraint ← Proj0(~x).

This completes the polynomial translation of a query (Σ, q) where Σ is a set of guarded
DTGDs to a Datalog∨ query (P, q). Next, we provide a theorem that captures the
correctness of the above translation.

ICDT 2018

4:12 Rewriting Guarded Existential Rules into Small Datalog Programs

I Theorem 8. For a query (Σ, q), where Σ is a normalized theory of guarded DTGDs,
we can build a query (P, q), where P is a set of disjunctive Datalog rules, such that
ans(Σ, q,D) = ans(P, q,D) for any given database D over sch(Σ). The construction requires
only polynomial time whenever width(Σ) is bounded.

From the complexity of Datalog∨ [12], we infer a coNExpTime upper bound in combined
complexity for guarded DTGDs whose normalized form uses only predicates whose arities are
bounded by a constant. However, we use disjunction in a limited way: only in the rules in (II),
whose heads have only two atoms over predicates of bounded arity. The resulting program
falls into a class of programs that can be evaluated in (deterministic) exponential time, see
Appendix A for more details. This matches the ExpTime-completeness of satisfiability of
guarded DTGDs with bounded predicate arities [20].

I Proposition 9. Deciding ~c ∈ ans(P, q,D), where P is the disjunctive Datalog program
obtained from the above translation of a set Σ of guarded DTGDs, can be done in ExpTime.

5 Non-Disjunctive TGDs

Now we consider the case of plain guarded TGDs, that have no disjunction. Recall that in
normalized theories of TGDs, each σ takes the form B → ∃~y.H or ϕ→ H, where B,H are
atoms and ϕ is a set of atoms, all with terms from ∆v.

In this section, we provide a rewriting of queries given by a theory of TGDs into plain
Datalog. That is, given a query of the form (Σ, q), where Σ is a theory of TGDs, we obtain
(P, q), where P is a (non-disjunctive) plain Datalog program. The resulting program is of
polynomial size whenever width(Σ) is bounded, unlike previous rewritings that exist in the
literature for related query languages.

5.1 From Marked Types to Horn Rules
To obtain a non-disjunctive rewriting for TGDs, we leverage to a great extent the results of
the previous section, but proceed somewhat differently. We start by observing that if in the
input (Σ, q), the TGDs in Σ contain no disjunction, almost all rules of the program described
above are in plain Datalog. However, the rules in step (II) are disjunctive, and this is a
major issue. Indeed, the basic strategy that we described in Section 3, namely, to obtain a
core and then check if it can be suitably extended, is intrinsically based on the ability to
use disjunction to generate different core instances. Therefore, to obtain a program without
disjunction, we must proceed differently. Our strategy is to use the marked types to obtain a
new set of non-disjunctive TGDs ΣHorn, which correctly capture the consequences of Σ. This
TGDs are full, that is, they have no existentially quantified variables, and they can be easily
realized by Datalog rules.

Towards obtaining ΣHorn, let Marked(Σ) denote the set of all the types that are marked
by Algorithm 1 executed on Σ. We show that (independently of whether Σ contains or not
disjunctive heads), Marked(Σ) defines a set of full DTGDs ΣM that completely captures the
consequences of Σ. Therefore, we can replace Σ by ΣM , while preserving the entailment of
facts. Later we show that ΣM can in turn be replaced by the desired ΣHorn.

To define ΣM , recall that A is the set of all atoms that can occur in types(Σ). Each type
τ defines a full DTGD rule(τ) as follows:

τ →
∨

α∈A\τ

α

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:13

Consider a core instance Dc, which we would like to extend to satisfy Σ. Intuitively, if
τ ∈ Marked(Σ), such a rule expresses that if all the atoms in τ are true in Dc, then some
atom not in τ must be true as well, as otherwise the marked type τ would be realized.

Formally, we can show the following. We remark that we formulate the lemma for TGDs,
but it holds also for DTGDs.

I Lemma 10. Let Σ be a set of guarded TGDs and let ΣM be the set of all rule(τ) with
τ ∈ Marked(Σ). Then, for any given atom α and database D, (D,Σ) 6|= α iff (D,ΣM) 6|= α.

Proof. For the “⇒” direction, let I be an instance such that I |= (D,Σ) and α 6∈ I. We show
that I |= (D,ΣM). Let Dc be the restriction of I to constants in dom(D), that is Dc is a core
instance for (D,Σ). The latter together with Theorem 6 imply that Bob has a non-losing
strategy on Dc, which together with Theorem 7 imply that none of the types realized in Dc

is marked by Mark(Σ). We claim that Dc |= (D,ΣM). Towards a contradiction assume
there there exists a rule(τ) ∈ ΣM such that Dc 6|= τ →

∨
α∈A\τ α. That Dc doesn’t satisfy

τ →
∨

α∈A\τ α intuitively means that one can match τ to Dc, but cannot match any of α to
Dc. The latter imply that τ must be realized in Dc, but this contradicts that τ ∈ Marked(Σ)
by definition of rule(τ).

For the “⇐” direction, let I be an instance such that I |= (D,ΣM) and α 6∈ I. Recall that
no rule in ΣM enforces the invention of nulls, that is w.l.o.g. we assume terms(I) = dom(D).
One could easily show that I is a core instance for (D,Σ). Observe that none of the
types realized in I are marked by Mark(Σ) as otherwise, by definition of Marked(Σ), the
corresponding type would appear in the body of a rule in ΣM which together with I |= ΣM
contradict the assumption that the corresponding type is realized in I. The latter and
Theorem 7 imply Bob has a non-losing strategy on I which together with assumption α /∈ I,
and by Theorem 6 imply (D,Σ) 6|= α. J

In general, ΣM is a set of full DTGDs, but if Σ is not disjunctive, then we can obtain a
set of non-disjunctive full TGDs that achieves the same effect. The core intuition is that,
for TGDs, the disjunctive heads express choices between atoms that are irrelevant, and one
can disregard such choices, obtaining full TGDs that enforce only the necessary atoms. To
identify the necessary and the irrelevant atoms, we rely on what we call abstract types, which
are types augmented with a set τir of irrelevant atoms.

I Definition 11. An abstract type (over Σ) is a pair (τc, τir) of (possibly empty) disjoint
subsets of A.

Intuitively, an atom α is irrelevant for τc, with α 6∈ τc, if both τc and τc∪{α} are marked.
The algorithm Horn takes as input the set of all abstract types (τ, ∅) where τ ∈ Marked(Σ),
and outputs a set of abstract types. The pair (τc, τir) will be returned by the algorithm
if τ = τc ∪ τ ′ir is marked for each τ ′ir ⊆ τir, that is, if the presence of the atoms in τir is
irrelevant for the marking of τc. We use Horn(Σ) to denote the result of running Algorithm 2
on Marked(Σ) for a given theory Σ.

I Lemma 12. Let (τc, τir) be an abstract type. Then (τc, τir) ∈ Horn(Σ) if and only if
τc ∪ τ ′ir ∈ Marked(Σ) for each τ ′ir ⊆ τir.

If (τc, τit) ∈ Horn(Σ), then the irrelevant atoms in τir can be omitted from the head of
rule(τc), as shown next.

I Lemma 13. Let (τc, τir) be an abstract type. Then (τc, τir) ∈ Horn(Σ) if and only if
Σ |= τc →

∨
α∈A\(τc∪τir) α.

ICDT 2018

4:14 Rewriting Guarded Existential Rules into Small Datalog Programs

Algorithm 2: Horn.
input : a set M0 of types
output : set of abstract types

N ← {(τc, ∅) | τc ∈M0}
repeat

if there exist {(τc, τir), (τ ′c, τir)} ⊆ N with τc = τ ′c ∪ {α} for some atom α 6∈ τ ′c
then

add the pair (τ ′c, τir ∪ {α}) to N
until no further changes
return N

These rules are still disjunctive, however, we can show that for every marked type, there
exists a corresponding abstract type that covers all atoms over the signature of the theory,
except for one, and hence it induces a full TGD with only one atom in the head. The
proof of the next lemma uses the well-known property that (non-disjunctive) TGDs are
convex, that is, Σ |=

∧k
i=1 αi →

∨n
j=1 αj implies that there exists l ∈ {1, . . . , n} such that

Σ |=
∧k
i=1 αi → αl (see Lemma 2 in [3]).

I Lemma 14. Let Σ be a set of TGDs, M = Mark(Σ), and let N = Horn(Σ). Then τc ∈M
implies that there exists a pair (τc, τir) ∈ N such that τc ∪ τir ∪ {α} = A for some α ∈ A.

Now we state the central result of this section: from Horn(Σ) one can construct the
desired set of full TGDs ΣHorn, which has the same atomic consequences as the original Σ.

I Theorem 15. Let Σ be a set of TGDs, and let ΣHorn be the set of all full TGDs τc → α

such that there is an abstract type (τc, τir) in Horn(Σ) with τc ∪ τir ∪ {α} = A. Then, for
any given atom α and database D, we have D ∪ Σ |= α iff D ∪ ΣHorn |= α.

5.2 Translation into Datalog
Assume a normalized theory Σ of guarded TGDs. Also, assume w = width(Σ), and n is the
number of distinct predicate symbols occurring in sch(Σ). Similarly as we did in Section 4,
we build next a program P such that the queries (Σ, q) and (P, q) have the same answers
for all databases D over sch(Σ). As before, P is polynomial under the assumption that w is
bounded by a constant. Crucially, in this case, P will be a plain Datalog program.

First of all, P contains the rules described in (I), (III), (IV), and (V) in Section
4. These rules that collect the constants and implement the marking algorithm from the
previous translation do not use the rules with disjunction in (II). Additionally, we include
the following rules that implement the algorithm Horn and the inferences from ΣHorn.

(VII) Generating abstract types from marked types. We add rules that construct the set
Horn(Σ) from Algorithm 2, creating abstract types from the marked types. Recall that we
represent (regular) types as m-sequences of 1 and 0, where the i-th value indicates whether
the atom αi in the enumeration is contained in the type or not. We extend this representation
using an additional constant 2 in position i to indicate that an atom αi is in the set τir of
an abstract type (τc, τir). We will write ~u[i,j] to denote the tuple (ui, ui+1, . . . , uj); if j < i

then ~u[i,j] refers to the empty tuple. For all 1 ≤ i ≤ m, we add the rules:

Marked(~u[1,i−1], 2, ~u[i+1,m])← Marked(~u[1,i−1], 0, ~u[i+1,m]),Marked(~u[1,i−1], 1, ~u[i+1,m])

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:15

(VIII) Constructing all horn types. We call a type horn if only one bit is set to 0, and the
other bits to 1 or 2. Intuitively, horn types stand for abstract types of the form (τc, τir) that
can be converted into full TGDs of the form τc → α, where the atoms in τc are represented
with 1, the atoms in τir with 2, and atom α with 0. First, we use a new m-ary predicate
symbol Horn to construct all possible Horn types. To this end, we first add the following
facts for all 0 ≤ i < m:

Horn(1, . . . , 1︸ ︷︷ ︸
i

, 0, 1, . . . , 1︸ ︷︷ ︸
m−i−1

)←

To construct all possible alternations of 1 and 2, we add the following rule for all 1 ≤ i ≤ m:

Horn(~u[1,i−1], 2, ~u[i+1,m])← Horn(~u[1,i−1], 1, ~u[i+1,m])

Finally, we use another m-ary relation MarkedHorn to collect all types from Horn(Σ) that
are marked and that can be converted into full TGDs. The rule is as follows:

MarkedHorn(~u)← Marked(~u),Horn(~u)

(IX) Implementing the full TGDs from ΣHorn. Finally, we guarantee each τc → α ∈ ΣHorn
is satisfied. For each Horn type in MarkedHorn, whenever the atoms in positions with 1 are
made true by some instantiation of the variables with constants, we infer the atom in the 0
position. For all 1 ≤ i, j ≤ m we take a fresh (j + 1)-ary predicate symbol Projji , where i
indicates the position of the bit labelled with 0. For all 1 ≤ i ≤ m, we add:

Projmi (~x, ~u[1,i−1], 0, ~u[i+1,m])← MarkedHorn(~u[1,i−1], 0, ~u[i+1,m]), constw(~x)

We will now project away bits from the Projji relations. We add the following rules for all
1 ≤ j ≤ m and for all 1 ≤ i ≤ m:

Projj−1
i (~x, ~u) ← Projji (~x, ~u, 1),αj

Projj−1
i (~x, ~u) ← Projji (~x, ~u, 2)

Projj−1
i (~x, ~u) ← Projji (~x, ~u, 0)

If we reach the last bit, we add the atom whose bit is set to 0. For all 1 ≤ i ≤ m, we add:

αi ← Proj0i (~x)

This completes the polynomial translation of a query (Σ, q), where Σ is a set of guarded
TGDs (without disjunction), to a (plain) Datalog query (P, q). Next, we provide a theorem
that captures the correctness of the above translation.

I Theorem 16. For a query (Σ, q), where Σ is a normalized theory of guarded TGDs, we
can build a query (P, q), where P is a set of (plain) Datalog rules such that ans(Σ, q,D) =
ans(P, q,D) for any given database D over sch(Σ). Moreover, if width(Σ) is bounded, then
(P, q) can be built in polynomial time.

6 Discussion and Conclusions

In this paper, we have studied a very rich query language, where a query predicate is given
together with a set of guarded (D)TGDs expressing domain knowledge. For queries (Σ, q)
with q an instance query, we have proposed rewritings to Datalog∨ for Σ a set of guarded

ICDT 2018

4:16 Rewriting Guarded Existential Rules into Small Datalog Programs

DTGDs, and to (plain) Datalog for Σ a set of guarded (non-disjunctive) TGDs. To our best
knowledge, these are the first such rewritings that are polynomial under the relevant, useful
restriction that the maximal number of variables in the guarded (D)TGDs is bounded by a
constant. If the number of variables per rule is not bounded, the rewriting is exponential in
the size of the query. This is natural: answering guarded (D)TGD queries is 2ExpTime-hard
[4], and cautious inference from Datalog∨ queries is coNExpTime-complete, and from
Datalog is ExpTime-complete [12]. For the case with disjunction, a polynomial rewriting
would imply coNExpTime = 2ExpTime, and for the case without disjunction a polynomial
rewriting cannot exist since ExpTime 6= 2ExpTime.

Our results can easily be generalized to guarded (D)TGDs with acyclic conjunctive queries
or with quantifier-free conjunctive queries, that is conjunctive queries with no existential
variables. Acyclic conjunctive queries can be rewritten in polynomial time into a set of rules
that fall into the guarded (D)TGD fragment (see, e.g., the proof of Theorem 6.2 in [8]) and
the quantifier-free conjunctive queries are syntactically restricted to ensure that the relevant
variable assignments only map into the constants of the input database. Additionally, our
techniques can be easily extended to support nearly guarded (D)TGDs [18], which are a
strict extension of the guarded variants with non-guarded rules. Indeed, the latter rules
can ‘operate’ only on constants from the input database and we just need to add a simple
condition that ensures the satisfaction of these rules by the core instances. Identifying other
cases that are in ExpTime and that allow for polynomial Datalog rewritings is an open
research problem for future work.

Extending our approach to support other query languages is also an interesting direction
for the future. We remark, however, that generalizing our translation to guarded DTGDs
in the presence of arbitrary conjunctive queries while remaining polynomial is out of reach
under common assumptions in complexity theory. Indeed, the associated query answering
problem is 2ExpTime-hard in combined complexity already for a restricted fragment of arity
two [24]. For the case of TGDs without disjunction a polynomial rewriting to Datalog for
conjunctive queries may be feasible. However, although adapting the ideas in this work to
conjunctive queries may be possible, and at the cost of an exponential blow-up for DTGDs,
it seems a challenging task. The guarded DTGDs we studied in this paper do not allow for
constants. Extending our translation to support constants remains for future work.

References

1 Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus. Polynomial datalog rewritings
for expressive description logics with closed predicates. In Subbarao Kambhampati, editor,
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 878–885. IJCAI/AAAI Press,
2016. URL: http://www.ijcai.org/Abstract/16/129.

2 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded
fragments of predicate logic. J. Philosophical Logic, 27(3):217–274, 1998. doi:10.1023/A:
1004275029985.

3 Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting guarded negation queries.
In Proc. of MFCS’ 13, pages 98–110. ACM, 2013.

4 Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment. In
Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS
2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 1–10. IEEE Computer Society,
2010. doi:10.1109/LICS.2010.26.

http://www.ijcai.org/Abstract/16/129
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1109/LICS.2010.26

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:17

5 Vince Bárány, Balder ten Cate, and Martin Otto. Queries with guarded nega-
tion. PVLDB, 5(11):1328–1339, 2012. URL: http://vldb.org/pvldb/vol5/p1328_
vincebarany_vldb2012.pdf.

6 Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. J. ACM,
31(4):718–741, 1984. doi:10.1145/1634.1636.

7 Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database
Syst., 39(4):33:1–33:44, 2014. doi:10.1145/2661643.

8 Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. Guarded-based dis-
junctive tuple-generating dependencies. ACM Trans. Database Syst., 41(4):27:1–27:45, 2016.
doi:10.1145/2976736.

9 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013. doi:10.
1613/jair.3873.

10 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description lo-
gics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007. doi:10.1007/
s10817-007-9078-x.

11 Alin Deutsch and Val Tannen. Reformulation of XML queries and constraints. In Diego
Calvanese, Maurizio Lenzerini, and Rajeev Motwani, editors, Database Theory - ICDT
2003, 9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings, volume
2572 of Lecture Notes in Computer Science, pages 225–241. Springer, 2003. doi:10.1007/
3-540-36285-1_15.

12 Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans.
Database Syst., 22(3):364–418, 1997. doi:10.1145/261124.261126.

13 Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui Xiao.
Query rewriting for horn-shiq plus rules. In Jörg Hoffmann and Bart Selman, editors,
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada. AAAI Press, 2012. URL: http://www.aaai.org/ocs/
index.php/AAAI/AAAI12/paper/view/4931.

14 Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, Thomas
Schwentick, and Michael Zakharyaschev. The price of query rewriting in ontology-based
data access. Artif. Intell., 213:42–59, 2014. doi:10.1016/j.artint.2014.04.004.

15 Georg Gottlob, Marco Manna, Michael Morak, and Andreas Pieris. On the complexity of
ontological reasoning under disjunctive existential rules. In Branislav Rovan, Vladimiro
Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science
2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31,
2012. Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 1–18. Springer,
2012. doi:10.1007/978-3-642-32589-2_1.

16 Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial combined rewritings for
existential rules. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Fourteenth Interna-
tional Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014. URL:
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7973.

17 Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial rewritings for linear exist-
ential rules. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 2992–2998. AAAI Press, 2015. URL: http:
//ijcai.org/Abstract/15/423.

ICDT 2018

http://vldb.org/pvldb/vol5/p1328_vincebarany_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1328_vincebarany_vldb2012.pdf
http://dx.doi.org/10.1145/1634.1636
http://dx.doi.org/10.1145/2661643
http://dx.doi.org/10.1145/2976736
http://dx.doi.org/10.1613/jair.3873
http://dx.doi.org/10.1613/jair.3873
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/3-540-36285-1_15
http://dx.doi.org/10.1007/3-540-36285-1_15
http://dx.doi.org/10.1145/261124.261126
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
http://dx.doi.org/10.1016/j.artint.2014.04.004
http://dx.doi.org/10.1007/978-3-642-32589-2_1
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7973
http://ijcai.org/Abstract/15/423
http://ijcai.org/Abstract/15/423

4:18 Rewriting Guarded Existential Rules into Small Datalog Programs

18 Georg Gottlob, Sebastian Rudolph, and Mantas Simkus. Expressiveness of guarded ex-
istential rule languages. In Richard Hull and Martin Grohe, editors, Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages 27–38. ACM, 2014. doi:
10.1145/2594538.2594556.

19 Georg Gottlob and Thomas Schwentick. Rewriting ontological queries into small nonrecurs-
ive datalog programs. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth In-
ternational Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press, 2012. URL:
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4510.

20 Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
21 Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description logics by a

reduction to disjunctive datalog. J. Autom. Reasoning, 39(3):351–384, 2007. doi:10.1007/
s10817-007-9080-3.

22 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Datalog rewritability of dis-
junctive datalog programs and its applications to ontology reasoning. In Carla E. Brodley
and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 1077–1083.
AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/
view/8201.

23 Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-
kharyaschev. The combined approach to ontology-based data access. In Toby Walsh, editor,
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2656–2661. IJCAI/AAAI, 2011.
doi:10.5591/978-1-57735-516-8/IJCAI11-442.

24 Carsten Lutz. Inverse roles make conjunctive queries hard. In Diego Calvanese, Enrico
Franconi, Volker Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and Ser-
gio Tessaris, editors, Proceedings of the 2007 International Workshop on Description Logics
(DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007, volume 250 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007. URL: http://ceur-ws.org/Vol-250/
paper_3.pdf.

25 Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based data access with closed
predicates is inherently intractable(sometimes). In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,
China, August 3-9, 2013, pages 1024–1030. IJCAI/AAAI, 2013. URL: http://www.aaai.
org/ocs/index.php/IJCAI/IJCAI13/paper/view/6870.

26 Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based data access with closed
predicates is inherently intractable(sometimes). In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,
China, August 3-9, 2013, pages 1024–1030. IJCAI/AAAI, 2013. URL: http://www.aaai.
org/ocs/index.php/IJCAI/IJCAI13/paper/view/6870.

27 Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Worst-case optimal reasoning
for the horn-dl fragments of OWL 1 and 2. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, Principles of Knowledge Representation and Reasoning: Proceedings
of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-
13, 2010. AAAI Press, 2010. URL: http://aaai.org/ocs/index.php/KR/KR2010/paper/
view/1296.

28 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable query answering and re-
writing under description logic constraints. J. Applied Logic, 8(2):186–209, 2010. doi:
10.1016/j.jal.2009.09.004.

http://dx.doi.org/10.1145/2594538.2594556
http://dx.doi.org/10.1145/2594538.2594556
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4510
http://dx.doi.org/10.1007/s10817-007-9080-3
http://dx.doi.org/10.1007/s10817-007-9080-3
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8201
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8201
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-442
http://ceur-ws.org/Vol-250/paper_3.pdf
http://ceur-ws.org/Vol-250/paper_3.pdf
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6870
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6870
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6870
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6870
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
http://dx.doi.org/10.1016/j.jal.2009.09.004
http://dx.doi.org/10.1016/j.jal.2009.09.004

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:19

29 Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos B. Stamou. Optim-
ising resolution-based rewriting algorithms for OWL ontologies. J. Web Sem., 33:30–49,
2015. doi:10.1016/j.websem.2015.02.001.

A Appendix

A.1 Proofs of Section 3
To prove Theorem 6, we first introduce the following lemma.

I Lemma 17. Assume a theory Σ, a database D and an assertion α. Then (Σ, D) 6|= α iff
there exists a core instance Dc for (Σ, D) s.t.
(1) α /∈ Dc, and
(2) there exists an extension I of Dc s.t. I |= (Σ, D).

Proof. For the “⇐” direction, it is clear that I is the desired instance that satisfies (Σ, D)
(condition (2)) and is such that α /∈ I. The latter is true from condition (1) and the fact
that I is an extension of Dc. For the “⇒” direction, assume I with α /∈ I is an instance that
satisfies (Σ, D). W.l.o.g. assume that sch(I) ⊆ sch(Σ). We construct a core database Dc

such that Dc = {R(~t) | R(~t) ∈ I,~t ⊆ dom(D)}. We claim that Dc is a core interpretation
for (Σ, D). Condition (c1) of Definition 3 holds by construction of Dc. Also, Dc satisfies all
the rules from Σ∀ ⊆ Σ as these rules can only create new atoms with terms that range over
constants from dom(D), and thus condition (c2) is also satisfied by Dc. J

Proof of Theorem 6. By Lemma 17, we only need to show that, for any given core Dc,
there is a non-losing strategy str for Bob on Dc if and only if Dc can be extended into an
instance I that satisfies (Σ, D).

For the “⇒” direction, from an arbitrary non-losing str for Dc, we build I as follows.
We write ~cτ to denote a tuple of constants realizing τ , that is τ = type(~cτ , Dc). In the
following, we denote by rn(Dc, str) the set of all finite runs ~cτσ1h1τ1σ2h2τ2 . . . that follow str.
Additionally, we will denote with fv(σ) the set vars(B) ∩ vars(H) of variables where σ ∈ Σ is
a TGD of the form B → ∃~y.H ∈ Σ.

We let I be the set of atoms R(t1, . . . , t`) such that one of the following holds:
(a) there exists a run r = ~cτ in rn(Dc, str) with R(xi1 , . . . ,xi`) ∈ τ and tj = cij ∈ ~cτ for

each j ∈ [1, `], or
(b) there exists a run r = ~cτ . . . σihiτi in rn(Dc, str) for i ≥ 1 with R(xi1 , . . . ,xi`) ∈ τi,

where σi is a TGD of the form B → ∃~y.H ∈ Σ such that, for each tj with j ∈ [1, `], the
following holds:
(1) tj is the labelled null r′xij , if

(i) r′ = ~cτ . . . σkhkτk and r = r′ . . . σihiτi with 1 ≤ k ≤ i,
(ii) xij 6∈ hk(fv(σk)), and
(iii) xij ∈ hl(fv(σl)) for each k < l ≤ i if i 6= k.

(2) tj is the constant cij if:
(i) xij ∈ hl(fv(σl)) for each l ∈ [1, i].

First, we show that I is an extension of Dc, that is for each predicate R ∈ sch(Σ) and
for each tuple ~c of constants from dom(Dc), R(~c) ∈ Dc if and only if R(~c) ∈ I. Observe
that, by construction of I, condition (a), Dc is contained in I. That no other ground atom
(that does not appear in Dc) is added to I is ensured by (b) point (2) and by definition of
a strategy, more precisely by condition (C1). That is (C1) guarantees that each type τi in
a run r = ~cτ . . . σihiτi in rn(Dc, str) coincides with the type τi−1 on the shared variables

ICDT 2018

http://dx.doi.org/10.1016/j.websem.2015.02.001

4:20 Rewriting Guarded Existential Rules into Small Datalog Programs

hi(fv(σi)). Thus τi coincides with τ on the variables propagated throughout the run up to
i and that those variables are mapped to the same constants in the core is ensured by (b)
point (2) in the model I constructed above.

We now show that I models (Σ, D). That I |= D results by definition of a core instance
Dc. To prove I |= Σ, we first show that I satisfies all guarded DTGDs in Σ∀. Assume
an arbitrary guarded DTGD σ of the form ϕ →

∨n
i=1Hi in Σ∀ and let h be an arbitrary

substitution from vars(ϕ) to terms(I) such that h(ϕ) ⊆ I. Recall that the guard atom in ϕ
contains all the variables that appear in σ. We show that there must exist an i ∈ [n] with
h(Hi) ∈ I. We distinguish the following two cases:
(i) If h(ϕ) ⊆ Dc, then by definition of a core instance, Dc |= Σ∀. In particular Dc satisfies

σ, that is there exists an i ∈ [n] with h(Hi) ∈ Dc. The latter together with Dc ⊆ I

implies h(Hi) ∈ I.
(ii) Otherwise, let the `-ary atom R(x1, . . . , x`) be the guard atom in ϕ and let h(xi) = ti

for each i ∈ [1, `], such that R(t1, . . . , t`) ∈ I and R(t1, . . . , t`) 6∈ Dc, that is there exists
an i ∈ [1, `] such that ti is a labelled null. Observe that each ti is either a labelled null
rxij , or a constant cij , or a labelled null r′xij where r′ is such that r = r′ . . . σihiτi.
Let tj ∈ {t1, . . . , t`} be the labelled null rxij with the longest prefix run r ∈ rn(Dc, str),
that is there is no k ∈ [1, `] such that tk = r′xik , r′ = rr′′, and r′ 6= r and assume r
is of the form ~cτ . . . σihiτi and note that i ≥ 1. First we claim that the corresponding
R(xi1 , . . . ,xi`) ∈ tail(r) = τi, where each xij is in the position of a labelled null
tj = rxij or the labelled null tj = r′xij with r = r′r′′ or the constant cij ∈ ~cτ . Towards
a contradiction assume R(xi1 , . . . ,xi`) /∈ τi. Then by construction of I, there exists a
run rl ∈ rn(Dc, str) of the form r . . . σlhlτl such that R(xi1 , . . . ,xi`) ∈ tail(rl) and each
variable xi1 with tj = rxij must have been shared throughout the run up to τl from
τi and the other variables must come from earlier types in r. But then by condition
(C1) of the game all types appearing in the run rl from tail(r) = τi to tail(rl) = τl must
coincide on these shared variables and hence the atom R(xi1 , . . . ,xi`) must be in each
type from τl to τi. The latter contradicts the assumption that R(xi1 , . . . ,xi`) /∈ τi.
That R(x1, . . . , x`) is the guard atom in ϕ and that h(ϕ) ⊆ I imply R′(tij , . . . , tik) ∈ I
for all atoms R′(xij , . . . , xik) in ϕ where {tij , . . . , tik} ⊆ {t1, . . . , t`}. Assume an
arbitrary atom R′(xij , . . . , xik) in ϕ that is not the guard atom, that is R′(tij , . . . , tik) ∈
I. We claim that the corresponding R′(xij , . . . ,xik) is also in τi. Let til ∈ {tij , . . . , tik}
be r′xil with the longest prefix run r′ from the terms of R′(tij , . . . , tik). Indeed, if r′ = r

then R′(xil , . . . ,xik) ∈ τi by construction of I. Otherwise observe that r = r′ . . . σihiτi
since til ∈ {t1, . . . , t`}. Then it is clear by construction of I that the atom R′(til , . . . , tik)
is added to I because R′(xil , . . . ,xik) ∈ tail(r′). We claim that R′(xil , . . . ,xik) ∈ τj
for each type τj occurring in the run r from tail(r′) to τi. By assumption that the
guard R(xil , . . . ,xi`) ∈ τi and by construction points (1) and (2), each xij appears
in each type throughout the run from tail(r′) to τi which together with condition
(C2) imply R′(xil , . . . ,xik) must have be carried throughout the run and in particular
R′(xil , . . . ,xik) must be in τi. Finally, with a similar argument one prove the claim if
each tij is a constant from the database.
The above implies that there is a substitution h′ : {x1, . . . , x`} → {xi1 , . . . ,xi`} such
that h′(ϕ) ⊆ τi. Since by construction each r ∈ rn(Dc, str) follows the strategy str
which is non-losing, thus τi ∈ LC(Σ, I), that is τi satisfies the condition LC∀, thus
there exists i ∈ [n] with Hi(xij , . . . ,xik) ∈ τi, hence by construction of I also the
corresponding Hi(tj , . . . , tk) ∈ I and Hi(tj , . . . , tk) = h(Hi(xj , . . . , xk)), which shows
the claim.

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:21

It is left to show that I satisfies all the TGDs σ in Σ∃ of the form B → ∃~y.H. Recall that
fv(σ) is the set of shared variables vars(B)∩ vars(H). Let h be an arbitrary substitution from
vars(B) to terms(I) such that h(B) ∈ I. We show that there exists a substitution h′ from
vars(H) to terms(I) such that h′(H) ∈ I and h′(x) = h(x) for all x ∈ fv(σ). Intuitively, that
B is mapped to I implies there is a run with the corresponding atom in the tail type and hence
there is a substitution from B to the type. This makes the TGD σ applicable to the type,
and by the strategy there exists a new type that satisfies the head preserving the atoms over
the shared variables, and hence there is an h′ that satisfies the above properties. Formally,
let h(B) be the atom B(t1, . . . , t`) ∈ I such that B(t1, . . . , t`) /∈ Dc, that is at least one of
t1, . . . , t` is a labelled null. The case when each ti is a constant, that is B(t1, . . . , t`) ∈ Dc,
is analogous. Let tj ∈ {t1, . . . , t`} be the labelled null rxij that has the longest prefix run
r ∈ rn(Dc, str), that is there is no k ∈ [1, `] such that tk = r′xik , r′ = rr′′, and r′ 6= r.
Then by construction of I there exists a run r ∈ rn(Dc, str) of the form r = ~cτ . . . σihiτi
with i ≥ 1, such that B(xi1 , . . . ,xi`) ∈ τi where each xij is in the position of the labelled
null tj = r′xij or the constant cij in R(t1, . . . , t`). Then let hσ be the substitution from
vars(B) to {xi1 , . . . ,xi`} such that for each x ∈ vars(B), hσ(x) = xij if h(x) is the labelled
null r′xij or the constant cij ∈ ~cτ . Observe that hσ(B) = B(xi1 , . . . ,xi`) ∈ τi. Since str is a
non-losing strategy, str(τi, σ, hσ) is defined and hence there exists a type τ ′i = str(τi, σ, hσ)
and a substitution h′σ : vars(H)→ X such that h′σ(H) ∈ τ ′i . Thus the run r′ = rσhστ

′
i is in

rn(Dc, str) with h′σ(H) ∈ τ ′i . Then, from hσ(fv(σ)) = h′σ(fv(σ)) (condition (C2) in the game)
and by construction of I, h′(H) ∈ I, where h′ is the substitution which coincided with h on
the shared variables fv(σ) and maps the other variables x ∈ vars(H) \ fv(σ) to r′h′σ(x).

For “⇐”, assume an arbitrary model I of (Σ, D) that is an extension of Dc. We can
extract from it a non-losing strategy for Bob as follows. First, let rlz(I) be a the set of
all types realized in I, and observe that rlz(I) ⊆ LC(Σ, Dc) and in particular that, for all
R(~c) ∈ Dc, type(~c, I) ∈ rlz(I). Then it suffices to set, for each type τ ∈ rlz(I) and each TGD
σ ∈ Σ∃ of the form B → ∃~y.H with h(B) ∈ τ , str(τ, σ, h) = τ ′ for an arbitrarily chosen type
τ ′ ∈ rlz(I) that satisfies (C1) and (C2) which exists because I is a model, hence it satisfies
all DTGDs in Σ. This str is a non-losing strategy for Bob. J

Proof. (Proof of Theorem 7.) For the “⇒” direction, let str be a non-losing strategy on Dc.
It suffices to show that if a type is marked then it cannot occur in a run that follows str,
which implies that if a type realized in Dc is marked by the algorithm Mark(Σ), then there
is no non-losing strategy for Dc. The proof is by induction in the number of iterations needed
to mark a type. For the base case, k = 0, assume a type τ ∈ types(Σ) is marked by (M∀) in
the algorithm Mark(Σ), then τ doesn’t satisfy (LC∀, that is τ /∈ LC(Σ, Dc). Hence there
cannot exist a run r with tail(r) = τ since this contradicts the definition of non-losing str.

For the induction hypothesis, assume the claim holds for the first k iterations, that is
assume that every type marked by the algorithm Mark(Σ) from (M∀) or in the first k
iterations of (M∃) doesn’t occur in a run that follows str. We show that the claim holds also
for the next type that gets marked by (MΣ). Thus for the inductive case, let τ ∈ types(Σ) be
the first type marked by the algorithm after some iteration j > k of (M∃) and let σ ∈ Σ∃ of
the form B → ∃~y.H and h : vars(B)→ X with h(B) ∈ τ , be the TGD and the substitution,
respectively, chosen at that step. Let fv(σ) = vars(B) ∩ vars(H). Towards a contradiction,
assume there exists a run r that follows str and tail(r) = τ . By assumption and definition
of non-losing str, then there must exist a type τ ′ = str(τ, σ, h) s.t. τ ′ ∈ LC(Σ, Dc), and
it satisfies conditions (C1) and (C2) of the game. But since τ gets marked then for each
τi ∈ types(Σ), either τi is marked at some earlier step in the algorithm Mark(Σ), and then
by hypothesis this type cannot appear in a run, or τi doesn’t satisfy conditions (C1) or (C2).

ICDT 2018

4:22 Rewriting Guarded Existential Rules into Small Datalog Programs

It follows that there exists no τi that can define str(τ, σ, h) which contradicts that str is a
non-losing strategy.

For the “⇐” direction, let good(Σ) ⊆ types(Σ) be the set of all types that are not
marked by the algorithm Mark(Σ), that is good(Σ) ⊆ LC(Σ, Dc). By assumption the types
realized in Dc are not marked. We can build a strategy str on Dc which maps all pairs
of a type τ ∈ good(Σ) and each TGD σ ∈ Σ∃ of the form B → ∃~y.H and substitution
h : vars(B)→ X with h(B) ∈ τ to an arbitrary type τ ′ ∈ good(Σ) such that (C1) and (C2)
hold, that is τ |h(fv(σ)) = τ ′|h(fv(σ)), and there exist a substitution h′ : vars(H) → X with
h(fv(σ)) = h′(fv(σ)) such that h′(H) ∈ τ ′. Such construction of str is possible since if there
would not exists a τ ′ = str(τ, σ, h) then τ would be marked by the algorithm as some iteration
of (M∃). We claim that str is a non-losing strategy on Dc. Towards a contradiction, assume
str is not a non-losing strategy on Dc, that is there exists a finite run r with tail(r) = τ that
follows str, such that either tail(r) /∈ LC(Σ, Dc) or there exists some TGD σ ∈ Σ∃ of the form
B → ∃~y.H and a substitution h : vars(B)→ X with h(B) ∈ τ and str(τ, σ, h) is not defined.
By construction of str, tail(r) ∈ good(Σ), hence it cannot be the case that tail(r) /∈ LC(Σ, Dc),
because then τ doesn’t satisfy (LC∀) and as a consequence τ would be marked by (M∀) in the
algorithm, which then contradicts our assumption that τ is not marked. For the other case,
using similar reasoning as for the “⇒” direction, if str(τ, σ, h) is not defined then there exists
some iteration of (M∃) that would mark tail(r), which again contradicts our assumption.
Hence, str constructed as above is a non-losing strategy for Bob on Dc. J

A.2 Proofs of Section 4
Proof. (Proof of Proposition 9.) This proof is similar to the proof of Theorem 3 in [1].
Program P can be partitioned into programs P1 and P2 as follows:

P1 consists of all rules in (I) and (II). P1 is a positive disjunctive program with at most
w variables in each rule.
P2 consists of the remaining rules, and is disjunction-free.

Note that P2 does not define any relations used in P1, i.e. none of the relation symbols of P1
occurs in the head of a rule in P2. Assume a set F of facts over the signature of P1. Due
to the above properties, the successful runs of the following non-deterministic procedure
generate the set of all models of P ∪ F :
(S1) Compute a minimal model I1 of P1 ∪ F .
(S2) Compute the least model I2 of I1∪P I1

2 . If I2 does not exist due to a constraint violation,
then return failure.

Since P1 has at most w-variables in every rule, each minimal model I1 of P1∪F is of polynomial
size in the size of P1 ∪ F , and the set of all such models can be traversed in polynomial
space. For a given I1, performing step (S2) is feasible in (deterministic) exponential time,
because P I1

2 is a ground disjunction-free positive program of exponential size. It follows
that computing the answers to (P, q) for any given input database D over the schema sch(Σ)
requires single deterministic exponential time and is coNP in data complexity. J

A.3 Proofs of Section 5
Proof. (Proof of Lemma 12.) To show the “⇒” direction, we consider an arbitrary run of
the algorithm that starts at N0 = {(τc, ∅) | τc ∈M} with M = Marked(Σ), and we let Ni be
the set N after the i-th iteration of the algorithm. (Note that although different runs may
generate different sequences of Nis, this is irrelevant for the proof, and the final Horn(Σ)
is unique). We show that (τc, τir) ∈ Ni implies that τc ∪ τ ′ir ∈ M for each τ ′ir ⊆ τir, by

S. Ahmetaj, M. Ortiz, and M. Šimkus 4:23

induction on the minimal i such that (τc, τir) ∈ Ni. The claim holds trivially for i = 0.
Next, assume (τ ′c, τ ′ir) ∈ Ni+1 but (τ ′c, τ ′ir) 6∈ Ni. Then there are {(τc, τir), (τ ′c, τir)} ⊆ Ni
with τc = τ ′c ∪ {α} for some α 6∈ τc, and τ ′ir = τir ∪ {α}. By hypothesis τ ′c ∈ M and
τc = τ ′c ∪ {α} ∈ M . Moreover, for any subset τ ′′ir ⊆ τ ′ir: if {α} /∈ τ ′′ir then τ ′′ir ⊆ τir and by
hypothesis τ ′c ∪ τ ′′ir ∈M ; otherwise if {α} ∈ τ ′′ir then τ ′c ∪ {α} = τc and τ ′′ir \ {α} ⊆ τir and
again by hypothesis τc ∪ (τ ′′ir \ {α}) ∈M .

We show the “⇐” direction by induction on the size of τir. Let M = Marked(Σ) and
N = Horn(Σ). For τir = ∅, by construction (τc, ∅) ∈ N . Assume the claim holds for all
abstract types with τir of size k ≤ |A| − |τc| − 1. We show it for k + 1. Assume τc ∪ τ ′ir ∈M
for each τ ′ir ⊆ τir with |τir| = k + 1. In particular, it must hold for an arbitrary τ ′ir ⊆ τir
with |τ ′ir| = k. Thus by hypothesis (τc, τ ′ir) ∈ N . Now, let {α} = τir \ τ ′ir. By assumption
τc ∪ {α} ∪ τ ′′ir ∈M for each τ ′′ir ⊆ τ ′ir. As |τ ′ir| = k, again by hypothesis (τc ∪ {α}, τ ′ir) must
also be in the set N . But then (τc∪{α}, τ ′ir) ∈ N and (τc, τ ′ir) ∈ N implies (τc, τ ′ir∪{α}) ∈ N
by algorithm Horn, that is (τc, τir) ∈ N . J

Let ϕ be a disjunction of atoms. In what follows, for an instance I, we write I |= ϕ if
some atom from ϕ is in I, and I 6|= ϕ otherwise.

Proof. (Proof of Lemma 13.) Let M = Marked(Σ) and N = Horn(Σ). For convenience, we
denote the atoms in τir by αir

1 , . . . ,α
ir
l , and the disjunction of the atoms in A \ (τc ∪ τir) by

AH
∨ . For the “⇒” direction, as (τc, τir) ∈ N , we know from Lemma 12 that τc ∪ τir ∈ M ,

and by Lemma 10, Σ |= τc, τir → AH
∨ . To show that Σ |= τc → AH

∨ , we argue that one can
always remove any of the atoms αir

i with 1 ≤ i ≤ ` from the rule and the new rule obtained
will still be entailed by the theory. The claim is trivial for l = 0. Let αir

i be an arbitrary
atom in τir and let τ ′ir = τir \ {αir

i }. From Lemma 12, we know that τc ∪ τ ′ir ∈ M , thus
Σ |= τc, τ

′
ir → AH

∨ ∨ αir
i (*). But by assumption Σ |= τc, τ

′
ir ,α

ir
i → AH

∨ (**). Then one
can eliminate the atom αir

i and the resulting rule will is still entailed by the theory, that is
Σ |= τc, τ

′
ir → AH

∨ . Assume towards a contradiction that there exists a model I of Σ, and a
substitution h such that h(τc ∪ τ ′ir) ⊆ I, but I 6|= h(AH

∨). From this and (*), it follows that
h(αir

i) ⊆ I, but then by (**), I 6|= h(AH
∨ (a)), a contradiction. So Σ |= τc, τ

′
ir → AH

∨ .
For the “⇐” direction, Σ |= τc → AH

∨ implies Σ |= τc → τir ∨AH
∨ . But then by Lemma

10, τc ∈M . Now, it easy to see that for every τ ′ir ⊆ τir , we have Σ |= τc, τ
′
ir → AH

∨ ∨τ ′′∨ (***),
where τ ′′∨ is the disjunction of all atoms in τir \τ ′ir . Indeed, if this were not the case, then there
would exist a model I of Σ and a substitution h such that h(τc, τ ′ir) ⊆ I and I 6|= h(AH

∨ ∨ τ ′′∨).
But then I 6|= h(AH

∨), which contradicts our assumption. Now, (***) implies τc ∪ τ ′ir is a
marked type for each τ ′ir ⊆ τir , and thus by Lemma 12, (τc, τir) ∈ N follows. J

Proof. (Proof of Lemma 14.) Let |A| = n. First, notice that |τc| ≥ n − 1, implies that
(τc, ∅) ∈ M is the desired abstract type. Now, assume |τc| < n − 1. Then by Lemma 10,
Σ |= τc → α1 ∨ . . . ∨ α` with {α1, . . . ,αn} = A \ τc. Since Σ is a set of (non-disjunctive)
TGDs, by the property of convexity there exists i ∈ {1, . . . , `} such that Σ |= τc → αi. Then,
by Lemma 13, we have (τc, {α1, . . . ,α`} \ {αi}) ∈ N , which proves the claim. J

Proof. (Proof of Theorem 15.) Let M = Marked(Σ) and N = Horn(Σ), and let ΣM be the
set of all rule(τ) with τ ∈M . By Lemma 10, it is sufficient to show that Σ |= ΣM if and only
if Σ |= ΣHorn. For the “⇒” direction, it suffices to show that for every rule in ΣM there exists
a more restricted rule in ΣHorn that is also entailed by the theory. To this end, let τc → AH

∨
be an arbitrary rule in ΣM , where τc ∈ M and AH

∨ =
∨

α∈A\τc
α. By Lemma 14 there

exists an abstract type (τc, τir) in M with |τ |+ |τir| ≥ |A| − 1. Hence τc → α ∈ ΣHorn for
{α} = A \ (τ ∪ τir), and by Lemma 13, Σ |= τc → α. For the “⇐” direction, it is easy to see

ICDT 2018

4:24 Rewriting Guarded Existential Rules into Small Datalog Programs

that for every rule in ΣHorn there exists a more general rule in ΣM . That is, for an arbitrary
τc → AH

∨ in ΣHorn with AH
∨ a disjunction over the set of atoms AH , by Lemma 13, we have

(τc, τir) ∈ N for τir = A \ (τc ∪AH). Then by Lemma 12, τc ∈M , hence τc → AH
∨ ∨ τ ′′∨ is

in ΣM , where τ ′′∨ is the disjunction of the atoms in τir. J

	Introduction
	Preliminaries
	Counter Models
	Translation into Datalog^{or}
	Non-Disjunctive TGDs
	From Marked Types to Horn Rules
	Translation into Datalog

	Discussion and Conclusions
	Appendix
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5

