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Abstract
Regular path queries (RPQs) are a central component of graph databases. We investigate
decision- and enumeration problems concerning the evaluation of RPQs under several seman-
tics that have recently been considered: arbitrary paths, shortest paths, and simple paths.

Whereas arbitrary and shortest paths can be enumerated in polynomial delay, the situation is
much more intricate for simple paths. For instance, already the question if a given graph contains
a simple path of a certain length has cases with highly non-trivial solutions and cases that are
long-standing open problems. We study RPQ evaluation for simple paths from a parameterized
complexity perspective and define a class of simple transitive expressions that is prominent in
practice and for which we can prove a dichotomy for the evaluation problem. We observe that,
even though simple path semantics is intractable for RPQs in general, it is feasible for the vast
majority of RPQs that are used in practice. At the heart of our study on simple paths is a
result of independent interest: the two disjoint paths problem in directed graphs is W[1]-hard if
parameterized by the length of one of the two paths.
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1 Introduction

Regular path queries (RPQs) are a crucial feature of graph database query languages, since
they allow us to pose queries about arbitrarily long paths in graphs. Essentially, RPQs
are regular expressions that are matched against labeled directed paths in graph databases.
Currently, the openCypher project [33] and the World Wide Web Consortium (W3C) [39]
are considering how RPQ evaluation can be formally defined for the development of Neo4j’s
Cypher [31, 34] and SPARQL 1.1 [38], respectively. Several popular candidates that are
being considered for the semantics of RPQs are arbitrary paths, shortest paths, and simple
paths ([3, Section 4.4], [34]).
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19:2 Evaluation and Enumeration Problems for Regular Path Queries

We briefly explain these semantics. Given a graph, an RPQ r considers directed paths for
which the labels on the edges form a word in the language of r. We call such paths candidate
matches. The different semantics restrict the kind of paths that match the RPQ, i.e., can
be returned as answers. Arbitrary paths imposes no restriction and returns every candidate
match. Shortest paths, on the other hand, only returns the shortest candidate matches and
simple paths only returns candidate matches that do not have duplicate nodes.

Under arbitrary paths, the number of matches may be infinite if the graph is cyclic. This
may pose a challenge for designing the query language, even if one does not choose to return
all matching paths. Indeed, a well-known semantics of RPQs is to return node pairs (x, y)
such that there exists a matching path from x to y. Under bag semantics for node pairs,1
where each (x, y) is returned as often as the number of matches from x to y, one needs to
deal with the case where this number is infinite.

Under shortest paths and simple paths, the number of matching paths is always finite,
which simplifies the aforementioned design challenge. However, these two versions face other
challenges. Simple paths may present complexity issues. Two fundamental problems are that

counting the number of simple paths between two nodes is #P-complete [37] and
deciding if there exists a simple path of even length between two given nodes is NP-
complete [23].

Indeed, the first problem implies that evaluating the RPQ a∗ under bag semantics is #P-
complete and the second one implies that deciding if the RPQ (aa)∗ returns at least one
answer is NP-complete.2 Shortest paths does not have these complexity issues, but it is
unclear if its semantics is very natural. For instance, under shortest paths semantics, if we
ask how many paths exist from x to y, then this number may decrease if a new, shorter,
path is added.3 This may seem counter-intuitive to users.

Since it seems that there is no one-size-fits-all solution, the openCypher project team
recently proposed to support several kinds of semantics for Cypher [34]. This situation
motivated us to shed more light on evaluation of RPQs and enumerating the answers, focusing
on the following aspects:

Our goal is to better understand enumerating the paths that match RPQs. That is, we
study problems where the task is to enumerate all matching paths without duplicates.
We are interested in which situations it is possible to answer queries in polynomial delay,
i.e., such that the time between consecutive answers is polynomial. To reach this goal,
we must also improve our understanding for some decision problems related to RPQ
evaluation.
We take into account a recent study that investigated the structure of about 250K RPQs
gathered from a wide range of SPARQL query logs [8]. It turns out that all these
RPQs have a relatively simple structure, which is remarkable because their syntax is not
restricted by the SPARQL recommendation.

Our contributions are the following.
1. We first observe that enumeration of arbitrary or shortest paths that match a given RPQ

can be done in polynomial delay (Section 3).
2. We then turn to simple paths and study RPQ evaluation as a decision problem. This

problem is challenging because it contains subproblems that are quite non-trivial. One

1 SPARQL 1.1 uses such a bag semantics approach.
2 It is also known that answering the RPQ a∗ba∗ under simple path semantics is at least as difficult as

the Two Disjoint Paths problem [29].
3 Notice that each semantics only returns or counts the number of paths that match.
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such subproblem is testing if there exists a directed simple path of length logn between
two given nodes in a graph with n nodes, which was shown to be in PTIME by Alon et
al., using their color coding technique [2]. The question if it can be decided in PTIME if
there is a simple path of length log2 n [2] is an open problem since two decades. Notice
that these two problems are special cases of RPQ evaluation under simple path semantics
(i.e., evaluate the RPQs alog n and alog2 n in a graph where every edge has label a).
We therefore investigate RPQ evaluation from the angle of parameterized complexity
(Section 4). We introduce the class of simple transitive expressions (STEs) that capture
over 99% of the RPQs that were found in SPARQL query logs in a recent study [8].
We identify a property of STEs that we call cuttability and prove a dichotomy, showing
that the parameterized complexity for evaluating STEs R is in FPT if R is cuttable and
W[1]-hard otherwise. Examples of cuttable classes of expressions are {aka∗ | k ∈ N} and
{(a+b)ka∗ | k ∈ N}. Examples of non-cuttable classes are {akb∗ | k ∈ N}, {akba∗ | k ∈ N},
and {ak(a+ b)∗ | k ∈ N}.

3. At the core of the dichotomy are two results of independent interest (Section 5). The first
is by the authors of [16], who showed that it can be decided in FPT if there is a simple
path of length at least k between two nodes in a graph (Theorem 9). The second shows
that the Two Disjoint Paths problem is W[1]-hard when parameterized by the length of
one of the two paths (Theorem 11).

4. We then turn to enumeration of simple paths and prove that the dichotomy on STEs
carries over to the enumeration setting. We also study the data complexity and show
that Bagan et al.’s dichotomy for deciding the existence of a simple path that matches an
RPQ [5] carries over to enumeration problems (Section 6).

Putting everything together, we see that, although simple path semantics leads to high
complexity in general, its complexity for RPQs that have been found in SPARQL query logs
is reasonable. We discuss this in the conclusions.

Related Work

RPQs on graph databases have been studied since the end of the 80’s [10, 11, 40]. Given a
graph database G, an RPQ r, and two nodes s and t, there are several natural fundamental
problems associated to RPQ evaluation.

The decision problem: Does r match a path from s to t in G?

The counting problem: How many paths from s to t does r match?

The computation problem: Compute the set of paths from s to t for which r matches.
The decision problem is well known to be tractable for arbitrary and shortest paths by
standard automata techniques. Mendelzon and Wood [29] studied the problem for simple
paths. They observed that the problem is NP-complete for a∗ba∗ and (aa)∗. These two
results heavily rely on the work of Fortune et al. [17], who showed NP-completeness of the
two disjoint paths problem, and Lapaugh and Papadimitriou [23], who showed that the even
length simple path problem is NP-complete.

Bagan et al. [5] provided a dichotomy for the data complexity of the decision problem.
They defined a class Ctract such that the problem is in PTIME for each language in Ctract
and NP-complete otherwise.

ICDT 2018



19:4 Evaluation and Enumeration Problems for Regular Path Queries

The counting problem for arbitrary paths is #P-complete in general [21].4 However, if
the RPQ is represented by a deterministic automaton (or even an unambiguous one), the
counting problem is in PTIME [26], since it reduces to counting the number of paths in a
graph. The complexity results for arbitrary paths can easily be extended to shortest paths.
Indeed, all words have equal length in Kannan et al.’s #P-hardness proof [21] and the PTIME
algorithm also works if we need to count the words of a given length n.

Concerning simple paths, we know from the classical result of Valiant [37] that counting
the number of simple paths between two given nodes in a graph is #P-complete. This
immediately implies that counting is already #P-hard for the RPQ a∗.

Concerning the computation problem, Ackermann and Shallit [1] proved that one can
enumerate the words accepted by a given NFA in polynomial delay. This is easily extended
to RPQ evaluation w.r.t. arbitrary paths and shortest paths, as we observe in Section 3.
Concerning simple paths, Yen’s algorithm [41] is a method to enumerate all simple paths
between two given nodes in polynomial delay. We build on this result in Section 6.

Yen’s algorithm was generalized by Lawler [24] and Murty [30] to a tool for designing
general algorithms for enumeration problems. Lawler-Murty’s procedure has been used for
solving enumeration problems in databases in various contexts [18, 20, 22].

Further related work concerning RPQs on graph databases are studies about the complex-
ity of SPARQL 1.1 property paths [4, 26], which are relevant because property paths extend
RPQs. Their semantics is a mixture between arbitrary path and simple path semantics.
The relative expressive power of graph query languages using transitive closures, data value
comparisons, and branching was investigated in [25, 36]. Finally, we refer to [3, 6] for general
overviews of the wide literature on graph databases.

2 Preliminaries

By Σ we always denote an alphabet, that is, a finite set. A (Σ-)symbol is an element of Σ. A
word (over Σ) is a finite sequence w = a1 · · · an of Σ-symbols. The length of w, denoted by
|w|, is its number of symbols n. We denote the empty word by ε.

We assume familiarity with regular expressions and finite automata. The regular ex-
pressions we use in this paper are defined as follows: ∅, ε and every Σ-symbol is a regular
expression; and when r and s are regular expressions, then (rs), (r + s), (r?), (r∗), and
(r+) are also regular expressions. From now on, we use the usual precedence rules to omit
parentheses. The size |r| of a regular expression is the number of occurrences of Σ-symbols in
r. For example, |aba∗| = 3. We define the language L(r) of r as usual. Since it is easy to test
if L(r) = ∅ for a given expression r, we assume in this paper that L(r) 6= ∅ for all expressions,
unless mentioned otherwise. For n ∈ N, we use rn to abbreviate the n-fold concatenation
r · · · r of r. We abbreviate (r?)n by r≤n. In the context of graph databases, regular path
queries (RPQs) are regular expressions that can be evaluated on graphs and return an output.
In this paper, we will blur the distinction between them (language acceptors vs. queries) and
use “regular expression” and RPQ as synonyms.

A non-deterministic finite automaton (NFA) N over Σ is a tuple (Q,Σ,∆, QI , QF ), where
Q is a finite set of states, Σ is a finite alphabet, ∆ : Q × Σ × Q is the transition relation,
QI ⊆ Q is the set of initial states, and QF is the set of accepting states. By δ∗(w) we denote
the set of states reachable by N after reading w, that is, δ∗(ε) = QI and, for every word w

4 Kannan et al. proved that counting the number of words accepted by a non-deterministic automaton
for a finite language is #P-complete. This result trivially extends to RPQ evaluation.
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and symbol a, we define δ∗(wa) = {δ(q, a) | q ∈ δ∗(w)}. The size of an NFA is |Q|, i.e., its
number of states. We define the language L(N) of N as usual.

2.1 Graph Databases
We use edge-labeled directed graphs as abstractions for graph databases. A graph G (with
labels in Σ) will be denoted as G = (V,E), where V is the finite set of nodes of G and
E ⊆ V × Σ× V is the set of edges. We say that edge e = (u, a, v) goes from node u to node
v and has label a. We use a-edge to refer to an edge with label a. Sometimes we write an
edge as (u, v) ∈ V × V if the label does not matter. In this paper, we assume that graphs
are directed, unless mentioned otherwise. Notice that our definition allows graphs to have
self-loops and multi-edges. The size of a graph G, denoted by |G| is |V |+ |E|.

We assume familiarity with basic terminology on graphs. A path from node u to node v
in G is a sequence p = (v0, a1, v1)(v1, a2, v2) · · · (vn−1, an, vn) of edges in G such that u = v0
and v = vn. For 0 ≤ i ≤ n, we denote by p[i, i] (or p[i]) the node vi and, for 0 ≤ i < j ≤ n,
we denote by p[i, j] the subpath (vi, ai+1, vi+1) . . . (vj−1, aj , vj). A path p is simple if all
nodes v0, . . . , vn are pairwise different.5 The length of p, denoted |p|, is the number n of
edges in p. By definition of paths, we consider two paths to be different if they are different
sequences of edges. In particular, two paths going through the same nodes in the same order,
but using different edge labels are different.

The set of nodes of path p is V (p) = {v0, . . . , vn}. The word of p is a1 · · · an and is
denoted by lab(p). Path p matches a regular expression r (resp., NFA N) if lab(p) ∈ L(r)
(resp., lab(p) ∈ L(N)). The concatenation of paths p1 = (v0, a1, v1) · · · (vn−1, an, vn) and
p2 = (vn, an+1, vn+1) · · · (vn+m−1, an+m, vn+m) is simply the concatenation p1p2 of the two
sequences.

We will often consider a graph G = (V,E) together with a source node s and a target
node t, for example, when considering paths from s to t. We denote such a graph with source
s and target t as (G, s, t) and define its size |(G, s, t)| as |G|.

The product of graph (G, s, t) and NFA N = (Q,Σ,∆, QI , QF ) is a graph (V ′, E′) with
V ′ = (V × Q) and E′ = {((u1, q1), a, (u2, q2)) | (u1, a, u2) ∈ E and (q1, a, q2) ∈ ∆}. We
denote this product by (G, s, t)×N . Notice that simple paths in (G, s, t)×N may use nodes
(u, q1) 6= (u, q2) and may therefore correspond to non-simple paths in G.

2.2 Decision and Enumeration Problems
We consider the following problems, where G is always a graph, s and t are nodes in G, and
r is an RPQ.

Path: Given (G, s, t) and r, is there a path from s to t that matches r?
SimPath: Given (G, s, t) and r, is there a simple path from s to t that matches r?

An enumeration problem P is a (partial) function that maps each input i to a finite or
countably infinite set of outputs for i, denoted by P(i). Terminologically, we say that, given
i, the task is to enumerate P(i). We consider the following enumeration problems:

EnumPaths: Given (G, s, t) and r, enumerate the paths in G from s to t that match r.
EnumShortPaths: Given (G, s, t) and r, enumerate the shortest paths in G from s to t
that match r.

5 We focus on node-distinct paths in this paper, but one can also consider edge-distinct paths. We come
back to this in the conclusions.

ICDT 2018



19:6 Evaluation and Enumeration Problems for Regular Path Queries

EnumSimPaths: Given (G, s, t) and r, enumerate the simple paths in G from s to t that
match r.

An enumeration algorithm for P is an algorithm that, given input i, writes a sequence of
answers to the output such that every answer in P(i) is written precisely once. If A is an
enumeration algorithm for an enumeration problem P, we say that A runs in polynomial
delay if the time before writing the first answer and the time between writing every two
consecutive answers is polynomial in |i|.

For a class R of regular expressions, we denote by Path(R) the problem Path where we
always assume that r ∈ R. We use the same convention for all other decision- and enumeration
problems. We assume familiarity with the notions combined and data complexity. In our
decision problems, (G, s, t) is the data and r is the query.

3 Enumerating All Regular Paths and Shortest Regular Paths

It is well known that Path(R) is in PTIME for the complete class R of RPQs. Indeed, one
only needs to construct the product of the graph and an NFA N for the RPQ and test
if (t, qf ) is reachable from (s, q0), where q0 and qf are an initial and an accepting state
of N , respectively. We note that this favorable complexity carries over to EnumPaths and
EnumShortPaths. At the core lies the following result by Ackerman and Shallit.

I Theorem 1 (Theorem 3 in [1]). Given an NFA N , enumerating the words in L(N) can be
done in polynomial delay.

This result generalizes a result of Mäkinen [27], who proved that the words in L(N) can be
enumerated in polynomial delay if N is deterministic. Ackermann and Shallit genereralized
his algorithm for nondeterministic N and proved that, for a given length n (which they call
cross-section), the lexicographically smallest word in L(N) can be found in time O(|Q|2n2)
([1], Theorem 1). They then prove that the set of all words of length n can be computed in
time O(|Q|2n2 + |Σ||Q|2x), where x is the sum of the lengths of the words that were written
to the output ([1], Theorem 2). A closer inspection of their algorithm actually shows that it
has delay O(|Σ||Q|2|w|) where |w| is the size of the next output. In fact, Ackermann and
Shallit prove that the words in L(N) can be enumerated in radix order.6

It is easy to extend the algorithm of Ackerman and Shallit to solve EnumPaths in
polynomial delay as follows. We construct an NFA Nr for r and take the product with
(G, s, t). The product automaton therefore has states (u, q) where u is a node from G and q
a state from Nr. In the resulting automaton, we replace every transition [(u1, q1), a, (u2, q2)]
with [(u1, q1), (u1, a, u2), (u2, q2)]. Enumerating the words from the resulting automaton
corresponds to enumerating the paths from s to t that match r. Using Theorem 1, we have
the following corollary.

I Corollary 2. EnumPaths and EnumShortPaths can be solved in polynomial delay.

For completeness, we note that counting the number of paths from s to t that match a
given regular expression r is #P-complete in general, even if G is acyclic, see [26, Theorem
4.8(1)] and [4, Theorem 6.1].7 The same holds for counting the number of shortest paths,
since all paths in the proof of [26, Theorem 4.8(1)] have equal length.

6 That is, w1 < w2 in radix order if |w1| < |w2| or |w1| = |w2| and w1 is lexicographically before w2.
7 Arenas et al. [4] actually prove that the problem is spanL-complete. Although it is not known if spanL

= #P, they are equal under Cook reductions.
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4 Deciding Existence of Simple Paths

We now turn to simple paths, which will require much more effort. First, we focus on the
decision problem SimPath, where our main result will be a dichotomy for simple transitive
expressions (STEs), a very restricted class of RPQs.

We will investigate SimPath from a parametrized complexity perspective. The main
reason is that the size of the regular expression has a drastic effect on the complexity of the
problem. Indeed, if G is a graph with n nodes and only a-edges, then asking if there is a
simple path that matches the expression an−1 is the NP-complete Hamilton Path problem.
On the other hand, Alon et al. [2] proved that SimPath for graphs with n nodes is in PTIME
for the language alog n. It is open8 since 1995 whether SimPath is in PTIME for alog2 n [2].

So, even very elementary RPQs of the form ak can behave very differently depending on
the relationship between k and the size of the graph. This motivates us to study the problem
from the angle of parameterized complexity.

4.1 Parameterized Complexity
We first give a quick overview of some notions in parameterized complexity. We follow the
exposition of Cygan et al. [12] and refer to their work for further details. A parameterized
problem is a language L ⊆ Σ∗ × N where, as before, Σ is a fixed, finite alphabet. For an
instance (x, p) ∈ Σ∗ × N, we call p the parameter. The size |(x, p)| of an instance (x, p) is
defined as |x| + p. A parameterized problem L is called fixed-parameter tractable if there
exists an algorithm A, a computable function f : N→ N, and a constant c such that, given
(x, p) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, p) ∈ L in time bounded
by f(p) · |(x, p)|c. The complexity class containing exactly the fixed-parameter tractable
problems is called FPT.

In the remainder of this section, we will study the parameterized complexity of SimPath.
The instances (x, p) of this problem will always be such that x encodes the graph G and
regular expression r, and the parameter p is |r|. For this reason, we overload notation and
also denote the parameterized problem as SimPath.

4.2 Some Illustrations of the Dichotomy
Before we present our main dichotomy, we illustrate a few of its implications to give the
reader some intuition about the result. In the following, we abbreviate the class of regular
expressions {ak | k ∈ N} simply by “ak”, and similar for a≤k, aka∗, akb∗, akba∗, baka∗, etc.

In the following Theorem, we consider problems SimPath(R), where R is one of the
abovementioned classes.

I Theorem 3.
(a) SimPath(ak), SimPath(a≤k), SimPath(aka∗), and SimPath(baka∗) are in FPT.
(b) SimPath(bka∗) and SimPath(akba∗) are W[1]-hard.

8 Recently, Björklund et al. [7] showed that, under the Exponential Time Hypothesis, there is no PTIME
algorithm that can decide if there exists a simple path of length Ω(f(n) log2 n) between two nodes in a
graph of size n for any nondecreasing polynomial time computable function f that tends to infinity.

ICDT 2018
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Table 1 Structure of the 247,404 SPARQL property paths that were also used in the query logs
investigated by Bonifati et al. [8]. The structure is sometimes in terms of a variable ` ∈ N, for
which the second column indicated the values that were found in the logs. Relative indicates which
percentage of the 247,404 property paths have this structure.

Expression Type ` Relative STE? Expression Type ` Relative STE?

(a1 + · · ·+ a`)∗ 2–4 29.10% yes a∗b? < 0.01% yes
. 25.48% yes(∗) abc∗ < 0.01% yes

a∗ 19.66% yes A1 · · ·A` 2,6 < 0.01% yes
a1 · · · a` 2–6 8.66% yes .∗ < 0.01% yes(∗)

a∗b 7.73% yes (a1 + a2)? < 0.01% yes
(a1 + · · ·+ a`) 1–6 6.61% yes .? < 0.01% yes(∗)

(a1 + · · ·+ a`)+ 1,2 1.54% yes a∗ + b < 0.01% no
a1?a2? · · · a`? 1–3,5 1.15% yes a + b+ < 0.01% no
a(b1 + b2)? 0.01% yes a+ + b+ < 0.01% no

a1a2? · · · a`? 2,3 0.01% yes (ab)∗ < 0.01% no
(ab∗) + c < 0.01% no

We see that, even though all classes of regular expressions in Theorem 3 are similar, the
complexities are drastically different (assuming FPT 6= W[1]). The intuition is twofold:
1. “Short” paths can be dealt with using Color Coding [2] (or Bagan et al.’s extension thereof

that incorporates finite regular languages [5, Theorem 6]). This explains why SimPath(ak)
and SimPath(a≤k) are in FPT.

2. If paths can become arbitrarily long, the complexity depends on the interplay between
the symbol in the transitive closure (which is always a here) and the rest. The intuition
is that symbols that are “incompatible” with a (which is always b here) should only occur
on positions that are a constant distance away from the beginning or end of words in the
language. This explains why SimPath is in FPT for the classes aka∗ (no incompatible
symbols) and baka∗ (b is always on position one). Likewise, for the classes bka∗ and
akba∗, the symbol b can occur at positions arbitrarily far away from the beginning and
end of words in the languages.

4.3 Dichotomy for Simple Transitive Expressions
We now aim at generalizing the results in Theorem 3 to more general RPQs which we call
simple transitive expressions (STEs). Although STEs are very restricted, we feel that they
are relevant and important from a practical perspective since they constitute more than
99.99% of the SPARQL property paths found in query logs in an extensive recent study [8].
Notice that SPARQL property paths strictly extend RPQs. Their syntax is not restricted
to a subset of regular expressions as, e.g., in Cypher patterns for “variable length pattern
matching” [32, Section 3.2.7.7].

In the following definition, we use sets A = {a1, . . . , an} ⊆ Σ to abbreviate expressions
(a1 + · · ·+ an). We allow A = ∅, in which case L(A) = ∅.

I Definition 4. An atomic expression is of the form A ⊆ Σ. A bounded expression is a
regular expression of the form A1 · · ·Ak or A1? · · ·Ak?, where k ≥ 0 and each Ai is an atomic
expression. Finally, a simple transitive expression (STE) is a regular expression

BpreT
∗Bsuff,

where Bpre and Bsuff are bounded expressions and T is an atomic expression.
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The central idea for STEs is that they can first perform some local navigation in Bpre, then
an optional transitive part, followed by a second step of local navigation in Bsuff. The local
navigation steps allow to test paths of length exactly k or at most k, for some k ∈ N. The
transitive part is optional, since one can take T = ∅, so that T ∗ only matches ε.

We believe that STEs capture many RPQs that users ask in practice. Bonifati et al. [8]
investigated the structure of 247,404 SPARQL property paths from query logs. Table 1
presents a classification of their raw data that facilitates comparison to RPQs. SPARQL
property paths can express wildcard tests, which we denote by “.” (similar to regexes).
Furthermore, SPARQL uses reverse edges (“ˆa” means “follow an a-edge in reverse direction”),
which we treat the same as a normal label test. Under Expression Type, the table summarizes
which types of expressions are in Bonifati et al.’s data set, sometimes parameterized by a
number ` for which the next column describes the values that were found. Relative describes
which percentage of the 247,404 expressions fall into this expression type, and STE? indicates
whether the expression is an STE. Here, we write “yes(∗)” to indicate that the expression is
an STE if a wildcard is treated the same as a set of labels A. (Our algorithms indeed can be
generalized to incorporate wildcards.)

In total, we saw that only 20 property paths are not STEs or trivially equivalent to an
STE (by taking T = ∅ in the definition of STEs, for example).9 For instance, the expression
type a1a2? · · · a`? is equivalent to an STE where Bpre = a1, T = ∅, and Bsuff = a2? · · · a`?.
In summary, 99.992% of the property paths in Table 1 correspond to STEs.

We now define the notions that we need for the dichotomy.

I Definition 5. Let r = BpreT
∗Bsuff be an STE with L(r) 6= ∅. If Bpre = A1 · · ·Ak1 , then

the left cut border c1 of r is the largest value such that T 6⊆ Ac1 if it exists and zero otherwise.
If Bpre = A1? · · ·Ak1?, then the left cut border is zero. Symmetrically, if Bsuff = A′k2

· · ·A′1,
then the right cut border c2 of r is the largest value such that T 6⊆ A′c2

if it exists and zero
otherwise. (Notice that the indices in Bsuff are reversed.) If Bsuff = A′k2

? · · ·A′1?, then the
right cut border is zero.

We explain the intuition behind cut borders in Figure 1. For c ∈ N, an expression is c-bordered
if the maximum of its left and right cut borders is c. We call a class R of STEs cuttable if
there exists a constant c ∈ N such that each expression in R is c′-bordered for some c′ ≤ c.

We can now prove a dichotomy on the complexity of SimPath(R) for classes of STEs R,
if R satisfies the following mild condition. We say that R can be sampled if there exists an
algorithm that, given k ∈ N, returns an expression in R that is k′-bordered with k′ ≥ k, and
“no” if there is no such expression. We need the condition that R can be sampled to prove
the W[1]-hardness. For this reason, this condition is no longer needed in Theorem 15.

I Theorem 6. Let R be a class of STEs that can be sampled.
(a) If R is cuttable, then SimPath(R) is in FPT and
(b) otherwise, SimPath(R) is W[1]-hard.

Proof idea. The main techniques will be presented in Section 5. We can attack case (a)
using Theorem 7, Observation 8, and the techniques for proving Theorem 9. In short, if R is
cuttable and we need to deal with arbitrarily long paths, then we can use exhaustive search
to enumerate all possible pre- and suffixes of length at most c. We then use a variation of
the representative sets technique [16] to obtain an FPT algorithm. In case (b), it is possible
to adapt the reduction in the proof of Theorem 11. J

9 In fact, all expressions except for (ab)∗ can be handled with the techniques we present here. For instance,
the FPT algorithm can trivially be extended to unions of STEs by testing each STE separately. For the
expression (ab)∗, even the data complexity of SimPath is NP-complete.
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≥ c1 ≥ c2

s

k1 k2

t

Figure 1 Assume r = A1 · · ·Ak1 T ∗A′k2 · · ·A
′
1 has left and right cut borders c1 and c2, respectively.

Assume that an arbitrary path from s to t matches r such that its length k1 prefix and length k2

suffix are node-disjoint. If, after removing all loops, (1) the length c1 prefix and length c2 suffix are
still the same and (2) the path still has length at least k1 + k2, then it matches r.

Notice that the difference between cuttable and non-cuttable classes of STEs can be quite
subtle. For instance, bka∗ and ak(a+b)∗ are non-cuttable, but (a+b)ka∗ is cuttable. Looking
back at Table 1, we see that abc∗ is 2-bordered and all other STEs are either 0-bordered or
1-bordered. It therefore seems that cut borders in practice are small and over 99% of the
expressions fall on the tractable side of Theorem 6.

5 Technical Core: Simple Paths With Length Constraints

In this section we investigate the parameterized complexity of problems that involve simple
paths with length constraints. The problems we consider here are the core of the RPQ
evaluation problems in Section 4.

5.1 One Path

We consider the following parameterized problems.
PSimPath: Given an instance ((G, s, t), k) with parameter k ∈ N, is there a simple path
from s to t of length exactly k in G?
PSimPath≤ and PSimPath≥: These two problems are defined analogously to PSimPath
but ask if there is a simple path of length at most k and at least k, respectively.

These three problems are in FPT, but the techniques to obtain these results are quite different.
For PSimPath, membership in FPT follows from the famous color coding technique [2].

I Theorem 7 (Alon et al. [2]). PSimPath is in FPT.

PSimPath≤ is trivially in FPT because the shortest path problem is in PTIME.

I Observation 8. PSimPath≤ is in PTIME (and therefore in FPT).

Finally, PSimPath≥ can be shown to be in FPT by adapting methods from Fomin et al. [16].
They proved that finding simple cycles of length at least k is in FPT for cycles and discovered
that their technique also works for paths [13]. The following theorem is therefore due to
the authors of [16]. (Fomin et al. [16] already showed FPT membership for PSimPath≥ on
undirected graphs, but the techniques needed on directed graphs are quite different.)

I Theorem 9. (Similar to Theorem 5.3 in [16]) PSimPath≥ is in FPT.
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5.2 Two Disjoint Paths
We consider variants of the TwoDisjointPaths problem [17]. A two-colored graph is a directed
graph in which every edge is labeled a or b. An a-path is a path consisting of only a-edges.
We consider the following parameterized problems.

PTwoDisjointPaths: Given a graph G, nodes s1, t1, s2, t2, and parameter k ∈ N, are there
simple paths p1 from s1 to t1 and p2 from s2 to t2 such that p1 and p2 are node-disjoint
and p1 has length k?
PTwoColorDisjointPaths: Given a two-colored graph G, nodes sa, ta, sb, tb, and parameter
k ∈ N, is there a simple a-path pa from sa to ta and a simple b-path pb from sb to tb such
that pa and pb are node-disjoint and pa has length k?

It is well-known that TwoDisjointPaths, the non-parameterized version of PTwoDisjointPaths, is
NP-complete [17]. In terms of parameterized complexity, Downey and Fellows [14] introduced
the W-hierarchy, where FPT = W[0] and W[i] ⊆ W[j] for all i ≤ j. A famous complete
problem for W[1] (under so-called fpt-reductions) is k-Clique with parameter k [15]. Therefore,
k-Clique not being fixed-parameter tractable is equivalent to FPT 6= W[1], which is a standard
assumption in parameterized complexity.

Cai and Ye [9] proved that PTwoDisjointPaths is in FPT for undirected graphs, both
for the cases where one wants node-disjoint or edge-disjoint paths. They left the cases for
directed graphs as open problems [9, Problem 2]. We solve one of the cases by showing in
Theorem 11 that PTwoDisjointPaths is W[1]-hard. We also prove that PTwoColorDisjointPaths
is W[1]-hard – the proof for PTwoDisjointPaths relies on it.

I Theorem 10. PTwoColorDisjointPaths is W[1]-hard.

Proof idea. This result follows from a slight adaptation of a proof of Slivkins [35, Theorem
2.1]. Slivkins proved that k-Edge-Disjoint-Paths with parameter k is W[1]-hard in directed
acyclic graphs. More precisely, given an instance of k-Clique, Slivkins constructs a DAG G

and nodes si, ti (with 1 ≤ i ≤ k) and sij , tij (with 1 ≤ i < j ≤ k) such that the input graph
has a k-clique if and only if G has paths from each si to the corresponding ti and from each
sij to the corresponding tij , all edge-disjoint.

The main idea for our reduction is to take Slivkins’ construction and
connect each ti to si+1 with a b-edge;
connect each tik to s(i+1)(i+2) with an a-edge;
connect each tij with i < j < k to si(j+1) with an a-edge; and
label all edges intended for “verifiers” with a and all edges intended for “selectors” with b.
(Some edges in Slivkins’ proof are intended for both verifiers and selectors. Here we can
add two parallel edges, one labeled a and one labeled b.)

Then, it can be shown that the original instance is in k-Clique if and only if there exists an
a-path from s12 to t(k−1)k and a b-path from s1 to tk. Moreover, the a-path, if it exists, has
length k′ ∈ O(k2). J

The two colors in the proof of Theorem 10 play a central role: since the a-path cannot
use any b-edges and vice versa, we have much control over where the two paths can be. The
following Theorem shows that the construction in Theorem 10 can be strengthened so that
we do not need the two colors.

This is a non-trivial change. Very roughly, one can think of the graph G in the proof of
Theorem 10 as a grid with k rows and n columns, where the a-edges are “vertical” and the b
edges are “horizontal”. (In reality, each coordinate in this grid is another gadget with 4k
nodes.) The task for Theorem 11 is to change the proof so that paths with mixed a-edges
and b-edges do not lead to a solution. For doing this, we use two ideas:
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We use the idea of “control nodes” by Grohe and Grüber [19, Lemma 16], who showed
that Slivkins’ construction can be used to show that k-Disjoint-Cycles is W[1]-hard.
We replace each b-edge by a path pb of length k′, ensuring that each path that has pb as
subpath is too long.

I Theorem 11. PTwoDisjointPaths is W[1]-hard.
We provide a proof sketch in Appendix A.

For completeness, we mention the complexity of other variants of PTwoDisjointPaths,
some of which can be shown by extending the technique from Theorem 11. We define
TwoDisjointPaths≤ and TwoDisjointPaths≥ analogously to PTwoDisjointPaths by requiring
that p1 has length ≤ k and ≥ k, respectively.

I Theorem 12. TwoDisjointPaths≤ is W[1]-hard.
TwoDisjointPaths≥ is NP-complete for every constant k ∈ N ([17]).
PTwoColorDisjointPaths, PTwoDisjointPaths, and TwoDisjointPaths≤ are in W[P].

Here, being in W[P] implies that the problems are in PTIME for each fixed k.

6 Enumerating Simple Regular Paths

We now turn to the question of enumerating simple paths with polynomial delay. A starting
point is Yen’s algorithm [41] for finding simple paths from a source s to target t. Yen’s
algorithm usually takes another parameter K and returns the K shortest simple paths, but
we present a version here for enumerating all simple paths, see Algorithm 1.

We give a high-level explanation. First, observe that each shortest path in a graph is
also a simple one. Therefore, the first solution is obtained by finding a shortest path p. The
next shortest path must differ in some edge from p. So we search (if it exists), for all i, the
shortest path that shares the first i edges with p, but not the (i + 1)th edge. One of the
shortest paths found this way is the next solution, which we again store in p. The next
shortest path must again differ in some edge from the paths we already found. So we search
again, for all i, for a shortest path that shares the first i edges with the new p, but not the
(i+ 1)th edge. To avoid rediscovering an old path, we also forbid other edges to appear in
the new path (lines 9–11). Correctness is proved in [41].

I Theorem 13 (Implicit in [41]). Given a graph G and nodes s, t, Algorithm 1 enumerates
all simple paths from s to t in polynomial delay.

Proof sketch. The original algorithm of Yen [41] finds, for a given G, s, t, and K ∈ N the
K shortest simple paths from s to t in G. Its only difference to Algorithm 1 is that it stops
when K paths are returned.

Yen does not prove that the algorithm has polynomial delay, but instead shows that the
delay is O(KN + N3), where N is the number of nodes in G.10 Unfortunately, K can be
exponential in |G| in general. However, the reason why the algorithm has K in the complexity
is line 9, which iterates over all paths in A. If we do not store A as a linked list as in [41]
but as a prefix tree of paths instead, the algorithm only needs O(N2) steps to complete the
entire for-loop on line 9 (without any optimizations). Indeed, if paths p and p′ share the first
i edges, they will share a path of length i from the root node in the prefix tree. So we can
find all forbidden i+ 1th edges by forbidding all edges that start at the end of this path. We
therefore obtain delay O(N3) from Yen’s analysis. J

10 In [41], Section 5, he notes that computing path number k in the output costs, in his terminology,
O(KN) time in Step I(a) and O(N3) in Step I(b).
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Algorithm 1 Yen’s algorithm.
Input: Graph G = (V,E), nodes s, t
Output: The simple paths from s to t in G

1: A ← ∅ . A is the set of paths already written to output
2: B ← ∅ . B is a set of paths from s to t
3: p ← a shortest path from s to t in G
4: while p 6= null do . As long as we find a path p
5: output p
6: Add p to A
7: for i = 1 to |p| do
8: G′ ← (V ′, E′), where V ′ = V \ V (p[0, i− 1]) and E′ = E ∩ (V ′ × V ′)
9: for every path p1 in A with p1[0, i− 1] = p[0, i− 1] do
10: Delete the edge p1[i− 1, i] in G′
11: end for . G′ now no longer has paths already in A
12: Find a shortest path p2 from p[i, i] to t in G′
13: Add p[0, i] · p2 to B
14: end for
15: p← a shortest path in B . p← null if B = ∅
16: Remove p from B

17: end while

6.1 Enumeration for Downward Closed Languages
Yen’s algorithm immediately shows that EnumSimPaths can be solved in polynomial delay
for languages that are closed under taking subsequences. Formally, we say that a language L
is downward closed if, for every word w = a1 · · · an ∈ L and every sequence 0 < i1 < · · · <
ik < n+ 1, we have that ai1 · · · aik

∈ L.

I Proposition 14. EnumSimPaths is in polynomial delay for regular expressions r such that
L(r) is downward closed.

Proof sketch. Assume that (G, s, t) and r is an input for EnumSimPaths such that L(r) is
downward closed. Let N = (Q,Σ, δ, QI , QF ) be an NFA for r.

We change Algorithm 1 as follows. In line 3, instead of finding a shortest path p in G,
we first find a shortest path p in (G, s, t) × N . We then replace every node of the form
(u, q) ∈ V ×Q in p by u.

In line 12 we need to find a shortest path in a product between (G′, p[i, i], t) and N .
More precisely, let J = δ∗(lab(p[0, i])) and denote by NJ the NFA with initial state set J ,
that is, (Q,Σ, δ, J,QF ). Then, in line 12 we first find a shortest path p2 from any node in
{(p[i, i], qi) | qi ∈ δ∗(lab(p[0, i]))} to any node in {(t, qF ) | qF ∈ QF } in (G′, p[i, i], t) ×NJ .
We then replace every node of the form (u, q) ∈ V ×Q in p2 by u. J

6.2 Enumeration for STEs
We show that Theorem 6(a) – the FPT part – can be extended to enumeration problems.
We note that we do not need to show hardness, since the W[1]-hardness in Theorem 6(b)
already holds for the decision problems.

To this end, a parameterized enumeration problem is defined analogously as an enumeration
problem, but its input is of the form (x, k) ∈ Σ∗ × N. It is in FPT delay if there exists an
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algorithm that enumerates the output such that the time between two consecutive outputs is
bounded by f(k) · |(x, k)|c for a constant c and a computable function f . Notice that each
problem in polynomial delay is also in FPT delay.

I Remark. Yen’s algorithm makes two important calls to a black box algorithm for computing
a shortest path, namely on lines 3 and 12. (There is another call to “shortest path” on line 15,
but this one is only important for the ordering of the outputs and not for the correctness
of the algorithm.) We can show that the algorithm is also correct if these two calls simply
return a simple path instead of a shortest one. The main reason why this works is that no
simple path from s to t is a subpath of another simple path from s to t. Therefore, we do not
“lose” a path by enumerating them in this different order. Therefore, working on (G, s, t)×N
as in the proof of Proposition 14, Yen’s algorithm can be applied to any class of RPQs for
which we can compute simple paths on lines 3 and 12 sufficiently efficiently.

Using this idea, we can show the following.

I Theorem 15. Let R be a cuttable class of STEs. Then EnumSimPaths(R) is in FPT
delay.

To prove Theorem 15, we also need to show that the enumeration versions of PSimPath,
PSimPath≤, and PSimPath≥ (from Section 5.1) are in FPT delay.

I Theorem 16. PEnumSimPaths, PEnumSimPaths≤, and PEnumSimPaths≥ are in FPT
delay.

The proofs of the results in Theorem 16 are all along the same lines. We observe that the
FPT algorithms for the decision versions of the problems can be trivially adjusted to also
return a matching path if it exists. We also need to show that we can find simple paths
matching suffixes11 in the language (for the adapted line 12 of Yen’s algorithm). This can
also be done here, essentially because the suffixes of the languages we need to consider again
can be solved with our FPT algorithms.

6.3 Data Complexity of Enumeration
Finally, we consider the data complexity of simple path enumeration. Bagan et al. [5] studied
the data complexity of SimPath and discovered a dichotomy w.r.t. a class Ctract of regular
languages.12 More precisely, although SimPath(r) can be NP-complete in general, it is in
PTIME if L(r) ∈ Ctract and NP-complete otherwise [5, Theorem 2]. Here, Ctract is defined
as follows.

I Definition 17 (Similar to [5], Theorem 4). For i ∈ N, we say that a regular language
L can be i-loop abbreviated if, for all w`, w, wr ∈ Σ∗ and w1, w2 ∈ Σ+ we have that, if
w`w

i
1ww

i
2wr ∈ L, then w`w

i
1w

i
2wr ∈ L. We define Ctract as the set of regular languages L

such that there exists an i ∈ N for which L can be i-loop abbreviated.

We show that Bagan et al.’s classification also leads to a dichotomy w.r.t. polynomial
delay enumeration in terms of data complexity.

11More precisely, we need language derivatives, sometimes also called Brzozowski derivatives.
12They actually proved that there is a trichotomy: the third characterization is that SimPath is in AC0 if

L(r) is finite.
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I Theorem 18. In terms of data complexity,
(a) EnumSimPaths(r) can be solved in polynomial delay if L(r) ∈ Ctract and
(b) SimPath(r) is NP-complete otherwise.

Proof sketch. Part (b) is immediate from [5, Theorem 1]. For (a), our plan is to use Bagan
et al.’s algorithm for simple paths (which we call BBG algorithm) as a subroutine in Yen’s
algorithm. We call BBG in lines 3 and 12, so that the algorithm receives
(i) a simple path from s to t that matches r in line 3 and
(ii) a simple path p2 from p[i] to t such that p[0, i] · p2 matches r in line 12,

respectively. Change (i) to Yen’s algorithm is trivial. Change (ii) can be done by calling BBG
with (G′, p[i], t) for the language of the automaton NJ in the proof of Proposition 14. J

The algorithm for Theorem 18(a) can even be adapted to output paths in increasing length
or radix order.

I Remark (STEs versus Ctract). Notice that every STE is in Ctract. Therefore, the data
complexity of their evaluation problem is in PTIME (and in polynomial delay for the
enumeration version). Since Ctract is a much bigger class than STEs, it is remarkable that,
in Table 1, all expressions in Ctract are unions of STEs.

7 Conclusions

Our main result shows a dichotomy on the parameterized complexity of evaluating simple
transitive expressions (STEs), which are a class of regular expressions powerful enough to
capture over 99% of the RPQs occurring in a recent practical study [8].

The central property that we require for a class of expressions so that evaluation is in
FPT is cuttability, i.e., constant cut borders (also see Figure 1). Looking at Table 1, we see
that the cut borders for expressions in practice are indeed very small: it is one for a∗b, two
for abc∗, and zero in all other cases.

Therefore, although the simple path semantics of RPQs is known to be hard in general, it
seems that the RPQs that users actually ask are much less harmful. In fact, since the vast
majority (over 99%) of expressions in Table 1 has cut borders of at most two, our FPT result
in Theorem 6 implies that evaluation for this majority of expressions is in polynomial time
combined complexity. Furthermore, matching paths can be enumerated in polynomial delay.
(Recall that, if P 6= NP, this is impossible even for fixed expressions: evaluation for a∗ba∗ or
(aa)∗ under simple path semantics is NP-complete.)

Finally, we note that this paper investigated evaluation for node-distinct paths. Preliminary
work shows that our techniques can also be applied for edge-distinct paths [28]. More precisely,
there is a similar dichotomy for edge-distinct paths, with subtle differences. For instance,
evaluation for akb∗ under edge-distinct path semantics is in FPT, whereas it is W[1]-hard
under node-distinct (i.e., simple) path semantics.

We also noticed that our techniques extend beyond the class of STEs. For instance, we can
also prove that, for every constant c and word w with |w| = c, the problem SimPath(akw?a∗)
with parameter k is in FPT. We believe that it would be very interesting to understand to
which extent cuttability can be used to obtain FPT results for larger classes of RPQs (such
as unions of STEs).
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Figure 2 Internal structure of each of the gadgets Gi,j .

A Appendix

We present a proof sketch for Theorem 11. We will do an fpt-reduction, which we define next.
If L and L′ are two parameterized problems, an fpt-reduction from L to L′ is an algorithm
R that, given an instance (x, k) of L, outputs an instance (x′, k′) of L′ such that

(x, k) is a yes-instance of L if and only if (x′, k′) is a yes-instance of L′,
k′ ≤ g(k) for some computable function g, and
the running time of R is f(k) · |x|O(1) for some computable function f .

I Theorem 11. PTwoDisjointPaths is W[1]-hard.

Proof sketch. We reduce from k-Clique, which is well known to be W[1]-complete [15,
Corollary 3.2]. Let G = (V,E) be an undirected graph and assume w.l.o.g. that V =
{1, . . . , n}.

The reduction consists of two steps. In the first step, we will construct a two-colored
graph G′, nodes sa, ta, sb, tb, and parameter k′ ∈ Θ(k2) such that G has a k-clique if
and only if (G′, sa, ta, sb, tb, k

′) ∈ PTwoColorDisjointPaths. The graph G′ will have O(k2n)
nodes. In the second step, we will construct a graph G′′ and nodes s1, t1, s2, t2 such
that (G′, sa, ta, sb, tb, k

′) ∈ PTwoColorDisjointPaths if and only if (G′′, s1, t1, s2, t2, k
′) ∈

PTwoDisjointPaths. The graph G′′ will have O(k4n) nodes.
We now explain the construction of G′. It contains kn gadgets Gi,j with i = 1, . . . , k and

j = 1, . . . , n, each consisting of 2(k+ 1) nodes. Gadgets will be ordered in k rows, where row
i has the gadgets Gi,1, . . . , Gi,n. Furthermore, G′ contains k+ 1 additional nodes r1, . . . , rk+1
that link the rows together, and k + 1 + k(k − 1)/2 control nodes c1, . . . ck+1 and ci1i2 with
1 ≤ i1 < i2 ≤ k that will limit the number of disjoint paths from row i− 1 to row i or from
row i1 to i2, respectively. (To be fair, c1 and ck+1 do not link rows together but just serve
as start and end-nodes.) We define sa = c1, ta = ck+1, sb = r1, and tb = rk+1.

We will now explain how the nodes are connected in G′. We will denote by u a→ v that
there is an a-edge from u to v (similar for b-edges). Each gadget contains a disjoint copy
of 2(k + 1) nodes which we call u1, u2, . . . , uk+1 and v1, v2, . . . , vk+1. To simplify notation,
we sometimes give these nodes the same name (e.g., in Figures 3, 4, and 5), even though
they are different. One such gadget is depicted in Figure 2. To avoid ambiguity, we may also
refer to node u` in gadget Gi,j by Gi,j [u`]. Each gadget contains edges u`

a→ v` (for every
` = 1, . . . , k + 1) and u`

b→ u`+1 and v`
b→ v`+1 (for every ` = 1, . . . , k).

We now explain how the gadgets Gi,j are connected within the same row, see Figure 3. In
each row i ∈ {1, . . . , k}, node ri has two outgoing edges ri

b→ Gi,1[u1] and ri
b→ Gi,2[v1]. We

also have two incoming edges for ri+1, namely Gi,n−1[uk+1] b→ ri+1 and Gi,n[vk+1] b→ ri+1.
Furthermore, we have the edges Gi,j [uk+1] b→ Gi,j+1[u1] and Gi,j [vk+1] b→ Gi,j+1[v1] for
every j = 1, . . . , n− 1. We also add edges Gi,j [uk+1] b→ Gi,j+2[v1] for every j = 1, . . . , n− 2.

We now explain how the gadgets Gi,j are connected in different rows via the control
nodes ci and ci1i2 (Figure 4). We first consider the edges from row i to i + 1. In each
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Figure 3 The b-edges in row i. The internal structure of the Gi,j is as in Figure 2.
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Figure 4 The a-edges from row i to row i + 1. (We assume n = 3 in the picture).

row i = 1, . . . , k − 1, and every j = 1, . . . , n, we add the edges Gi,j [vk+1] a→ ci+1 and
ci+1

a→ Gi+1,j [ui+2]. Furthermore, we add the edges c1
a→ G1,j [u2] and Gk,j [vk+1] a→ ck+1.

We connect two rows i1, i2, with 1 ≤ i1 < i2 ≤ k, by adding the edges Gi1,j [vi2 ] a→ ci1i2 , and
ci1i2

a→ Gi2,j [ui1 ] for all j = 1, . . . , n.
The edges in G are modeled in G′ by adding the edge Gi2,x[vi1 ] a→ Gi1,y[ui2+1] if and

only if 1 ≤ i1 < i2 ≤ k, x 6= y, and (x, y) ∈ E. This is illustrated in Figure 5.
Finally, we define k′ = k(k − 1)/2 · 5 + 3k.
This concludes the construction of G′. We denote by G′a the subgrapn of G′ that contains

only the a-edges.

I Lemma 19. The graph G′a has the following properties:
(a) G′a is a DAG. Moreover, there is a strict total order <c on all control nodes C such that,

for every path from a node v ∈ C to another node v′ ∈ C where no intermediate vertex
is in C, node v′ is the successor of v in <c.

(b) Each path in G′a has length exactly k′ if and only if it is from c1 to ck+1.
(c) Each path in G′a of length k′ visits all control nodes, i.e., it contains all ci and ci1i2 , with

i ∈ {1, . . . , k + 1} and 1 ≤ i1 < i2 ≤ k.
(d) Each path in G′a of length k′ has at least one edge u`

a→ v` in every row of G′a.
We omit the proof of Lemma 19 due to space constraints.

We prove that (G, k) ∈ k-Clique if and only if (G′, k′) ∈ PTwoColorDisjointPaths. Let us
first assume that the undirected graph G has a k-clique with nodes {n1, . . . , nk}. Then an
a-path can go from c1 to ck+1 using only the gadgets Gi,ni

with i = 1, . . . , k. The reason is
that, since (ni1 , ni2) ∈ E, the edges Gi2,ni2

[vi1 ] a→ Gi1,ni1
[ui2+1] exist for all i1 ≤ i2. Due to

Lemma 19(b), this path has exactly k′ edges. The b-path, on the other hand, can go from
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Figure 5 The a-edges in the gadgets and between gadgets Gi1,y, Gi1,z and Gi2,x, with i1 < i2−1,
under the assumption that (x, y) ∈ E and (x, z) /∈ E.

r1 to rk+1 and skip exactly Gi,ni
for all i = 1, . . . , k (using the diagonal edges in Figure 3).

Since it skips these Gi,ni , it is node-disjoint from the a-path and therefore we have a solution
for PTwoColorDisjointPaths.

For the other direction let us assume that there exists a simple a-path pa from c1 to
ck+1 and a simple b-path pb from r1 to rk+1 in G′ such that pa and pb are node-disjoint and
pa has length k′. We show that G has a k-clique. Since every b-path from r1 to rk+1 goes
through each row, that is, from ri to ri+1 for all i = 1, . . . , k, this is also the case for pb. By
construction pb must also skip exactly one gadget in each row, using the diagonal edges in
Figure 3. Furthermore, for each gadget Gi,j that pb visits, it must be the case that it either
visits all nodes u1, . . . , uk+1 or all nodes v1, . . . , vk+1. (This is immediate from Figure 2,
showing all internal edges of a gadget.) Therefore, since pa and pb are node-disjoint, the
pa cannot visit any gadget Gi,j already visited by pb. Therefore, pa, which goes from c1 to
ck+1, can only do so through the k skipped gadgets, call them Gi,ni

for i = 1, . . . , k. Recall
that the edges between the gadgets Gi2,ni2

and Gi1,ni1
only exist if (ni1 , ni2) ∈ E. As these

edges are necessary for the existence of the a-path from c1 to ck+1 that uses only the skipped
gadgets, all nodes ni must be pairwise adjacent in G. That is, they form a clique of size k in
G. This completes the first step of the reduction.

We now explain the second and final step. We construct the graph G′′ from G′ by
replacing each b-edge with a b-path of length k′. (Even though PTwoDisjointPaths does not
care about a-edges or b-edges, we keep them to simplify the reasoning in the remainder of
the proof.) We define s1 = sa, t1 = ta, s2 = sb, and t2 = tb.

I Observation 20. In G′′, we have that
(a) every path from c1 to ck+1 has length at least k′ and
(b) every path from c1 to ck+1 has length exactly k′ if and only if it is an a-path.
We prove the observation using Lemma 19(b). For part (a) we have two cases. If a path
from c1 to ck+1 is an a-path, the result is immediate from Lemma 19(b). If it uses at least
one b-edge, then it uses at least k′ b-edges by construction. Thus, the path will have length
at least k′.

For part (b), if a path from c1 to ck+1 has length exactly k′, it uses at least one a-edge
since ck+1 only has incoming a-edges. If it used at least one b-edge, it would therefore use at
least k′+ 1 edges which contradicts that the length is k′. The converse direction is immediate
from Lemma 19(b). This concludes the proof of Observation 20.
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We show that (G′, sa, ta, sb, tb, k
′) ∈ PTwoColorDisjointPaths if and only if (G′′, s1, t1, s2,

t2, k
′) ∈ PTwoDisjointPaths. If (G′, sa, ta, sb, tb, k

′) ∈ PTwoColorDisjointPaths, then we can
use the corresponding paths in G′′ (where we follow the longer b-paths in G′′ instead of the
b-edges in G′).

Conversely, if (G′′, s1, t1, s2, t2, k
′) ∈ PTwoDisjointPaths, it follows from Observation 20

that p1 can only use a-edges. We now show that the path p2 from r1 to rk+1 can only use
b-edges, that is, we show that it cannot use a-edges. There are three types of a-edges in G′′:
(i) the ones from and to control nodes, (ii) “upward” edges that connect row i2 to row i1
with i1 < i2, and (iii) edges from u` to v` in one gadget.

Notice that, by construction, p2 must visit nodes in row 1 and later also nodes in row k.
To do so, p2 cannot use edges from or to control nodes (type (i)), since, due to Lemma 19(c),
p1 already visits all control nodes. So p2 cannot go from row i to a row j with i < j via
a-edges. This means that, if i < j, then p2 can only go from row i to row j through ri+1
(and through nodes in row i + 1), since every remaining path from row i to a larger row
goes through ri+1. So, in order to go from row 1 to row k, path p2 needs to visit all nodes
r2, . . . , rk, in that order. This means that it is also impossible for p2 to use edges of type
(ii). Indeed, if p2 were to use an edge from row j to row i with j > i, then it would need to
visit ri+1 a second time to arrive back in row j. Finally, if p2 used an edge of type (iii) in
row i, then, by construction, it would have to visit every gadget in this row. But since p1
already uses at least one edge from u` to v` in each row, see Lemma 19(d), this means that
p2 cannot be node-disjoint with p1. This completes the proof. J
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