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Abstract
We introduce a definition of the fidelity function for multi-round quantum strategies, which
we call the strategy fidelity, that is a generalization of the fidelity function for quantum states.
We provide many interesting properties of the strategy fidelity including a Fuchs-van de Graaf
relationship with the strategy norm. We illustrate an operational interpretation of the strategy
fidelity in the spirit of Uhlmann’s Theorem and discuss its application to the security analysis
of quantum protocols for interactive cryptographic tasks such as bit-commitment and oblivious
string transfer. Our analysis is very general in the sense that the actions of the protocol need not
be fully specified, which is in stark contrast to most other security proofs. Lastly, we provide a
semidefinite programming formulation of the strategy fidelity.
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1 Introduction

1.1 Review of quantum strategies
In this paper we consider multiple-round interactions between two parties involving the
exchange of quantum information. There is a natural asymmetry between the parties as only
one of the parties can send the first message or receive the final message. Since we are not
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Figure 1 An r-round interaction between a pure strategy of Alice (the linear isometries above
the dashed line) and a pure co-strategy of Bob (the linear isometries below the dashed line). Arrows
crossing the dashed line represent messages exchanged between the parties, while horizontal arrows
represent private memory.

concerned about optimizing the number of messages exchanged, without loss of generality
both of these tasks are done by the same party, which, for convenience, we call Bob. Let us
call the other party Alice. The interaction between Alice and Bob decomposes naturally into
a finite number r of rounds (see Figure 1).

Such interactions are conveniently described by the formalism of quantum strategies
introduced in Ref. [13]. We closely follow that formalism here with the exception that we
consider two mathematically different objects: strategies and pure strategies. Pure strategies
are implemented using linear isometries and preserve their final memory space, while strategies
trace out the final memory space. The object we call a strategy is called a non-measuring
strategy in Ref. [13]. For additional details on quantum strategies, one may refer to [13, 9, 11].

I Definition 1 (Pure strategy and pure co-strategy). Let r ≥ 1 and let X1, . . . ,Xr,Y1, . . . ,Yr,
Zr,Wr be complex Euclidean spaces and, for notational convenience, let Xr+1 := C and
Z0 := C. An r-round pure strategy Ã having input spaces X1, . . . ,Xr, output spaces Y1, . . . ,Yr,
and final memory space Zr, consists of:
1. complex Euclidean spaces Z1, . . . ,Zr−1, called intermediate memory spaces, and
2. an r-tuple of linear isometries (A1, . . . , Ar) of the form Ai : Xi ⊗Zi−1 → Yi ⊗Zi.

An r-round pure co-strategy having input spaces Y1, . . . ,Yr, output spaces X1, . . . ,Xr,
and final memory space Wr, consists of:
1. complex Euclidean intermediate memory spaces W0, . . . ,Wr−1,
2. a pure quantum state |β〉 ∈ X1 ⊗W0, called the initial state, and
3. an r-tuple of linear isometries (B1, . . . , Br) of the form Bi : Yi ⊗Wi−1 → Xi+1 ⊗Wi.
A pure strategy and a pure co-strategy are said to be compatible when the input spaces of
one are the output spaces of the other, and vice versa. The final state of the interaction
between Ã and B̃ is denoted by

|ψ(Ã, B̃)〉 := (IZr ⊗Br)(Ar ⊗ IWr−1) · · · (IZ1 ⊗B1)(A1 ⊗ IW0)|β〉 ∈ Zr ⊗Wr.

In order to extract classical information from the interaction it suffices to permit Alice and
Bob to measure their respective parts of the final state |ψ(Ã, B̃)〉.

A pure strategy Ã specified by linear isometries (A1, . . . , Ar) can be represented by a
single isometry

Ã := (Ar ⊗ IY1...r−1) . . . (IX3...r
⊗A2 ⊗ IY1)(IX2...r

⊗A1) : X1...r → Y1...r ⊗Zr,
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where Xi...j is short for Xi ⊗ · · · ⊗ Xj and Yi...j is short for Yi ⊗ · · · ⊗ Yj . We abuse the
notation1 Ã here and elsewhere in the paper by using it to denote both a pure strategy and
the linear isometry representing it, and we do the same for pure co-strategies B̃, discussed
next. A pure co-strategy B̃ specified by the initial state |β〉 and linear isometries (B1, . . . , Br)
can be represented by a single isometry

B̃ := (Br ⊗ IX1...r
) · · · (IY2...r

⊗B1 ⊗ IX1)(IY1...r
⊗ |β〉) : Y1...r → X1...r ⊗Wr.

Note that two pure strategies that are represented by the same linear isometry are effectively
indistinguishable, and the same holds true for pure co-strategies.

Any one party is not affected by what the other party does with their final memory space.
Hence, from the point of view of that party, the other party can trace it out. In view of this,
a strategy A is obtained from a pure strategy Ã by tracing out the final memory space Zr

and a co-strategy B is obtained from a pure co-strategy B̃ by tracing out the final memory
space Wr. Multiple pure strategies (co-strategies) can yield the same strategy (co-strategy),
and we call any such pure strategy (co-strategy) a purification. We will use tildes to indicate
purifications.

Just as a pure strategy and a pure co-strategy can be specified by linear isometries Ã
and B̃, respectively, their corresponding strategy A and co-strategy B can be specified by
quantum channels

ΦA : L(X1...r)→ L(Y1...r) : X 7→ TrZr (ÃXÃ∗),
ΨB : L(Y1...r)→ L(X1...r) : Y 7→ TrWr

(B̃Y B̃∗).

In turn, both of these channels can be specified using their Choi-Jamiołkowski representations,
but, due to the asymmetry between strategies and co-strategies, it is convenient to specify
the latter one using the Choi-Jamiołkowski representation of its adjoint map. Thus, we can
represent a strategy A by J(ΦA) and a co-strategy B by J(Ψ∗B), both of which are positive
semidefinite operators acting on Y1...r ⊗X1...r. In a similar abuse of notation as mentioned
before, we refer to J(ΦA) as the strategy A and to J(Ψ∗B) as the co-strategy B.

For compatible pure strategy Ã and pure co-strategy B̃, let

ρA(B̃) := TrZr

(
|ψ(Ã, B̃)〉〈ψ(Ã, B̃)|

)
(1)

denote the reduced state of the final memory space Wr of B̃ after the interaction between Ã
and B̃. Since this state is the same for all purifications of A, we omit the tilde above A in
this notation.

1.2 The definition of strategy fidelity
Recall that the fidelity F(P,Q) between two positive semidefinite operators P and Q is
defined as

F(P,Q) :=
∥∥∥√P√Q∥∥∥

Tr
.

When applied to density operators ρ, ξ, the fidelity function F(ρ, ξ) is a useful distance
measure for quantum states. We would like to construct a generalization of the fidelity
function that can serve as a useful distance measure for quantum strategies.

1 It will be clear from context to which we are referring.

TQC 2017
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Just as the trace norm ‖ρ − ξ‖Tr quantifies the distinguishability of quantum states,
the strategy norm ‖S − T ‖�r studied in [12] quantifies the distinguishability of quantum
strategies S and T having the same input and output spaces. In other words, ‖S − T ‖�r
is proportional to the maximum bias with which an interacting pure co-strategy B̃ can
distinguish S from T . Another expression for this maximum bias can be derived as follows.
Let Wr be the final memory space of B̃ and let ρS(B̃), ρT (B̃) be the reduced states of this
final memory space after an interaction between B̃ and S, T , respectively, as defined in (1).
It is clear that the maximum bias with which S can be distinguished from T is proportional
to the maximum over all such B̃ with which the final state ρS(B̃) can be distinguished from
ρT (B̃), which is precisely ‖ρS(B̃)− ρT (B̃)‖Tr.

I Remark. All purifications B̃ of B are equivalent up to a unitary acting on Wr. Thus,
unitarily invariant distance measures between ρS(B̃) and ρT (B̃) (including the trace distance
and the fidelity) depend only upon B and not upon the specific purification B̃.

The strategy norm is defined so that

‖S − T ‖�r = max
B
‖ρS(B̃)− ρT (B̃)‖Tr. (2)

In light of this observation, we define the strategy fidelity by replacing the maximization of
the trace distance between ρS(B̃) and ρT (B̃) with the minimization of the fidelity between
ρS(B̃) and ρT (B̃).

I Definition 2 (Strategy fidelity). For any r-round strategies S and T having the same input
and output spaces, the strategy fidelity is defined as

Fr(S, T ) := min
B

F(ρS(B̃), ρT (B̃)) (3)

where the minimization is over all compatible co-strategies B and the states ρS(B̃), ρT (B̃)
are as defined in (1).

In the following discussion, we argue that this definition is a meaningful one by proving
analogues of the Fuchs-van de Graaf inequalities and Uhlmann’s Theorem for the strategy
fidelity, among many other properties.

I Remark. The same definition of fidelity has been considered for the case of channels [2].
In that setting, they establish several properties which we generalize to the strategy setting.

First, let us observe that the fidelity for quantum states is recovered as a special case of the
strategy fidelity when S, T are one-round strategies with no input (that is, X1 = C) and only
one output message. To see this, observe that one-round strategies such as S, T are simply
states ρ, ξ acting on Y1. Bob’s most general pure co-strategy is an isometry B̃ : Y1 →W1.
In this case the effect of Bob’s purified strategy B̃ is cancelled in the computation of Fr(S, T )
so that

F1(S, T ) = min
B

F(ρS(B̃), ρT (B̃)) = F(B̃ρB̃∗, B̃ξB̃∗) = F(ρ, ξ)

as claimed.

1.2.1 Basic properties of the strategy fidelity
We now list several other properties of the strategy fidelity, all of which immediately hold
using the corresponding properties of the fidelity of quantum states.
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I Proposition 3 (Basic properties).
(Fuchs-van de Graaf inequalities for strategies) For any r-round strategies S and T , it
holds that

1− 1
2‖S − T ‖�r ≤ Fr(S, T ) ≤

√
1− 1

4‖S − T ‖
2
�r. (4)

(Symmetry) For any r-round strategies S and T , it holds that Fr(S, T ) = Fr(T, S).
(Joint concavity) For any r-round strategies S1, . . . , Sn and T 1, . . . , Tn, and nonnegative
scalars λ1, . . . , λn satisfying

∑n
i=1 λi = 1, we have

Fr

(
n∑

i=1
λiS

i,

n∑
i=1

λiT
i

)
≥

n∑
i=1

λi Fr
(
Si, T i

)
.

(Bounds on the strategy fidelity) For any r-round strategies S and T , it holds that
0 ≤ Fr(S, T ) ≤ 1. Moreover, Fr(S, T ) = 1 if and only if S = T and Fr(S, T ) = 0 if and
only if S and T are perfectly distinguishable.

We later discuss that the strategy version of the Fuchs-van de Graaf inequalities is crucial
to our cryptographic applications. This was also used implicitly in [10].

1.2.2 Operational interpretation (min-max properties)
Here we propose an operationally motivated generalization of Uhlmann’s Theorem [24] to
the strategy fidelity. In so doing we elucidate the need for a min-max theorem. Recall that
Uhlmann’s Theorem for quantum states asserts that the fidelity F(ρ, ξ) between any two
quantum states ρ and ξ, acting on X , is given by

F(ρ, ξ) = max
U
|〈φ|(U ⊗ IX )|ψ〉|

where |φ〉, |ψ〉 ∈ X ⊗Y are any purifications of ρ, ξ and the maximization is over all unitaries
U acting on Y alone.

Intuitively, Fr(S, T ) should quantify the extent to which any purifications S̃, T̃ of two
strategies S, T can be made to look the same by acting only on the final memory space Zr.
It follows immediately from the definition of the strategy fidelity and Uhlmann’s Theorem
that

Fr(S, T ) = min
B

F(ρS(B̃), ρT (B̃)) = min
B

max
U

∣∣〈ψ(S̃, B̃)| (U ⊗ IWr
) |ψ(T̃ , B̃)〉

∣∣ (5)

where, again, the maximization is over all unitaries U acting on Zr alone.
Notice the order of minimization and maximization in (5). This could be viewed as

a competitive game between Alice (who plays according to S or T ) and Bob (who plays
according to any arbitrary co-strategy B) in which Bob is trying to distinguish S from T

and Alice is trying to make S and T look the same. To these ends, Bob chooses his strategy
B so as to minimize the overlap |〈ψ(S̃, B̃)|ψ(T̃ , B̃)〉|; given such a choice B for Bob, Alice’s
responds with a unitary U that maximizes this overlap.

The problem is that Alice’s choice of U may depend upon Bob’s co-strategy B. The
task of distinguishing S from T should depend only upon S and T—Alice should not be
granted the ability to tweak S or T after she has acquired knowledge of Bob’s specific choice
of distinguishing co-strategy B. From an operational perspective, it would be much more
desirable if the order of minimization and maximization in (5) were reversed. Alice should

TQC 2017
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select her unitary U so as to make S look as much as possible like T before Bob selects his
distinguishing co-strategy B. Thus, we require a type of min-max theorem.

The set of all co-strategies B for Bob is compact and convex [13], but it is not at all
clear that the objective function in (5) is convex in B; we show later (Lemma 9) that this is
indeed the case. However, the set of all unitaries U for Alice is not a convex set. One might
think that we could extend the domain of maximization to the convex hull of the unitaries
in the hopes that there is a saddle point (U,B) with U unitary. Unfortunately, saddle points
do not in general occur at extreme points of the domain, so we are not guaranteed that such
a unitary saddle point exists. Thus, a min-max theorem for the strategy fidelity involving
unitaries is not so easily forthcoming.

However, if we allow Alice to apply a general quantum channel, we are able to obtain a
min-max result, as stated below.

I Theorem 4 (Strategy generalization of Uhlmann’s Theorem). Let S, T be r-round strategies
and let S̃, T̃ be any purifications of S, T . Let |ψ(S̃, B̃)〉, |ψ(T̃ , B̃)〉 be as defined in Definition 1.
We have

Fr(S, T )2 = max
Ξ

min
B
〈ψ(S̃, B̃)|

[(
Ξ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉 (6)

where the minimum is over all r-round pure co-strategies B̃ and the maximum is over all
quantum channels Ξ acting on Zr alone.

Note that similar min-max results are derived in [2] and [10]. It will be convenient to
define the following quantum channel.

I Definition 5. A strategy fidelity-achieving channel Ξ is a channel which attains the
maximum in (6), above.

1.2.3 Semidefinite programming formulation of strategy fidelity
It was shown in [12] that the strategy norm has a semidefinite programming formulation.
Also, the fidelity of quantum states has semidefinite programming formulations, see [26, 27]
for examples. It is natural to ask whether the strategy fidelity has such a formulation. We
answer this question in the affirmative, below.

I Theorem 6 (Semidefinite programming formulation of strategy fidelity). Fix any purifications
S̃ and T̃ of r-round strategies S and T , respectively. Then Fr(S, T )2 is equal to the optimal
objective function value of the following semidefinite program:

Fr(S, T )2 = max t

subject to tIX1 � TrY1(R1)
Rj ⊗ IXj+1 � TrYj+1(Rj+1), for j ∈ {1, . . . , r − 1},

Rr � 1
2 TrZr

(
(K ⊗ IY1...r⊗X1...r

) |T̃ 〉〉〈〈S̃|
)

+ h.c.[
IZr

K

K∗ IZr

]
� 0

where the variables Rj are Hermitian acting on Y1...j ⊗ X1...j for each j ∈ {1, . . . , r}, and
h.c. denotes the Hermitian conjugate.

1.3 Applications to two-party quantum cryptography
Since the seminal work of Wiesner [28] and Bennett and Brassard [3], there has been much
interest in knowing the advantages, and limitations, of quantum protocols for cryptographic
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tasks. Due to the interactive setting of such protocols, the use of quantum strategy analysis
has proven to be useful. In [13], it was shown how to rederive Kitaev’s lower bound for
coin-flipping [15]. In [10], it was shown how to find a simple proof of the impossibility of
interactive bit-commitment. Here, we find a similar proof of this and extend the argument
to oblivious string transfer.

In this paper, we present our ideas using the machinery we have developed for the strategy
fidelity. In particular, we show that the strategy version of the Fuchs-van de Graaf inequalities
(Eqn. (4)) are of central importance in providing security lower bounds. In fact, due to
the nature of the strategy norm and strategy fidelity, we are able to bound the security
without even specifying the entire protocol! This is in stark contrast to many other security
proofs/models studied, for example in [15, 23, 25, 19, 1, 14, 13, 5, 6, 7, 8, 20, 21, 4, 22] where
Alice and Bob’s actions are assumed to be fully specified (and known to cheating parties).
We note that our proposed security model is implicit in the bit-commitment security bounds
in [10] and in the channel setting in [2].

In this paper, we show the impossibility of ideal quantum protocols for interactive
bit-commitment and oblivious string transfer.

1.3.1 Interactive bit-commitment
In bit-commitment, we require Alice and Bob to interact over two communication stages:

Commit Phase: Alice chooses a uniformly random bit a and interacts with Bob using an
r-round pure strategy Ãa.
Reveal Phase: Alice sends a to Bob and continues her interaction with him (so that Bob
can test if she has cheated).
Cheat Detection: Bob, knowing which pure strategy B̃ he has used, measures to check if
the final state is consistent with Alice’s pure strategy Ãa. He aborts the protocol if this
measurement detects the final state is not consistent with Alice’s pure strategy Ãa. If
Alice is honest, he never aborts.

Protocols are designed with the intention to achieve the following two important properties
of interest:

Binding: Alice cannot change her mind after the Commit Phase and reveal the other
value of a (without being detected by Bob).
Hiding: Bob cannot learn Alice’s bit a before she reveals it during the Reveal Phase.

Finding a protocol with perfect binding and hiding properties is known to be impossible [18,
16, 17]. However, these security proofs rely on an assumption that we do not make, that
honest Bob’s actions are specified beforehand (and thus known to Alice).

We define the cheating probabilities of Alice and Bob as follows:

BBC: The maximum probability with which a dishonest Bob can learn an honest Alice’s
committed bit a ∈ {0, 1} after the Commit Phase.

ABC: The maximum probability with which Alice can change her commitment from 0 to 1 (or
from 1 to 0) before the Reveal Phase.

I Remark. Note that in the definition of cheating Alice above, we do not assume Alice knows
Bob’s actions. It could even be the case that Bob’s sole purpose is to choose a co-strategy
such as to minimize ABC.

Cheating Bob wishes to distinguish between one of two uniformly randomly chosen
strategies. We know from [12] that

BBC = 1
2 + 1

4‖A
0 −A1‖�r.

TQC 2017
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In Section 4, we show that

ABC ≥ Fr(A0, A1)2.

An interesting observation is that this only depends on Alice’s honest strategies, not Bob’s.
Thus, by the Fuchs-van de Graaf inequalities for strategies (Proposition 3), we have the

following trade-off lower bound.

I Theorem 7. In any interactive quantum protocol for bit-commitment, we have that√
ABC + 2BBC ≥ 2.

Moreover, we have that Alice or Bob can cheat with probability at least 9−
√

17
8 ≈ 61%.

Note that this is a similar bound to the one obtained in [10] for the interactive setting
and exactly the same as in [2] in the channel setting.

We remark that, when Alice and Bob’s actions are completely specified, optimal protocols
are known [6].

1.3.2 1-out-of-2 interactive oblivious string transfer
This is an interactive cryptographic task between Alice and Bob where Bob has two bit-
strings2 (x0, x1) and Alice wishes to learn one of the two in the following manner:

Alice chooses a uniformly random bit a which corresponds to her choice of which string
she wishes to learn, and interacts with Bob via the r-round pure strategy Ãa.
For every (x0, x1), Bob uses a pure co-strategy B̃x0,x1 , such that Alice learns the string
xa with certainty by measuring her private space Zr at the end of the protocol.

Note that we do not assume any structure on how Bob behaves other than the consistency
condition above. For example, x0 and x1 may be the result of another protocol of which
Alice is not part, and thus she does not even know the distribution from which they are
drawn. Again, Bob’s strategy may be such that, conditioned on the above requirements, he
just wants to foil Alice’s cheating, as defined below.

We define the cheating probabilities of Alice and Bob as follows:

BOT: The maximum probability with which a dishonest Bob can learn an honest Alice’s choice
bit a.

AOT: The maximum probability with which a dishonest Alice can learn x0 after learning x1

with certainty, or vice versa.

Cheating Bob behaves the exact same as in a bit-commitment protocol. Thus his cheating
probability is again

BOT = 1
2 + 1

4‖A
0 −A1‖�r.

In Section 4, we show the following bound on cheating Alice:

AOT ≥ Fr(A0, A1)2.

This yields the same bound as in bit-commitment, below.

2 The bit-length of the strings are, surprisingly, not important for the purposes of this paper.
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I Theorem 8. In any interactive quantum protocol for 1-out-of-2 oblivious string transfer,
we have that√

AOT + 2BOT ≥ 2.

Moreover, we have that Alice or Bob can cheat with probability at least 9−
√

17
8 ≈ 61%.

Note that in the case where Bob has two bits (i.e., the strings have bit-length 1), an
optimal security trade-off between Alice and Bob is known [4]:

AOT + 2BOT ≥ 2.

However, this assumes perfect knowledge of Alice and Bob’s honest strategies. Thus, our
bound for cheating Alice is a bit weaker, but has the added benefit of only depending on her
honest strategies.

2 Technical lemmas and the strategy generalization of Uhlmann’s
Theorem

In this section we prove two lemmas that allow us to establish nontrivial properties of the
strategy fidelity. These lemmas are used to prove the strategy generalization of Uhlmann’s
Theorem (Theorem 4) and to provide a semidefinite programming formulation of the strategy
fidelity (Theorem 6).

Before we proceed, let us introduce some notation. Let Yi...jXi′...j′ be short for Yi...j ⊗
Xi′...j′ . Let L(X ), U(X ), Her(X ), Pos(X ), and Dens(X ) be, respectively, the set of all
linear, unitary, Hermitian, positive semidefinite, and density operators acting on X . Let
K(X ) be the convex hull of U(X ), namely, the set of all operators K ∈ L(X ) such that
‖K‖ ≤ 1. Suppose X and Y are two complex Euclidean spaces with fixed standard basis.
Given a linear operator A : X → Y written in the standard basis as

A =
dim(X )∑

i=1

dim(Y)∑
j=1

ai,j |j〉〈i|,

the vectorization of A is

|A〉〉 :=
dim(X )∑

i=1

dim(Y)∑
j=1

ai,j |j〉 ⊗ |i〉 ∈ Y ⊗ X

and its adjoint is 〈〈A| := (|A〉〉)∗.

I Lemma 9 (Inner product is linear in B). Let S, T be r-round strategies and let S̃, T̃ be any
purifications of S, T . Let B be a compatible r-round co-strategy and let B̃ be any purification
of B. Let |ψ(S̃, B̃)〉, |ψ(T̃ , B̃)〉 be as in Definition 1 and let K ∈ L(Zr). It holds that

〈ψ(S̃, B̃)| (K ⊗ IWr
) |ψ(T̃ , B̃)〉 = 〈〈S̃| (K ⊗B) |T̃ 〉〉.

Note that the inner product above depends on B but not on its purification B̃. This
exemplifies what we stated earlier in the remark above Eqn. (2).

The proof is similar to a proof in Ref. [13, Theorem 5]. Lemma 9 is useful for proving
the following lemma. Proofs of both these results will be included in the full version.

TQC 2017
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I Lemma 10. Let S, T be r-round strategies and let S̃, T̃ be any purifications of S, T . It
holds that

Fr(S, T ) = max
K

min
B
<
(
〈〈S̃| (K ⊗B) |T̃ 〉〉

)
where the minimum is over all compatible r-round co-strategies B for Bob and the maximum
is over all K ∈ K(Zr) acting on the final memory space Zr for Alice.

Now, with Lemmas 9 and 10 at our disposal, we proceed to prove the strategy generaliza-
tion of Uhlmann’s Theorem.

Proof of Theorem 4. From Lemma 10, it follows that

Fr(S, T ) ≤ max
K

min
B

∣∣〈〈S̃| (K ⊗B) |T̃ 〉〉
∣∣ .

We square this inequality and apply Lemma 9 to obtain

Fr(S, T )2 ≤ max
K

min
B
〈ψ(S̃, B̃)| (K ⊗ IWr

) |ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)| (K∗ ⊗ IWr
) |ψ(S̃, B̃)〉.

Let us define K̄ =
√
IZr −K∗K (noting that K∗K � IZr ) and

ΞK : L(Zr)→ L(Zr) : X 7→ KXK∗ + K̄XK̄∗,

which is a quantum channel as its Kraus representation {K, K̄} satisfies K∗K + K̄∗K̄ = IZr .
Since

〈ψ(S̃, B̃)|
(
K̄ ⊗ IWr

)
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

(
K̄∗ ⊗ IWr

)
|ψ(S̃, B̃)〉 ≥ 0

for all K and all B̃, we have

Fr(S, T )2 ≤ max
K

min
B
〈ψ(S̃, B̃)|

[(
ΞK ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉

≤ max
Ξ

min
B
〈ψ(S̃, B̃)|

[(
Ξ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉. (7)

However, we clearly have

Fr(S, T )2 = min
B

max
Ξ
〈ψ(S̃, B̃)|

[(
Ξ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉

due to Eqn. (5) and the fact that Uhlmann’s Theorem also holds replacing unitaries with
channels. Hence, the inequality (7) is in fact an equality due to the max–min inequality. J

3 Semidefinite programming formulation for strategy fidelity

In this section, we use Lemma 10 to prove Theorem 6. From Lemma 10, we have that

Fr(S, T )2 = max {φ(K) : K ∈ K(Zr)}

where φ(K) := min
B
< 〈〈S̃| (K ⊗B) |T̃ 〉〉, and B is Bob’s co-strategy. By defining

C := 1
2 TrZr

(
(K ⊗ IY1...rX1...r

) |T̃ 〉〉〈〈S̃|
)

+ 1
2
[
TrZr

(
(K ⊗ IY1...rX1...r

) |T̃ 〉〉〈〈S̃|
)]∗

we can write

φ(K) = min
B
〈C,B〉.
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From [13, Corollary 7], we know that B must satisfy B = Qr ⊗ IYr for some (Q1, . . . , Qr)
satisfying

Tr(Q1) = 1, TrXi
(Qi) = Qi−1 ⊗ IYi−1 , for i ∈ {2, . . . , r}

and Q1 ∈ Pos(X1), Qi ∈ Pos(Y1...i−1 ⊗ X1...i), for i ∈ {2, . . . , r}. Thus, φ(K) can be
formulated as a semidefinite program. Its dual can be written as

α(K) := max
{
t : tIX1 � TrY1(R1), Rr � C,

Rj ⊗ IXj+1 � TrYj+1(Rj+1) for j ∈ {1, . . . , r − 1}
}
,

where Rj ∈ Her(Y1...j ⊗X1...j). Since this has a strictly feasible solution, as does the primal,
we know α(K) = φ(K) by strong duality and α(K) attains an optimal solution. We now let

M =
[
IZr

K

K∗ IZr

]
and set M � 0 to get ‖K‖ ≤ 1. We can check that C is a linear function

in M (since M is Hermitian). Thus, we have that the strategy fidelity can be written as in
Theorem 6.

4 Alice’s cheating in interactive bit-commitment and oblivious string
transfer

In this section we show that Alice can cheat with probability Fr(A0, A1)2 in either bit-
commitment or oblivious string transfer. The cheating has the same flavour in both cases:
Alice will follow the protocol honestly, then try to change her state as to make it look like
she chose the other strategy from the beginning. Suppose Alice uses pure strategy Ãa and
Bob uses pure co-strategy B̃. For brevity, define for each a ∈ {0, 1} the following states

|ψa〉 := |ψ(Ãa, B̃)〉 and σa := (Ξa ⊗ IWr )(|ψa〉〈ψa|) (8)

where Ξa is the strategy fidelity-achieving channel (from Definition 5) such that

〈ψā|σa|ψā〉 ≥ Fr(A0, A1)2. (9)

Note that the aim of Ξa is to get σa as close as possible to |ψā〉〈ψā|.

4.1 Bit-commitment
When we study interactive bit-commitment, we are applying the strategy/co-strategy form-
alism to only the commit phase. From the above discussion, Alice can create the state
σa ∈ Dens(Zr ⊗Wr) to try to change her commitment from a to ā. Then Alice continues
her actions to “reveal” ā in the Reveal Phase, as does Bob (even though Bob’s actions are not
specified to Alice). We just assume that this entire process is done by a unitary Uā acting on
Zr ⊗Wr. Then, Bob has a projective measurement {Πaccept,Πreject} which accepts Uā|ψā〉
with certainty, thus leading to a non-destructive measurement. Thus, we have

(IZr ⊗Πaccept)Uā|ψā〉 = Uā|ψā〉.

This implies that

(IZr ⊗Πaccept) � Uā|ψā〉〈ψā|U∗ā .

However, Alice’s actions have led to them sharing UāσaU
∗
ā at the end of the protocol. So, we

have that Alice successfully reveals ā with probability

ABC ≥ 〈IZr⊗Πaccept, UāσaU
∗
ā 〉 ≥ 〈Uā|ψā〉〈ψā|U∗ā , UāσaU

∗
ā 〉 = 〈|ψā〉〈ψā|, σa〉 ≥ Fr(A0, A1)2

using Eqn. (9), as desired.
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4.2 Oblivious string transfer
We can assume Alice uses a projective measurement {Πa

z} to learn her desired string. Note
that since xa is learned with certainty, this is a non-destructive measurement, as in the
bit-commitment analysis above. That is, we have(

Πa
xa
⊗ IWr

)
|ψ(Ãa, B̃x0,x1)〉 = |ψ(Ãa, B̃x0,x1)〉

for all a and (x0, x1). Again, this implies

Πa
xa
⊗ IWr

� |ψ(Ãa, B̃x0,x1)〉〈ψ(Ãa, B̃x0,x1)|. (10)

Thus, after learning xa, she can create the state σa (defined above) to try to learn xā.
(Here, the B̃ in the definition of σa is B̃x0,x1 .) Then she measures as if she had used pure
strategy Ãā (that is, using {Πā

z}) to try to learn xā. Then, using (10) and the definitions in
(8), we have

AOT ≥ 〈Πā
xā
⊗ IWr , σa〉 ≥ 〈ψā|σa|ψā〉 ≥ Fr(A0, A1)2,

as desired.
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