
Tight Conditional Lower Bounds for Longest
Common Increasing Subsequence∗

Lech Duraj†1, Marvin Künnemann2, and Adam Polak‡3

1 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
duraj@tcs.uj.edu.pl

2 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
marvin@mpi-inf.mpg.de

3 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
polak@tcs.uj.edu.pl

Abstract
We consider the canonical generalization of the well-studied Longest Increasing Subsequence
problem to multiple sequences, called k-LCIS: Given k integer sequences X1, . . . , Xk of length at
most n, the task is to determine the length of the longest common subsequence of X1, . . . , Xk

that is also strictly increasing. Especially for the case of k = 2 (called LCIS for short), several
algorithms have been proposed that require quadratic time in the worst case.

Assuming the Strong Exponential Time Hypothesis (SETH), we prove a tight lower bound,
specifically, that no algorithm solves LCIS in (strongly) subquadratic time. Interestingly, the
proof makes no use of normalization tricks common to hardness proofs for similar problems such
as LCS. We further strengthen this lower bound to rule out O

(
(nL)1−ε) time algorithms for

LCIS, where L denotes the solution size, and to rule out O
(
nk−ε

)
time algorithms for k-LCIS.

We obtain the same conditional lower bounds for the related Longest Common Weakly Increasing
Subsequence problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases fine-grained complexity, combinatorial pattern matching, sequence align-
ments, parameterized complexity, SETH

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.15

1 Introduction

The longest common subsequence problem (LCS) and its variants are computational primitives
with a variety of applications, which includes, e.g., uses as similarity measures for spelling
correction [36, 42] or DNA sequence comparison [38, 5], as well as determining the differences
of text files as in the UNIX diff utility [27]. LCS shares characteristics of both an easy and
a hard problem: (Easy) A simple and elegant dynamic-programming algorithm computes an
LCS of two length-n sequences in time O

(
n2) [42], and in many practical settings, certain

properties of typical input sequences can be exploited to obtain faster, “tailored” solutions

∗ The full version of this paper is available at: http://arxiv.org/abs/1709.10075.
† Partially supported by Polish National Science Center grant 2016/21/B/ST6/02165.
‡ Partially supported by Polish Ministry of Science and Higher Education program Diamentowy Grant.

© Lech Duraj, Marvin Künnemann, and Adam Polak;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699340?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.15
http://arxiv.org/abs/1709.10075
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

(e.g., [26, 28, 7, 37]; see also [13] for a survey). (Hard) At the same time, no polynomial
improvements over the classical solution are known, thus exact computation may become
infeasible for very long general input sequences. The research community has sought for a
resolution of the question “Do subquadratic algorithms for LCS exist?” already shortly after
the formalization of the problem [20, 4].

Recently, an answer conditional on the Strong Exponential Time Hypothesis (SETH;
see Section 2 for a definition) could be obtained: Based on a line of research relating the
satisfiability problem to quadratic-time problems [43, 40, 14, 3] and following a breakthrough
result for Edit Distance [9], it has been shown that unless SETH fails, there is no (strongly)
subquadratic-time algorithm for LCS [1, 15]. Subsequent work [2] strengthens these lower
bounds to hold already under weaker assumptions and even provides surprising consequences
of sufficiently strong polylogarithmic improvements.

Due to its popularity and wide range of applications, several variants of LCS have been
proposed. This includes the heaviest common subsequence (HCS) [31], which introduces
weights to the problem, as well as notions that constrain the structure of the solution,
such as the longest common increasing subsequence (LCIS) [45], LCSk [12], constrained
LCS [41, 19, 8], restricted LCS [25], and many other variants (see, e.g., [18, 6, 32]). Most
of these variants are (at least loosely) motivated by biological sequence comparison tasks.
To the best of our knowledge, in the above list, LCIS is the only LCS variant for which (1)
the best known algorithms run in quadratic time in the worst case and (2) its definition
does not include LCS as a special case (for such generalizations of LCS, the quadratic-time
SETH hardness of LCS [1, 15] would transfer immediately). As such, it is open to determine
whether there are (strongly) subquadratic algorithms for LCIS or whether such algorithms
can be ruled out under SETH. The starting point of our work is to settle this question.

1.1 Longest Common Increasing Subsequence (LCIS)
The Longest Common Increasing Subsequence problem on k sequences (k-LCIS) is defined
as follows: Given integer sequences X1, . . . , Xk of length at most n, determine the length
of the longest sequence Z such that Z is a strictly increasing sequence of integers and
Z is a subsequence of each Xi, i ∈ {1, . . . , k}. For k = 1, we obtain the well-studied
longest increasing subsequence problem (LIS; we refer to [21] for an overview), which has
an O (n logn) time solution and a matching lower bound in the decision tree model [24].
The extension to k = 2, denoted simply as LCIS, has been proposed by Yang, Huang, and
Chao [45], partially motivated as a generalization of LIS and by potential applications in
bioinformatics. They obtained an O

(
n2) time algorithm, leaving open the natural question

whether there exists a way to extend the near-linear time solution for LIS to a near-linear
time solution for multiple sequences.

Interestingly, already a classic connection between LCS and LIS combined with a recent
conditional lower bound of Abboud, Backurs and Vassilevska Williams [1] yields a partial
negative answer assuming SETH.
I Observation 1 (Folklore reduction, implicit in [28], explicit in [31]). After O

(
kn2) time

preprocessing, we can solve k-LCS by a single call to (k − 1)-LCIS on sequences of length at
most n2.
Note that by the above reduction, an O

(
n

3
2−ε
)
time LCIS algorithm would give an O

(
n3−2ε)

time algorithm for 3-LCS, which would refute SETH by a result of Abboud et al. [1].

I Corollary 2. Unless SETH fails, there is no O
(
n

3
2−ε
)
time algorithm for LCIS for any

constant ε > 0.

L. Duraj, M. Künnemann, and A. Polak 15:3

While this rules out near-linear time algorithms, still an unsatisfying large polynomial gap
between best upper and conditional lower bounds persists.

1.2 Our Results
Our first result is a tight SETH-based lower bound for LCIS.

I Theorem 3. Unless SETH fails, there is no O
(
n2−ε) time algorithm for LCIS for any

constant ε > 0.

We extend our main result in several directions.

1.2.1 Parameterized Complexity I: Solution Size
Subsequent work [17, 34] improved over Yang et al.’s algorithm when certain input parameters
are small. Here, we focus particularly on the solution size, i.e., the length L of the LCIS.
Kutz et al. [34] provided an algorithm running in time O (nL log logn+ n logn). If L is small
compared to its worst-case upper bound of n, say L = n

1
2±o(1), this algorithm runs in strongly

subquadratic time. Interestingly, exactly for this case, the reduction from 3-LCS to LCIS of
Observation 1 already yields a matching SETH-based lower bound of (Ln)1−o(1) = n

3
2−o(1).

However, for smaller L, this reduction yields no lower bound at all and only a non-matching
lower bound for larger L. We remedy this situation by the following result.1

I Theorem 4. Unless SETH fails, there is no O
(
(nL)1−ε) time algorithm for LCIS for any

constant ε > 0. This even holds restricted to instances with L = nγ±o(1), for arbitrarily
chosen 0 < γ 6 1.

1.2.2 Parameterized Complexity II: k-LCIS
For constant k > 3, we can solve k-LCIS in O

(
nkpolylog(n)

)
time [17, 34], or even O

(
nk
)

time (see the appendix in the full version). While it is known that k-LCS cannot be computed
in time O

(
nk−ε

)
for any constant ε > 0, k > 2 unless SETH fails [1], this does not directly

transfer to k-LCIS, since the reduction in Observation 1 is not tight. However, by extending
our main construction, we can prove the analogous result.

I Theorem 5. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCIS for any

constant k > 3 and ε > 0.

1.2.3 Longest Common Weakly Increasing Subsequence (LCWIS)
We consider a closely related variant of LCIS called the Longest Common Weakly Increasing
Subsequence (k-LCWIS): Here, given integer sequences X1, . . . , Xk of length at most n, the
task is to determine the longest weakly increasing (i.e. non-decreasing) integer sequence
Z that is a common subsequence of X1, . . . , Xk. Again, we write LCWIS as a shorthand
for 2-LCWIS. Note that the seemingly small change in the notion of increasing sequence
has a major impact on algorithmic and hardness results: Any instance of LCIS in which
the input sequences are defined over a small-sized alphabet Σ ⊆ Z, say |Σ| = O

(
n1/2),

can be solved in strongly subquadratic time O (nL logn) = O
(
n3/2 logn

)
[34], by using the

fact that L 6 |Σ|. In contrast, LCWIS is quadratic-time SETH hard already over slightly

1 We mention in passing that a systematic study of the complexity of LCS in terms of such input
parameters has been performed recently in [16].

IPEC 2017

15:4 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

superlogarithmic-sized alphabets [39]. We give a substantially different proof for this fact
and generalize it to k-LCWIS.

I Theorem 6. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCWIS for any

constant k > 3 and ε > 0. This even holds restricted to instances defined over an alphabet of
size |Σ| 6 f(n) logn for any function f(n) = ω(1) growing arbitrarily slowly.

1.3 Discussion, Outline and Technical Contributions
Apart from an interest in LCIS and its close connection to LCS, our work is also motivated
by an interest in the optimality of dynamic programming (DP) algorithms2. Notably, many
conditional lower bounds in P target problems with natural DP algorithms that are proven
to be near-optimal under some plausible assumption (see, e.g., [14, 3, 9, 10, 1, 15, 11, 22, 33]
and [44] for an introduction to the field). Even if we restrict our attention to problems
that find optimal sequence alignments under some restrictions, such as LCS, Edit Distance
and LCIS, the currently known hardness proofs differ significantly, despite seemingly small
differences between the problem definitions. Ideally, we would like to classify the properties
of a DP formulation which allow for matching conditional lower bounds.

One step in this direction is given by the alignment gadget framework [15]. Exploiting
normalization tricks, this framework gives an abstract property of sequence similarity measures
to allow for SETH-based quadratic lower bounds. Unfortunately, as it turns out, we cannot
directly transfer the alignment gadget hardness proof for LCS to LCIS – some indication for
this difficulty is already given by the fact that LCIS can be solved in strongly subquadratic
time over sublinear-sized alphabets [34], while the LCS hardness proof already applies
to binary alphabets. By collecting gadgetry needed to overcome such difficulties (that
we elaborate on below), we hope to provide further tools to generalize more and more
quadratic-time lower bounds based on SETH.

1.3.1 Technical Challenges
The known conditional lower bounds for global alignment problems such as LCS and
Edit Distance work as follows. The reductions start from the quadratic-time SETH-hard
Orthogonal Vectors problem (OV), that asks to determine, given two sets of (0, 1)-vectors
U = {u0, . . . , un−1},V = {v0, . . . , vn−1} ⊆ {0, 1}d over d = no(1) dimensions, whether there
is a pair i, j such that ui and vj are orthogonal, i.e., whose inner product (ui · vj) :=∑d−1
k=0 ui[k] · vj [k] is 0 (over the integers). Each vector ui and vj is represented by a

(normalized) vector gadget VGx(ui) and VGy(vj), respectively. Roughly speaking, these
gadgets are combined to sequences X and Y such that each candidate for an optimal
alignment of X and Y involves locally optimal alignments between n pairs VGx(ui),VGy(vj)
– the optimal alignment exceeds a certain threshold if and only if there is an orthogonal pair
ui, vj .

An analogous approach does not work for LCIS: Let VGx(ui) be defined over an alphabet
Σ and VGx(ui′) over an alphabet Σ′. If Σ and Σ′ overlap, then VGx(ui) and VGx(ui′) cannot
both be aligned in an optimal alignment without interference with each other. On the other
hand, if Σ and Σ′ are disjoint, then each vector vj should have its corresponding vector
gadget V Gy(vj) defined over both Σ and Σ′ to enable to align VGx(ui) with VGy(vj) as well
as VGx(ui′) with VGy(vj). The latter option drastically increases the size of vector gadgets.

2 We refer to [46] for a simple quadratic-time DP formulation for LCIS.

L. Duraj, M. Künnemann, and A. Polak 15:5

Thus, we must define all vector gadgets over a common alphabet Σ and make sure that only
a single pair VGx(ui),VGy(vj) is aligned in an optimal alignment (in contrast with n pairs
aligned in the previous reductions for LCS and Edit Distance).

1.3.2 Technical Contributions and Proof Outline
Fortunately, a surprisingly simple approach works: As a key tool, we provide separator
sequences α0 . . . αn−1 and β0 . . . βn−1 with the following properties: (1) for every i, j ∈
{0, . . . , n− 1} the LCIS of α0 . . . αi and β0 . . . βj has a length of f(i+ j), where f is a linear
function, and (2)

∑
i |αi| and

∑
j |βj | are bounded by n1+o(1). Note that existence of such a

gadget is somewhat unintuitive: condition (1) for i = 0 and j = n− 1 requires |α0| = Ω(n),
yet still the total length

∑
i |αi| must not exceed the length of |α0| significantly. Indeed, we

achieve this by a careful inductive construction that generates such sequences with heavily
varying block sizes |αi| and |βj |.

We apply these separator sequences as follows. We first define simple vector gadgets
VGx(ui),VGy(vj) over an alphabet Σ such that the length of an LCIS of VGx(ui) and
VGy(vj) is d− (ui ·vj). Then we construct the separator sequences as above over an alphabet
Σ< whose elements are strictly smaller than all elements in Σ. Furthermore, we create
analogous separator sequences α′0 . . . α′n−1 and β′0 . . . β′n−1 which satisfy a property like (1)
for all suffixes instead of prefixes, using an alphabet Σ> whose elements are strictly larger
than all elements in Σ. Now, we define

X = α0VGx(u0)α′0 . . . αn−1VGx(un−1)α′n−1,

Y = β0VGy(v0)β′0 . . . βn−1VGy(vn−1)β′n−1.

As we will show in Section 3, the length of an LCIS of X and Y is C −mini,j(ui · vj) for
some constant C depending only on n and d.

In contrast to previous such OV-based lower bounds, we use heavily varying separators
(paddings) between vector gadgets.

1.4 Paper organization
After setting up conventions and introducing our hardness assumptions in Section 2, we give
the main construction, i.e., the hardness of LCIS in Section 3. The proofs of Theorems 4, 5
and 6 can be found in the full version. We conclude with some open problems in Section 4.

2 Preliminaries

As a convention, we use capital or Greek letters to denote sequences over integers. Let X,Y be
integer sequences. We write |X| for the length of X, X[k] for the k-th element in the sequence
X (k ∈ {0, . . . , |X| − 1}), and X ◦ Y = XY for the concatenation of X and Y . We say that
Y is a subsequence of X if there exist indices 0 6 i1 < i2 < · · · < i|Y | 6 |X| − 1 such that
X[ik] = Y [k] for all k ∈ {0, . . . , |Y | − 1}. Given any number of sequences X1, . . . , Xk, we say
that Y is a common subsequence of X1, . . . , Xk if Y is a subsequence of each Xi, i ∈ {1, . . . , k}.
X is called strictly increasing (or weakly increasing) if X[0] < X[1] < · · · < X[|X| − 1]
(or X[0] 6 X[1] 6 · · · 6 X[|X| − 1]). For any k sequences X1, . . . , Xk, we denote by
lcis(X1, . . . , Xk) the length of their longest common subsequence that is strictly increasing.

All of our lower bounds hold assuming the Strong Exponential Time Hypothesis (SETH),
introduced by Impagliazzo and Paturi [29, 30]. It essentially states that no exponential
speed-up over exhaustive search is possible for the CNF satisfiability problem.

IPEC 2017

15:6 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

I Hypothesis 7 (Strong Exponential Time Hypothesis (SETH)). There is no ε > 0 such that
for all d > 3 there is an O

(
2(1−ε)n) time algorithm for d-SAT.

This hypothesis implies tight hardness of the k-Orthogonal Vectors problem (k-OV),
which will be the starting point of our reductions: Given k sets U1, . . . ,Uk ⊆ {0, 1}d, each
with |Ui| = n vectors over d = no(1) dimensions, determine whether there is a k-tuple
(u1, . . . , uk) ∈ U1 × · · · × Uk such that

∑d−1
`=0

∏k
i=1 ui[`] = 0. By exhaustive enumeration, it

can be solved in time O
(
nkd

)
= nk+o(1). The following conjecture is implied by SETH by

the well-known split-and-list technique of Williams [43] (and the sparsification lemma [30]).

I Hypothesis 8 (k-OV conjecture). Let k > 2. There is no O
(
nk−ε

)
time algorithm for

k-OV, with d = ω(logn), for any constant ε > 0.

For the special case of k = 2, which we simply denote by OV, we obtain the following
weaker conjecture.

I Hypothesis 9 (OV conjecture). There is no O
(
n2−ε) time algorithm for OV, with d =

ω(logn), for any constant ε > 0. Equivalently, even restricted to instances with |U1| = n and
|U2| = nγ , 0 < γ 6 1, there is no O

(
n1+γ−ε) time algorithm for OV, with d = ω(logn), for

any constant ε > 0.

A proof of the folklore equivalence of the statements for equal and unequal set sizes can
be found, e.g., in [15].

3 Main Construction: Hardness of LCIS

In this section, we prove quadratic-time SETH hardness of LCIS, i.e., prove Theorem 3. We
first introduce an inflation operation, which we then use to construct our separator sequences.
After defining simple vector gadgets, we show how to embed an Orthogonal Vectors instance
using our vector gadgets and separator sequences.

3.1 Inflation
We begin by introducing the inflation operation, which simulates weighing the sequences.

I Definition 10. For a sequence A = 〈a0, a1, . . . , an−1〉 of integers we define:

inflate(A) = 〈2a0 − 1, 2a0, 2a1 − 1, 2a1, . . . , 2an−1 − 1, 2an−1〉 .

I Lemma 11. For any two sequences A and B, lcis(inflate(A), inflate(B)) = 2 · lcis(A,B).

Proof. Let C be the longest common increasing subsequence of A and B. Observe that
inflate(C) is a common increasing subsequence of inflate(A) and inflate(B) of length 2 · |C|,
thus lcis(inflate(A), inflate(B)) > 2 · lcis(A,B).

Conversely, let Ā denote inflate(A) and B̄ denote inflate(B). Let C̄ be the longest
common increasing subsequence of Ā and B̄. If we divide all elements of C̄ by 2 and
round up to the closest integer, we end up with a weakly increasing sequence. Now, if
we remove duplicate elements to make this sequence strictly increasing, we obtain C, a
common increasing subsequence of A and B. At most 2 distinct elements may become equal
after division by 2 and rounding, therefore C contains at least

⌈
lcis(Ā, B̄)/2

⌉
elements, so

2 · lcis(A,B) > lcis(Ā, B̄). This completes the proof. J

L. Duraj, M. Künnemann, and A. Polak 15:7

1 2 3 4 5 6 11 12 7 8 9 1011 13 11 1211 13

tail gadget︷ ︸︸ ︷inflate(α0
1)︷ ︸︸ ︷

1 2

α0
1

3 4 5

α1
1

inflate(α1
1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
2 α1

2 α2
2 α3

2

1

inflate(α0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
0

A1

A2

A0

1

β0
0

B0 1 2

β0
1

4 3 5

β1
1

inflate(β0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

B1

1 2 3 4 7 8 11 11 5 6 9 1012 13 11 1112 13

tail gadget︷ ︸︸ ︷inflate(β0
1)︷ ︸︸ ︷ inflate(β1

1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷
β0

2 β1
2 β2

2 β3
2

B2

x x+ 2
x+ 1

x+ 1

· · · 2sk + 2 2sk + 1 2sk + 3

· · · 2sk + 1 2sk + 2 2sk + 3︸ ︷︷ ︸
β

2j+1
k+1

Ak+1

Bk+1

lcis

︸ ︷︷ ︸
β

2j
k+1

α2i+1
k+1︷ ︸︸ ︷α2i

k+1︷ ︸︸ ︷

x = 2i + 2j + 2k+1

Figure 1 Initial steps of inductive construction of separator sequences (left), and intuition behind
tail gadgets (right).

3.2 Separator sequences
Our goal is to construct two sequences A and B which can be split into n blocks, i.e.
A = α0α1 . . . αn−1 and B = β0β1 . . . βn−1, such that the length of the longest common
increasing subsequence of the first i blocks of A and the first j blocks of B equals i+ j, up to
an additive constant. We call A and B separator sequences, and use them later to separate
vector gadgets in order to make sure that only one pair of gadgets may interact with each
other at the same time.

We construct the separator sequences inductively. For every k ∈ N, the sequences
Ak and Bk are concatenations of 2k blocks (of varying sizes), Ak = α0

kα
1
k . . . α

2k−1
k and

Bk = β0
kβ

1
k . . . β

2k−1
k . Let sk denote the largest element of both sequences. As we will soon

observe, sk = 2k+2 − 3.
The construction works as follows: for k = 0, we can simply set A0 and B0 as one-

element sequences 〈1〉. We then construct Ak+1 and Bk+1 inductively from Ak and Bk
in two steps. First, we inflate both Ak and Bk, then after each (now inflated) block
we insert 3-element sequences, called tail gadgets, 〈2sk + 2, 2sk + 1, 2sk + 3〉 for Ak+1 and
〈2sk + 1, 2sk + 2, 2sk + 3〉 for Bk+1. Formally, we describe the construction by defining
blocks of the new sequences. For i ∈ {0, 1, . . . , 2k − 1},

α2i
k+1 = inflate(αik) ◦ 〈2sk + 2〉 , α2i+1

k+1 = 〈2sk + 1, 2sk + 3〉 ,
β2i
k+1 = inflate(βik) ◦ 〈2sk + 1〉 , β2i+1

k+1 = 〈2sk + 2, 2sk + 3〉 .

Note that the symbols appearing in tail gadgets do not appear in the inflated sequences.
The largest element of both new sequences sk+1 equals 2sk + 3, and solving the recurrence
gives indeed sk = 2k+2 − 3.

Now, let us prove two useful properties of the separator sequences.

I Lemma 12. |Ak| = |Bk| =
(3

2k + 1
)
· 2k = O

(
k2k
)
.

Proof. Observe that |Ak+1| = 2|Ak|+ 3 · 2k. Indeed, to obtain Ak+1 first we double the size
of Ak and then add 3 new elements for each of the 2k blocks of Ak. Solving the recurrence
completes the proof. The same reasoning applies to Bk. J

IPEC 2017

15:8 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

I Lemma 13. For every i, j ∈
{

0, 1, . . . , 2k − 1
}
, lcis(α0

k . . . α
i
k, β

0
k . . . β

j
k) = i+ j + 2k.

Proof. The proof is by induction on k. Assume the statement is true for k and let us prove
it for k + 1.

The “>” direction. First, consider the case when both i and j are even. Ob-
serve that inflate(α0

k . . . α
i/2
k) and inflate(β0

k . . . β
j/2
k) are subsequences of α0

k+1 . . . α
i
k+1 and

β0
k+1 . . . β

j
k+1, respectively. Thus, using the induction hypothesis and inflation properties,

lcis(α0
k+1 . . . α

i
k+1, β0

k+1 . . . β
j
k+1) > lcis(inflate(α0

k . . . α
i/2
k), inflate(β0

k . . . β
j/2
k)) =

= 2 · lcis(α0
k . . . α

i/2
k , β0

k . . . β
j/2
k) = 2 · (i/2 + j/2 + 2k) = i+ j + 2k+1.

If i is odd and j is even, refer to the previous case to get a common increasing subsequence
of α0

k+1 . . . α
i−1
k+1 and β0

k+1 . . . β
j
k+1 of length i− 1 + j + 2k+1 consisting only of elements less

than or equal to 2sk, and append the element 2sk + 1 to the end of it. Analogously, for i
even and j odd, take such an LCIS of α0

k+1 . . . α
i
k+1 and β0

k+1 . . . β
j−1
k+1, and append 2sk + 2.

Finally, for both i and j odd, take an LCIS of α0
k+1 . . . α

i−1
k+1 and β0

k+1 . . . β
j−1
k+1, and append

2sk + 1 and 2sk + 3.
The “6” direction. We proceed by induction on i + j. Fix i and j, and let L be a

longest common increasing subsequence of α0
k+1 . . . α

i
k+1 and β0

k+1 . . . β
j
k+1.

If the last element of L is less than or equal to 2sk, L is in fact a common increasing sub-
sequence of inflate(α0

k . . . α
bi/2c
k) and inflate(β0

k . . . β
bj/2c
k), thus, by the induction hypothesis

and inflation properties, |L| 6 2 · (bi/2c+ bj/2c+ 2k) 6 i+ j + 2k+1.
The remaining case is when the last element of L is greater than 2sk. In this case, consider

the second-to-last element of L. It must belong to some blocks αi′k+1 and βj
′

k+1 for i′ 6 i and
j′ 6 j, and we claim that i = i′ and j = j′ cannot hold simultaneously: by construction of
separator sequences, if blocks αik+1 and βjk+1 have a common element larger than 2sk, then
it is the only common element of these two blocks. Therefore, it cannot be the case that
both i = i′ and j = j′, because the last two elements of L would then be located in αik+1
and βjk+1. As a consequence, i′ + j′ < i+ j, which lets us apply the induction hypothesis
to reason that the prefix of L omitting its last element is of length at most i′ + j′ + 2k+1.
Therefore, |L| 6 1 + i′ + j′ + 2k+1 6 i+ j + 2k+1, which completes the proof. J

Observe that if we reverse the sequences Ak and Bk along with changing all elements
to their negations, i.e. x to −x, we obtain sequences Âk and B̂k such that Âk splits into 2k
blocks α̂0

k . . . α̂
2k−1
k , B̂k splits into 2k blocks β̂0

k . . . β̂
2k−1
k , and

lcis(α̂ik . . . α̂2k−1
k , β̂jk . . . β̂

2k−1
k) = 2 · (2k − 1)− i− j + 2k. (1)

Finally, observe that we can add any constant to all elements of the sequences Ak and Bk
(as well as Âk and B̂k) without changing the property stated in Lemma 13 (and its analogue
for Âk and B̂k, i.e. Equation (1)).

3.3 Vector gadgets

Let U = {u0, . . . , un−1} and V = {v0, . . . , vn−1} be two sets of d-dimensional (0, 1)-vectors.

L. Duraj, M. Künnemann, and A. Polak 15:9

For i ∈ {0, 1, . . . , n − 1} let us construct the vector gadgets Ui and Vi as 2d-element
sequences, by defining, for every p ∈ {0, 1, . . . , d− 1},

(Ui[2p− 1], Ui[2p]) =
{

(2p− 1, 2p) if ui[p] = 0,
(2p− 1, 2p− 1) if ui[p] = 1,

(Vi[2p− 1], Vi[2p]) =
{

(2p, 2p− 1) if vi[p] = 0,
(2p, 2p) if vi[p] = 1.

Observe that at most one of the elements 2p− 1 and 2p may appear in the LCIS of Ui
and Vj , and it happens if and only if ui[p] and vj [p] are not both equal to one. Therefore,
lcis(Ui, Vj) = d − (ui · vj), and, in particular, lcis(Ui, Vj) = d if and only if ui and vj are
orthogonal.

3.4 Final construction
To put all the pieces together, we plug vector gadgets Ui and Vj into the separator sequences
from Section 3.2, obtaining two sequences whose LCIS depends on the minimal inner product
of vectors ui and vj . We provide a general construction of such sequences, which will be
useful for proving further results in the full version of the paper.

I Lemma 14. Let X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1 be integer sequences such that none
of them has an increasing subsequence longer than δ. Then there exist sequences X and Y of
length O (δ · n logn) +

∑
|Xi|+

∑
|Yj |, constructible in linear time, such that:

lcis(X,Y) = max
i,j

lcis(Xi, Yj) + C

for a constant C that only depends on n and δ and is O (nδ).

Proof. We can assume that n = 2k for some positive integer k, adding some dummy sequences
if necessary. Recall the sequences Ak, Bk, Âk and B̂k constructed in Section 3.2. Let
A,B, Â, B̂ be the sequences obtained from Ak, Bk, Âk, B̂k by applying inflation dlog2 δe times
(thus increasing their length by a factor of ` = 2dlog2 δe > δ). Each of these four sequences
splits into (now inflated) blocks, e.g. A = α0α1 . . . αn−1, where αi = inflatedlog2 δe(αik).

We subtract from A and B a constant large enough for all their elements to be smaller
than all elements of every Xi and Yj . Similarly, we add to A′ and B′ a constant large enough
for all their elements to be larger than all elements of every Xi and Yj . Now, we can construct
the sequences X and Y as follows:

X = α0X0α̂0α1X1α̂1 . . . αn−1Xn−1α̂n−1,

Y = β0Y0β̂0β1Y1β̂1 . . . βn−1Yn−1β̂n−1.

We claim that

lcis(X,Y) = ` · (4n− 2) +M , where M = max
i,j

lcis(Xi, Yj).

Let Xi and Yj be the pair of sequences achieving lcis(Xi, Yj) = M . Recall that
lcis(α0 . . . αi, β0 . . . βj) = ` · (i+ j + n), with all the elements of this common subsequence
preceding the elements of Xi and Yj in X and Y , respectively, and being smaller than
them. In the same way lcis(α̂i . . . α̂n−1, β̂j . . . β̂n−1) = ` · (2 · (n − 1) − (i + j) + n) with
all the elements of LCIS being greater and appearing later than those of Xi and Yj . By

IPEC 2017

15:10 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

concatenating these three sequences we obtain a common increasing subsequence of X and
Y of length ` · (4n− 2) +M .

We defer the simple remainder of the proof, i.e., proving lcis(X,Y) 6 ` · (4n− 2) +M to
the full version of the paper. J

Proof of Theorem 3. Let U = {u0, . . . , un−1}, V = {v0, . . . , vn−1} be two sets of binary
vectors in d dimensions. In Section 3.3 we constructed vector gadgets Ui and Vj , for
i, j ∈ {0, 1, . . . , n − 1}, such that lcis(Ui, Vj) = d − (ui · vj). To these sequences we apply
Lemma 14, with δ = 2d, obtaining sequences X and Y of length O (n lognpoly(d)) such that
lcis(X,Y) = C + d − mini,j(ui · vj) for a constant C. This reduction, combined with an
O
(
n2−ε) time algorithm for LCIS, would yield an O

(
n2−εpolylog(n)poly(d)

)
algorithm for

OV, refuting Hypothesis 9 and, in particular, SETH. J

4 Conclusion and Open Problems

We prove a tight quadratic lower bound for LCIS, ruling out strongly subquadratic-time al-
gorithms under SETH. It remains open whether LCIS admits mildly subquadratic algorithms,
such as the Masek-Paterson algorithm for LCS [35]. Furthermore, we give tight SETH-based
lower bounds for k-LCIS.

For the related variant LCWIS that considers weakly increasing sequences, strongly
subquadratic-time algorithms are ruled out under SETH for slightly superlogarithmic alphabet
sizes ([39] and Theorem 6). On the other hand, for binary and ternary alphabets, even
linear time algorithms exist [34, 23]. Can LCWIS be solved in time O

(
n2−f(|Σ|)) for some

decreasing function f that yields strongly subquadratic-time algorithms for any constant
alphabet size |Σ|?

Finally, we can compute a (1 + ε)-approximation of LCIS in O
(
n3/2ε−1/2polylog(n)

)
time by an easy observation (see the appendix in the full version). Can we improve upon this
running time or give a matching conditional lower bound? Note that a positive resolution
seems difficult by the reduction in Observation 1: Any nα, α > 0, improvement over this
running time would yield a strongly subcubic (1 + ε)-approximation for 3-LCS, which seems
hard to achieve, given the difficulty to find strongly subquadratic (1 + ε)-approximation
algorithms for LCS.

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hard-
ness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Willi-
ams. Simulating branching programs with edit distance and friends or: A polylog shaved
is a lower bound made. In Proc. 48th Annual ACM Symposium on Symposium on Theory
of Computing (STOC’16), pages 375–388, 2016.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. of 41st International Colloquium on Automata, Languages,
and Programming (ICALP’14), pages 39–51, 2014.

4 Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the complexity of
the longest common subsequence problem. Journal of the ACM, 23(1):1–12, 1976.

5 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

L. Duraj, M. Künnemann, and A. Polak 15:11

6 Hsing-Yen Ann, Chang-Biau Yang, and Chiou-Ting Tseng. Efficient polynomial-time al-
gorithms for the constrained LCS problem with strings exclusion. Journal of Combinatorial
Optimization, 28(4):800–813, 2014.

7 Alberto Apostolico and Concettina Guerra. The longest common subsequence problem
revisited. Algorithmica, 2(1):316–336, 1987.

8 Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest com-
mon subsequence problems. International Journal of Foundations of Computer Science,
16(6):1099–1109, 2005.

9 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory of
Computing (STOC’15), pages 51–58, 2015.

10 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proc. 57th Annual Symposium on Foundations of Computer Science, (FOCS’16), pages
457–466, 2016.

11 Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply
faster clique algorithms. In Proc. 34th International Conference on Machine Learning
(ICML’17), 2017. To appear.

12 Gary Benson, Avivit Levy, S. Maimoni, D. Noifeld, and B. Riva Shalom. Lcsk: A refined
similarity measure. Theoretical Computer Science, 638:11–26, 2016.

13 Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Proc. 7th International Symposium on String Processing and Information
Retrieval (SPIRE’00), pages 39–48, 2000.

14 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661–670, 2014.

15 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium on Founda-
tions of Compu ter Science (FOCS’15), pages 79–97, 2015.

16 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’18), 2018. To appear.

17 Wun-Tat Chan, Yong Zhang, Stanley P. Y. Fung, Deshi Ye, and Hong Zhu. Efficient
algorithms for finding a longest common increasing subsequence. Journal of Combinatorial
Optimization, 13(3):277–288, 2007.

18 Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest common sub-
sequence problems. Journal of Combinatorial Optimization, 21(3):383–392, 2011.

19 Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S. K. Kim. A
simple algorithm for the constrained sequence problems. Inf. Process. Lett., 90(4):175–179,
2004. doi:10.1016/j.ipl.2004.02.008.

20 Vaclav Chvatal, David A. Klarner, and Donald E. Knuth. Selected combinatorial research
problems. Technical Report CS-TR-72-292, Stanford University, Department of Computer
Science, 6 1972.

21 Maxime Crochemore and Ely Porat. Fast computation of a longest increasing subsequence
and application. Information & Computation, 208(9):1054–1059, 2010.

22 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. In Proc. 44th International Colloquium on Automata,
Languages, and Programming (ICALP’17), pages 22:1–22:15, 2017.

23 Lech Duraj. A linear algorithm for 3-letter longest common weakly increasing subsequence.
Information Processing Letters, 113(3):94–99, 2013.

IPEC 2017

http://dx.doi.org/10.1016/j.ipl.2004.02.008

15:12 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

24 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

25 Zvi Gotthilf, Danny Hermelin, Gad M. Landau, and Moshe Lewenstein. Restricted LCS.
In Proc. 17th International Symposium on String Processing and Information Retrieval
(SPIRE’10), pages 250–257, 2010.

26 Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal
of the ACM, 24(4):664–675, 1977.

27 J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computing
Science Technical Report 41, Bell Laboratories, 1975.

28 James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest sub-
sequences. Communications of the ACM, 20(5):350–353, 1977.

29 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

31 Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems.
In Combinatorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona,
USA, April 29 - May 1, 1992, Proceedings, pages 52–66, 1992.

32 Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subsequence
problem for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–270, 2004.

33 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained Com-
plexity of One-Dimensional Dynamic Programming. In Proc. 44th International Colloquium
on Automata, Languages, and Programming (ICALP’17), pages 21:1–21:15, 2017.

34 Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms
for computing longest common increasing subsequences. Journal of Discrete Algorithms,
9(4):314–325, 2011.

35 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

36 Howard L. Morgan. Spelling correction in systems programs. Communications of the ACM,
13(2):90–94, 1970.

37 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

38 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

39 Adam Polak. Why is it hard to beat O(n2) for longest common weakly increasing sub-
sequence? CoRR, abs/1703.01143, 2017.

40 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. 45th Annual ACM Symposium on Symposium
on Theory of Computing (STOC’13), pages 515–524, 2013.

41 Yin-Te Tsai. The constrained longest common subsequence problem. Information Pro-
cessing Letters, 88(4):173–176, 2003.

42 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

43 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

44 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Proc. 10th
International Symposium on Parameterized and Exact Computation (IPEC’15), pages 17–
29, 2015.

L. Duraj, M. Künnemann, and A. Polak 15:13

45 I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing
a longest common increasing subsequence. Information Processing Letters, 93(5):249–253,
2005.

46 Daxin Zhu, Lei Wang, Tinran Wang, and Xiaodong Wang. A simple linear space algorithm
for computing a longest common increasing subsequence. CoRR, abs/1608.07002, 2016.

IPEC 2017

	Introduction
	Longest Common Increasing Subsequence (LCIS)
	Our Results
	Parameterized Complexity I: Solution Size
	Parameterized Complexity II: k-LCIS
	Longest Common Weakly Increasing Subsequence (LCWIS)

	Discussion, Outline and Technical Contributions
	Technical Challenges
	Technical Contributions and Proof Outline

	Paper organization

	Preliminaries
	Main Construction: Hardness of LCIS
	Inflation
	Separator sequences
	Vector gadgets
	Final construction

	Conclusion and Open Problems

