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Abstract
We show that, for any graph optimization problem in which the feasible solutions can be expressed
by a formula in monadic second-order logic describing sets of vertices or edges and in which the
goal is to minimize the sum of the weights in the selected sets, we can find the k best solution
values for n-vertex graphs of bounded treewidth in time O(n+k logn). In particular, this applies
to finding the k shortest simple paths between given vertices in directed graphs of bounded
treewidth, giving an exponential speedup in the per-path cost over previous algorithms.
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1 Introduction

Finding multiple alternative routes between two vertices in a network, formalized as the
k shortest paths problem, has many applications including biological sequence alignment,
metabolic pathway reconstruction, hypothesis generation in natural language processing,
computer network routing, and vehicle routing [15]. It can be solved in constant time per
path, after near-linear preprocessing time [14]. However, for graphs with cycles, its paths
may have repeated vertices, which are often undesirable. A variant of the problem, the k
shortest simple paths problem, disallows these repetitions, but for the past 45 years there
have been no asymptotic improvements to an algorithm of Yen, which takes quadratic time
per path [23]. Indeed, Vassilevska Williams and Williams show that, at least for k = 2, no
substantial improvement to this algorithm is likely [22]. Even for undirected graphs, known
algorithms for k shortest simple paths take at least linear time per path [21], far from the
constant time per path for non-simple paths.

This situation suggests studying parameterized classes of graphs for which faster k-best
optimization algorithms are possible. In this paper we provide a first result of this type,
showing that the lengths of the k shortest simple paths can be found in logarithmic time per
path (exponentially faster than the polynomial per-path time of previous algorithms) for
graphs of bounded treewidth. Our results are based on general algorithmic metatheorems
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and in particular Courcelle’s theorem according to which decision and optimization problems
expressible in the monadic second-order logic of graphs (MSO) can be solved in linear time
on graphs of bounded treewidth. MSO is a form of logic in which the variables of a formula
represent vertices, edges, sets of vertices, and sets of edges of a graph, one can test set
membership and vertex–edge incidence, and variables can be existentially or universally
quantified. For instance the property that an edge set P represents a simple path from s to t
can be expressed in MSO as a formula

(∀v, e, f, g)
[(
I(v, e) ∧ e ∈ P ∧ I(v, f) ∧ f ∈ P ∧ I(v, g) ∧ g ∈ P

)
⇒
(
e = f ∨ e = g ∨ f = g

)]
∧ (∃e)

[
I(s, e) ∧ e ∈ P ∧ (∀f)

[(
I(s, f) ∧ f ∈ P )⇒ e = f

)]]
∧ (∃e)

[
I(t, e) ∧ e ∈ P ∧ (∀f)

[(
I(t, f) ∧ f ∈ P )⇒ e = f

)]]
∧ (∀S)

[
¬(∃v, e)

[
v ∈ S ∧ e ∈ P ∧ I(v, e)

]
∨ ¬(∃v, e)

[
¬(v ∈ S) ∧ e ∈ P ∧ I(v, e)

]
∨

(∃v, w, e)
[
v ∈ S ∧ ¬(w ∈ S) ∧ I(v, e) ∧ I(w, e)

]]
(where s, t, v and w are vertex variables, e, f , and g are edge variables, S is a vertex-set
variable, and I is the vertex–edge incidence predicate). This formula expresses the constraints
that each vertex is incident to at most two edges of P , s and t are each incident to exactly
one edge of P , and every partition of the vertices that is not crossed by P has P only on one
of its two sides.

Courcelle’s theorem translates MSO formulas to tree automata, allowing graphs of
bounded treewidth that satisfy the formula to be recognized in linear time by a bottom-up
dynamic programming algorithm that executes the tree automaton on a tree-decomposition
of the graph. Extensions of this method also solve optimization problems for MSO predicates
(formulas with one unbound set-variable) that seek the minimum weight vertex or edge set
obeying the predicate [3, 10]. For instance, it can find shortest simple paths on bounded-
treewidth graphs with negative edges and negative cycles, an NP-hard problem on arbitrary
graphs.

In this paper, we show that, for any MSO predicate, the weights of the k minimum-weight
sets satisfying the predicate can be found on graphs of bounded treewidth in logarithmic time
per set. In particular, using the formula given above, we can find the k shortest simple paths
in logarithmic time per path. Other previously-studied graph optimization problems to which
our method applies (with an exponential per-solution speedup) include finding the k smallest
spanning trees [16], the k best matchings [8], and (with a doubly exponential speedup) the
k best solutions to the traveling salesperson problem [11]. Although the example formula
above describes simple paths in undirected graphs, our method applies as well to directed
graphs whose underlying undirected graph has bounded treewidth.

To prove this we use a special tree-decomposition with bounded width, logarithmic depth,
and bounded degree. We translate the dynamic program for finding the minimum weight set
satisfying an MSO predicate into a fully persistent dynamic graph algorithm for the same
optimization problem, one that can report the minimum weight solution after modifying the
given graph by changing the weights of some of its edges or vertices. We apply this method
to find the second-best (rather than best) solution, and to detect a feature of the graph (a
vertex or edge) at which the best and second-best solution differ. By branching on this
feature we can recursively decompose the original problem into a hierarchy of subproblems
whose second-best solutions (together with the global best solution) include all of the k best
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solutions to the input problem. To find the k best solutions, we perform a best-first search
of this hierarchy.

For space reasons, we defer some proofs to the full version, online at arXiv:1703.02784.

2 Preliminaries

In this section, we establish most of our notation and definitions, and review algorithmic
components from previous research that we will use to establish our results.

We denote by [i] the set {1, . . . , i} for i ∈ N. The cardinality of a set M is denoted by
|M |, and its power set by 2M . For a function f : M → N , we write f(M ′) = {f(a) | a ∈M ′}
for M ′ ⊆M . For an n-element sequence S and i ∈ [n], Si denotes the i-th element of S.

Our algorithms assume a RAM model of computation in which addition and comparison
operations on input weights or sums of weights can be performed in constant time per
operation.

2.1 Binary heap of subproblems
We adopt the following technique for finding the k best solutions to a combinatorial optimiza-
tion problem [20, 15], which was first used by Gabow for the k smallest spanning trees [19].
We assume that the problem’s solutions can be represented as sets of edges or vertices in
a weighted graph, and that the goal is to minimize total weight. We form subproblems by
forcing certain edges or vertices to be included in the solution and preventing other edges or
vertices from being included; these constraints can be simulated without changing the graph
by changing some weights to large positive and negative numbers. We say that a subproblem
is feasible if it has a solution consistent with its constraints. If S is any subproblem, then we
may consider two solutions to S, its best solution (the one with minimum weight, subject to
the constraints) and its second-best solution (the one that differs from the best solution and
otherwise has the minimum possible weight), with ties broken in any consistent way. We say
that an edge or vertex is a pivot feature if it is present in the best solution but absent in the
second-best solution, or vice versa. If a subproblem has only one solution, we say that it is
uniquely solvable.

We then form a binary tree of feasible subproblems, as follows. The root of the tree
is the subproblem with no constraints (the one whose solutions are all solutions to the
given problem on the whole graph G). Then, for each subproblem S in the tree that is not
uniquely solvable, the two children of S are determined by choosing (arbitrarily) a pivot
feature of S, constraining that pivot feature to be included in the solutions for one child,
and constraining the same pivot feature to be excluded from the solutions for the other
child. These two children of S have solution sets that partition the solutions of S into two
nonempty subsets, one containing the best solution and the other containing the second-best
solution. A uniquely solvable subproblem in this tree of subproblems forms a leaf, with no
children.

Each solution of the input problem appears as second-best in exactly one subproblem
in this tree, except for the global best solution which is never second-best anywhere. The
tree is ordered as a binary min-heap: each subproblem’s second-best solution is better
than the second-best solutions of its children. Therefore, the k-best solutions of the input
problem can be listed by finding the best solution and then using a best-first search in the
tree of subproblems to find the k − 1 subproblems whose second-best solutions have the
smallest values. This search creates an active set consisting of the tree root, and then (for
k − 1 iterations) uses a priority queue to find the smallest second-best solution value in
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the active set, outputs that solution, and replaces that node in the active set by its two
children. Alternatively, the added time from the priority queue can be avoided by using a
heap-selection algorithm of Frederickson [18] which runs in O(k) time, plus the time for O(k)
evaluations of subproblems.

Using this method, the main remaining task is to find the second-best solution values
and pivot features of each subproblem in this tree of subproblems, as efficiently as possible.

2.2 Path-copying persistence

We will develop a data structure that allows us to add a new constraint to a subproblem,
forming one of its child subproblems, and efficiently compute the new second-best solution
value of the new child subproblem. However, without additional techniques such a data
structure would allow us to follow only a single branch of the tree of subproblems. We use ideas
from persistent data structures, following Sarnak et al. [12], to extend these data structures
to ones that let us explore multiple branches of the tree of subproblems concurrently.

An ephemeral data structure is one that has only a single version, which is changed by
certain update operations and accessed but not changed by additional query operations. In
the corresponding fully persistent data structure, each operation takes an additional argument,
the version of the data structure, and operates on that version. Persistent queries return
the result of the query on that version, and do not change it. Persistent updates create and
return a new version of the data structure, in which the given change has been made to the
version given as an argument. The previous version is left intact, allowing future updates
and queries to it.

Path copying is a technique introduced by Sarnak et al. for making any tree-based
ephemeral data structure (such as a binary heap or binary search tree) fully persistent. The
underlying ephemeral data structure must form a tree of nodes, with each node pointing to
its children but without pointers to parents or other non-child nodes. Every operation in the
ephemeral data structure should be performed by starting at the tree root, following child
pointers to find additional nodes reachable by paths from the root, and then (in case of a
query) collecting information from those nodes or (for updates) changing or replacing some
of the reached nodes.

To make such a data structure fully persistent, we represent each version of the data
structure by the root of its tree. Persistent queries follow the same algorithm as ephemeral
queries, starting from the root node representing the desired version. When an ephemeral
update would change or replace some nodes, the persistent structure creates new nodes for
all of these changed or replaced nodes and all of their ancestors, without changing to the
existing nodes. In this way, the space and time of each persistent update are proportional to
the time for an ephemeral update.

Path-copying persistence was used in the k-shortest paths algorithm of Eppstein [14], to
construct certain persistent heap structures that represent sets of detours. Here, we apply
the same technique in a different way, to make persistent an ephemeral data structure for
second-best solutions. We will associate a version of the second-best solution data structure
with each subproblem in the binary tree of subproblems described in the previous section.
Then, when we expand a subproblem (finding its pivot feature and using that feature to
define two new child subproblems) the data structure versions of the two child subproblems
can be found by applying two different persistent updates to the version of their parent.
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2.3 Shallow tree decompositions
The data structure to which we will apply the path-copying persistence technique will be
based on a tree decomposition of the given graph. However, in order to make the path-copying
efficient, we need to use a special kind of tree decomposition, one with low depth.

A tree decomposition of a graph G = (V,E) is a pair (T = (U,F ), bag), where T is a tree,
bag : U → 2V maps tree nodes to subsets of V (“bags”), each vertex belongs to a nonempty
collection of bags that induce a connected subtree of T , and for each edge at least one bag
contains both edge endpoints. The width of a tree decomposition is one less than the size
max{|bag(u)| | u ∈ U} of its largest bag. The treewidth of G is the smallest w such that
G has a tree decomposition of width w. For any fixed w, one can recognize the graphs of
treewidth at most w and compute a tree decomposition of optimal width for these graphs, in
linear time [6].

We define the depth of a tree decomposition to be the longest distance from a leaf to a
root node chosen to minimize this distance. A shallow tree decomposition of a graph G of
bounded treewidth w is a tree decomposition with width O(w) and depth O(log |G|) whose
tree is binary. Shallow tree decompositions always exist [5], and can be constructed by a
parallel algorithm whose sequential version takes linear time [7].

2.4 Hypergraph algebra
We adopt much of the following notation from Courcelle and Mosbah [10].

Let A be a ranked alphabet consisting of edge labels, and let τ : A→ N map labels to their
orders. A hypergraph G = (V,E, lab, vert, src) of order r consists of a set of vertices V and a
set of hyperedges E, an edge labeling function lab : E → A, a function vert : E → V ∗ that
maps edges to node sequences, and a sequence src of r source nodes. The order of a hyperedge
e ∈ E is the length |vert(e)| of its vertex sequence, and must match the order of its label:
τ(lab(e)) = |vert(e)|. A graph of order r is a hypergraph of order r with τ(lab(E)) = {2}, so
every hyperedge has order 2. Hyperedges of a graph may be called edges.

We define, for an edge label alphabet A, a hypergraph algebra with a possibly infinite set
of hypergraph operators and the following finite set of constants. The constant 0 denotes
the empty hypergraph of order 0. The constant 1 denotes the hypergraph of order 1 with
a single source vertex and no hyperedges. For each a ∈ A, the constant a denotes the
hypergraph of order τ(a) with node set {v1, . . . , vτ(a)}, a single hyperedge e with lab(e) = a

and vert(e) = (vi)i∈[τ(a)], and src = vert(e).
Let G be a hypergraph of order r and let G′ be a hypergraph of order r′. The hypergraph

algebra has the following operators. The (r + r′)-order hypergraph G ⊕r,r′ G′ consists of
the disjoint union of the vertex and edge sets of G and G′, and the concatenation of their
source sequences. For each i, j ∈ [r], θi,j,r(G) is the hypergraph of order r obtained from
G by replacing every occurence of srcj with srci in the source sequence of G and in every
vertex sequence of a hyperedge of G. This is equivalent to fusing srcj into srci. For a
mapping α : [p]→ [r], σα(G) is the hypergraph of order p obtained from G by replacing its
r-element source sequence src with the p-element sequence src′, with src′i = srcα(i). This
infinite family of operators can generate any hypergraph. For each family of hypergraphs
L that only contains hypergraphs of bounded treewidth and bounded order, a finite subset
of these operators generates a superset of L [2, 4, 9]. We denote by Gw a finite hypergraph
algebra as above that generates all r-order hypergraphs over a fixed label set of treewidth at
most w and r < R for some fixed but arbitrary R.

IPEC 2017
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Let A be an alphabet of edge labels, and let G = (V,E, lab, vert, src) be a hypergraph over
A. A formula in counting monadic second-order logic (CMS formula) is a formula in monadic
second-order logic, extended by predicates Cardm,p(X) for m, p ∈ N, with X |= Cardm,p(X)
iff |X| ≡ m mod p, and by incidence predicates edga(e, v1, . . . , vτ(a)) for a ∈ A, with
(G, e, v1, . . . , vτ(a)) |= edga(e, v1, . . . , vτ(a)) iff lab(e) = a and vert(e) = (v1, . . . , vτ(a)). The
finite set Φh,q

A,R(W) consists of exactly one representative of every class of equivalent CMS
formulas for hypergraphs of order at most R over edge labels A on variables W whose depth
of nested quantification is at most h and p < q for all subformulas of the form Cardm,p(X).
Since h, q, A and W are fixed in most contexts, we use the short form ΦR = Φh,q

A,R(W).
We require variable alphabets W that include constants for all the source nodes of the
hypergraphs, i.e., {si | i ∈ [R]} ⊂ W and (G, v) |= (v = si) iff v = srci. Every other variable
X inW is assumed to be either a vertex set variable, denoted as type(X) = V , or a hyperedge
set variable, denoted as type(X) = E. This can be enforced by only considering formulas
that include subformulas ∀x : x ∈ X ⇒ x ∈ V if X is supposed to model a set of vertices,
and ∀x : x ∈ X ⇒ x ∈ E otherwise. Variables representing single elements can be emulated
by a subformula ∃x : ∀y : x ∈ X ∧ (y ∈ X ⇒ x = y).

Our algorithms work on parse trees of hypergraphs with respect to some fixed hypergraph
algebra Gw. A parse tree T = (U,F ) is a directed rooted tree, with edges being directed
away from the root r. Leaves of T are associated with a constant of Gw; inner nodes are
associated with an operator of Gw. The hypergraph represented by T is the hypergraph
constant associated with r if r is a leaf. Otherwise, T represents the hypergraph obtained by
applying the operator associated with r to the hypergraphs represented by the parse subtrees
rooted in the children of r. For u ∈ U , the hypergraph represented by the parse subtree
of T rooted in u is denoted by G(u). Sometimes it is convenient to have exactly two child
nodes for each inner node of the parse tree. We can think of σα operators as having a second
operand that is always the empty hypergraph. Likewise, θi,j,r operators can be viewed as
having a second operand that is always the one-vertex hypergraph. These modified operators
can even be derived from the original ones. Instead of σα, we can use σ′α = σα ◦⊕0,r(0).
The composition θ′i,j,r = θi,j,r ◦σα ◦ θi,r+1,r+1 ◦⊕1,r(1) with σ : [r]→ [r + 1], σ(i) = i, can
replace θi,j,r. All operators of this derived algebra are binary. We call a respective parse tree
a full parse tree. The proper child of a θ or σ node is the one that does not represent the
one-vertex or empty hypergraph, respectively.

Let G be a hypergraph, and T = (U,F ) a parse tree of G. We consider combinatorial
problems on G that can be characterized by a CMS formula ϕ ∈ ΦR. Let n be the number of
free variables of ϕ, and let X = (Xi)i∈[n] be the free variables themselves. For example, we
need n = 1 edge set to describe a (simple) path, or n = c−1 node sets to describe a c-coloring
of a graph. An assignment maps every Xi to a subset of type(Xi). A satisfying assignment
is an assignment f such that (f(X), G) |= ϕ. A solution is the sequence (f(Xi))i∈[n] for
some assignment f . Two solutions S, S′, are considered distinct if there is a j ∈ [n] with
Sj 6= S′j . For S1 6= S2, (S1, S2) is also distinct from (S2, S1) regardless of ϕ, even if ϕ is a
formula on two free variables, and symmetric on these free variables. For a parse tree node
u ∈ U , S(u) denotes the subsolution of S at u, which is obtained from S be removing every
graph feature from every set Si that is not present in G(u). A solution is feasible if the
corresponding assignment is satisfying. We denote by sat(G,ϕ) the set of feasible solutions,
i.e., Y ∈ sat(G,ϕ)⇔ (Y,G) |= ϕ.

Sets of solutions, and sat(G,ϕ) in particular, are sets of n-tuples of sets. We write M tN
for the disjoint union of sets M and N (undefined if M ∩N 6= ∅). Let X, Y be solutions,
and A, B sets of solutions. We say that X and Y interfere if there are i, j ∈ [n] such that
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Xi ∩ Yj 6= ∅. By extension, A and B interfere if some X ∈ A interferes with some Y ∈ B.
If A and B do not interfere, A ]B denotes the set of all combinations of each X ∈ A and
Y ∈ B, i.e.,

A ]B = {(Xi t Yi)i∈[n] | X ∈ A, Y ∈ B}.

Note that the above operators are not defined for every combination of operands. A
semi-homomorphism from 〈S,],t,∅, ∅〉 to some evaluation structure 〈R,⊕,⊗,0,1〉 is a
mapping f : S → R that acts like a homomorphism where applicable, i.e., f(∅) = 0,
f(∅) = 1, f(A]B) = f(A)⊕ f(B) if A and B do not interfere, and f(AtB) = f(A)⊗ f(B)
if A ∩B = ∅.

Values of solution sets are expressed in terms of evaluation structures. An evaluation
structure is an algebra 〈R,⊕,⊗,0,1〉 such that 〈R,⊕,0〉 and 〈R,⊗,1〉 are monoids. An
evaluation v is a function that maps hypergraphs generated by Gw to an (ordered) evaluation
structure R. An evaluation v is an MS-evaluation if there exists a semi-homomorphism h

and a CMS formula ϕ ∈ ΦR such that v(G) = h(sat(G,ϕ)) for every hypergraph G.
A linear CMS minimization problem P consists of a formula ϕ = ϕ(P ) ∈ ΦR with n free

variables X that characterizes feasible solutions, and an instance of the problem consists of
an r-order hypergraph G and a sequence c of n cost functions with ci : type(Xi)→ R. The
value c(Y ) of a solution Y for P is defined as

∑
i∈[n]

∑
y∈Yi

ci(y). An optimal solution of P
is a feasible solution Y ∗ such that for each feasible solution Y ′ of P , we have c(Y ∗) ≤ c(Y ′).
Our task is to find the value of an optimal feasible solution of P , or equivalently, to compute
the value of v(G) = min{c(Y ) | Y ∈ sat(G,ϕ)}. This evaluation can be expressed as v(G) =
h(sat(G,ϕ)) with h(A) = min{c(Y ) | Y ∈ A}, and is thus an MS-evaluation. Note that h is
a semi-homomorphism, and the corresponding evaluation structure is 〈R∪{∞},+,min, 0,∞〉.
The class of all linear CMS minimization problems is called LinCMS. Let m = |sat(G,ϕ)|,
and sat(G,ϕ) = {Y 1, . . . , Y m}. Let Π = Π(G,ϕ) ⊆ Sn([m]) be the set of permutations
such that (c(Y π(i)))i∈[m] is nondecreasing for π ∈ Π. For a problem P ∈ LinCMS, k-val(P )
is again a problem that gets the same input as P itself, plus some k ∈ N. It asks for the
sequence (c(Y π(i)))i∈[k′] for some π ∈ Π, where k′ = min{k,m}. The problem k-sol(P )
gets the same input as k-val(P ), but asks for (Y π(i))i∈[k′] for any π ∈ Π. Depending on π,
different outputs for k-sol(P ) are possible, but there is only one valid output for k-val(P ).
Also note that 1-val(P ) is equivalent to P itself. For simplicity, we assume k ≤ m for the
remainder of this article.

3 The second-best solution

In the following section, we describe how to solve 2-sol(P ) in linear time for each P in
LinCMS. In a later section we generalize these results to an arbitrary (constant) number of
solutions, and to LOGSPACE and PRAM models of computation.

A hypergraph G generated by Gw, and a formula ϕ ∈ ΦR, sat(G,ϕ) can be evaluated by
a tree automaton on a parse tree of G [10, 17]. Our notion of full parse trees enables us to
unify Lemmas 2.4 to 2.6 from Courcelle and Mosbah [10] as follows.

I Lemma 1. Let ϕ ∈ ΦR, and let T be a full parse tree rooted in r that represents a
hypergraph G. If r is not a leaf, it has two child nodes u1, u2 representing G1 = G(u1),
G2 = G(u2), respectively, and there exist l ∈ N and ψk1 , ψk2 ∈ ΦR for each k ∈ [l] such that

sat(G,ϕ) =
⊔{

sat(G1, ψ
k
1 ) ] sat(G2, ψ

k
2 ) | k ∈ [l]

}
, (1)

where l only depends on the hypergraph operator associated with r.

IPEC 2017
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In the situation of Lemma 1, we call ψki a child formula of ϕ with respect to the
corresponding operator. For k ∈ [l], we call (ψk1 , ψk2 ) a fitting pair of child formulas. A solution
S ∈ sat(G,ϕ) has a unique fitting pair (ψ1, ψ2) of child formulas with S ∈ (sat(G1, ψ1) t
sat(G2, ψ2)), which follows from the fact that all unions in Equation (1) are disjoint. All
child formulas ψ with respect to a θi,j,m node u can be chosen such that srci /∈ Sk for
any S ∈ sat(G(u′), ψ), where u′ is the proper child of u. Further, Courcelle and Mosbah
demonstrated that every MS-evaluation v can be computed by a similar tree automaton.
The running time required to compute v on the entire hypergraph G is O(|G| · µ), where µ is
the time required to compute f(A)⊕ f(B) and f(A)⊗ f(B) for valid combinations A, B. In
the uniform cost model, the operators of the evaluation structure 〈R ∪ {∞},+,min, 0,∞〉,
addition and selecting the smaller of two real numbers, require O(1) time. Problems in
LinCMS can therefore be solved in linear time. Applying the semi-homomorphism h with
v(G) = h(sat(G,ϕ)) to Equation (1) yields

v(G) = h(sat(G,ϕ)) = min
{
h(sat(G1, ψ

k
1 )) + h(sat(G2, ψ

k
2 )) | k ∈ [l]

}
. (2)

A different linear-time approach for this special case had been proposed earlier by Arn-
borg, Lagergren and Seese [3]. The basic algorithm of Courcelle and Mosbah computes
h(sat(G(u), ψ)) for every parse tree node u in a bottom-up manner, and every ψ ∈ ΦR.
Conceptually, we perform a depth-first search on T , starting at its root r. Every time we
finish a node v, we evaluate it, i.e., we compute the evaluation h(sat(G(v), φ)) for every
formula ψ ∈ ΦR based on the child formulas of ψ by Equation (2). Since the number of
formulas and the number of child formulas per formula are fixed, the overall running time is
linear in the size of T .

Courcelle and Mosbah also propose an improved algorithm, called the CM algorithm in
this article, that determines in a top-down preprocessing phase the set of formulas that are
reachable from ϕ at r via the child formula relation. We call these the relevant formulas of a
parse tree node u.

Let x be a graph feature that is part of at least one solution for ϕ at r, and let v1, v2 be
the child nodes of r. If r is an ⊕ or σ node, the graph features of G(v1), G(v2) are disjoint,
so exactly one of them contains x. If r is a θ node that fuses srcj into srci, let v2 be the the
child node such that G(v2) only consists of srci. As can be seen from the proof of Lemma 2.5
in [10], subformulas of ϕ can be chosen such that srci is not part of any solution at v1. Taken
together, x is part of some solutions at either v1 or v2, but not both. Applying the argument
iteratively to this child node, there is exactly one leaf of the full parse tree where some
solutions contain x. We denote this leaf by u(x).

Let u be a parse tree node, ψ1, ψ2 two formulas relevant for u. The CM algorithm only
computes h(G(u), ψ1) and h(G(u), ψ2), which correspond to the values of optimal solutions
on G(u) for the problems characterized by ψ1 and ψ2, respectively. We do not have any
information about the solutions themselves besides their values. In particular, we do not
know for any hypergraph feature if it appears in one of those solutions. Since we do not
require optimal solutions to be unique, we also do not know if they represent the same
solution even in the case h(sat(G(u), ψ1)) = h(sat(G(u), ψ2)).

In the next section, we need to test if optimal solutions for ψ1 and ψ2 are the same by
only looking at their evaluations. To do so, we establish for each parse tree node u a mapping
from the relevant formulas of u to solution IDs in [|ΦR|] , with the following discriminating
property. Each relevant formula ψ of u is mapped to an optimal solution for ψ on G(u) such
that two formulas are assigned the same solution if and only if they are assigned the same
solution ID. Solution IDs can be computed along with solution values while keeping the
linear time bound:
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I Lemma 2. Given solution IDs for all relevant formulas of all child nodes of a parse tree
node u, solution IDs for u can be computed in constant time.

Proof. Deferred to the full version. J

The compression function can be stored with u, and a mapping from solution ID to
solution at leaf nodes, requiring only constant space. Even if sat(G(u), ψ) contains multiple
optimal solutions, it is now possible to refer to the optimal solution, which is the one defined
recursively in terms of matching solution IDs. This particular optimal solution can be found
by a simple depth-first search based algorithm in linear time, starting at ϕ at the root of the
parse tree. For each (u, ψ), we find a fitting pair of child formulas ρ1, ρ2 for child nodes v1,
v2 of u, respectively, such that the assigned solution IDs match, process (v1, ρ1) and (v2, ρ2)
independently, and output the associated subsolution at leaf nodes.

To solve 2-val(P ), we adapt the evaluation structure. Instead of values in R ∪ {∞},
we use pairs (x, y) ∈ R = (R ∪ {∞})2, where x and y represents the values of an optimal
and second-best solution. We define two new binary operators +2 and min2 over R, with
(x1, y1)+2(x2, y2) = (x1+x2,min(x1+y2, x1+y1)) and min2((x1, y1), (x2, y2)) = (a, b), where
a, b are the smallest and second-smallest element of the multiset {x1, y1, x2, y2}, respectively.

I Lemma 3. Let P be a LinCMS problem characterized by the formula ϕ ∈ ΦR and cost func-
tions c. Given a parse tree T of a hypergraph G, the CM algorithm solves 2-val(P ) in linear
time when used in conjunction with the evaluation structure 〈R,+2,min2, (0, 0), (∞,∞)〉.

Proof. For each leaf u of T , we solve 2-val(P ) on G(u) directly. Let S1 ∈ sat(G,ϕ) be
optimal. The mapping v(G) = (c(S1),min(c(sat(G,ϕ)\{S1})) can be written as h(sat(G,ϕ))
with h(A]B) = h(A)min2 h(B) and h(AtB) = h(A) +2 h(B). The operators min2 and +2
can be evaluated in constant time, resulting in linear total time using the CM algorithm. J

Solution IDs can be trivially generalized to the new evaluation structure, allowing us to
refer to the optimal and second-best solution, and to reconstruct these two solutions in linear
time.

I Corollary 4. Let P be a LinCMS problem, and let w ∈ N be fixed. Given a parse tree T of
a hypergraph G with bounded treewidth, we can solve 2-sol(P ) on G in time O(|G|).

4 Dynamizing the second-best solution

In this section, we introduce the evaluation tree data structure that stores intermediate
results of the algorithm from the previous section. The data structure allows for a trivial
query for the values of the two best solutions in constant time, and a query for the solutions
themselves in linear time. We demonstrate how to perform a query for a pivot feature,
and how to update an evaluation tree to match the two subproblems with respect to this
pivot feature as described in Section 2.1. Both operations start in the root of the given tree,
enabling us to use the path persistence technique described in Section 2.2.

An evaluation tree is a tree with the same structure as the parse tree. We store with every
node of the evaluation tree the result of all evaluations of the CM algorithm as described
in Section 3, as well as all solution ID information. In addition, we also store the solution
sets sat(G(u), ψ) themselves for each leaf node u. We first describe the query and update
procedures for problems characterized by CMS formulas with exactly one free variable. For
this purpose, we identify solutions (S1) with their first set S1. For the sake of simplicity, we
also identify nodes of the parse tree with their twins in the evaluation tree of the current
subproblem. We assume that the hypergraph G is represented as a full parse tree T .
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Let ϕ ∈ ΦR be a CMS formula that characterizes a subproblem P , and let x be a pivot
feature of P . If x is a source vertex of G, the two subproblems of P can again be characterized
by formulas in ΦR, namely ϕ ∧ (x ∈ X1) and ϕ ∧ (x /∈ X1), respectively. However, if x is a
hyperedge or a vertex that is not a source vertex of G, there are no such formulas in general.
Therefore, not all subproblems can be characterized by a CMS formula, and we have to
generalize the mapping sat to cover those subproblems. We define the set satP (G(u), ψ)
to contain all solutions in sat(G(u), ψ) that satisfy the constraints imposed by the binary
subproblem tree. Note that h(satP (G,ϕ)) is the solution of 2-val(P ).

Let S1 and S2 be the optimal and second-best solution of P , respectively. To find a
pivot feature x for P , we maintain a current parse tree node uj , two formulas ψ1

j , ψ2
j , and

the invariant that the subsolutions S1(uj), S2(uj) of S1, S2 at uj are in satP (G(uj), ψ1
j ),

satP (G(uj), ψ2
j ), respectively, and that S1(uj) 6= S2(uj). In the j-th iteration, we choose

uj+1 to be a child node of uj in the parse tree. Initially, u1 is the root of T , and ψ1
1 = ψ2

1 = ϕ.
The invariant holds trivially because of h(satP (G(u1), ϕ)) = h(satP (G,ϕ)), and because the
optimal solution differs from the second-best one by definition.

If uj is a leaf, we construct the fixed-size subsolutions S1(u) and S2(u) explicitly. If the
invariant holds, these solutions are distinct, and we can find a pivot feature in constant
time. Otherwise, uj is an inner node with children v1 and v2. Let ρ1 (ρ2) be a fitting pair of
child formulas for ψ1

j (ψ2
j ) for which solution IDs match. If the invariant holds for j, the

subsolutions S1(uj) and S2(uj) differ, so their subsolutions at v1 (S1(v1) and S2(v1)) or
those at v2 have to differ as well. We choose uj+1, ψ1

j+1 and ψ2
j+1 accordingly. The invariant

for j + 1 then holds by construction.

I Lemma 5. Given an evaluation tree of depth d for a subproblem P , the above algorithm
finds a pivot feature for P in time O(d).

Proof. Deferred to the full version. J

Next, we describe the update process to transform the evaluation tree for P into the
evaluation tree for one of its two subproblems. The process is symmetric for both subproblems,
so we only describe it for the subproblem P ′ that requires solutions to contain the pivot
feature.

First, we execute the query algorithm to find a pivot feature x, and push each node it
visits to a stack. The pivot query algorithm can only terminate at leaf nodes, so the last
node u that is pushed to the stack is a leaf. Recall that for each leaf node u and each relevant
formula ψ, we store satP (G(u), ψ) explicitly. We enumerate this solution set and remove
every solution that does not contain x to obtain S(ψ) = satP ′(G(u), ψ). To re-evaluate ψ,
we apply h to S(ψ).

Any other node u on the stack is an inner node of the full parse tree, and an ancestor
of u(x). Re-evaluation works the same as the original evaluation in the CM algorithm, by
evaluating Equation (2) with operators min2, +2 instead of min, + as in Lemma 3.

I Lemma 6. Given an evaluation tree of depth d for a subproblem P , the above algorithm
updates the evaluation tree to match a subproblem P ′ of P in time O(d).

Proof. Deferred to the full version. J

Let S be the optimal or second-best solution of P , whichever remains feasible in P ′. We
do not require optimal solutions for subproblems to be unique, so we might find two optimal
solutions for P ′ that both differ from S. Alternatively, S might turn up as the second-best
solution for P ′. Although these results would be valid outcomes of the update procedure, they
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would break the k-best algorithm of Section 2.1: If we lose track of S by choosing two other
solutions as optimal and second-best, we cannot detect whether we find S in a subproblem
of P ′ again, leading to (the value of) S being output twice. This happens because solution
IDs are not suitable to efficiently check two solutions with respect to different evaluation
trees for equality. Therefore, we need to make sure that S is the optimal solution of P ′ as
encoded by the solution IDs for P and P ′. Fortunately, the update procedure can trivially
enforce this property.

Now consider a problem characterized by N free variables, with N > 1. We may consider
N to be constant, as it only depends on the problem definition. Recall that solutions S
and S′ are distinct when there is a discriminating index i with Si 6= S′i. The pivot query
algorithm has to take this into account. For inner nodes, it relies only on solution IDs to
choose a successor of the current parse tree node. Leaf nodes still have a fixed number of
feasible solutions for a fixed-size hypergraph. The same arguments as above yield running
time O(d). Similarly, we only have to adapt the processing of nodes for the update algorithm.
For N = 1, we always imposed the new subproblem constraint on the first and only set of
a solution, because the discriminating index was always the same. Now, we have to take
into account the discriminating index as determined during the pivot query phase. Using the
same arguments, updates can still be performed in time O(d). We now state our main result.

I Theorem 7. Let P be a LinCMS problem. Then computing the values of the k best
solutions for P on a graph G requires O(|G|+ k log |G|) time and space.

Proof. In linear time, we compute a shallow tree decomposition, transform it into a parse
tree T of depth O(log |G|), and apply the CM algorithm to T by Lemma 3. With the results,
we initialize a binary subproblem tree. We perform a best-first search to find the k best
subproblems with respect to their second-best solution as described in Section 2.1, which
requires us to solve O(k) subproblems. Using the persistent tree technique from Section 2.2
in conjunction with the update operation above, we need O(d) additional time and space
per subproblem. J

5 Fixed numbers of solutions

We generalize here our algorithm for the second best solution to any fixed number of
solutions, and to low-space and parallel complexity classes. Similar results could be obtained
by expressing the k-best solution problem (for a constant k) in MSO with k set variables,
all constrained to be solutions, to be distinct, and with minimum total weight; however,
this would give a significantly worse dependence on k than our solution and would require
additional complication to recover the differences between the solutions.

For fixed k ∈ N, operators mink and +k can be defined analogously to min2 and +2,
respectively. Evaluating mink(x, y) and x+k y for k-tuples x, y ∈ Rk still requires constant
time. Hence, the CM algorithm with the evaluation structure 〈(R∪∞)k,+k,mink, (0, . . . , 0),
(∞, . . . ,∞)〉 solves k-val(P ) for any problem P in LinCMS. Let T be a parse tree with depth
d, and let ≤post be a postordering of T . To solve k-val(P ), we evaluate the nodes of T
according to ≤post. As soon as a parse tree node has been evaluated, the evaluations of its
children can be dropped. Thus, the number of stored evaluations never exceeds d+ 1.

I Theorem 8. Let P be a LinCMS problem, and let k,w ∈ N be fixed. Given a graph G
with treewidth w, the problem k-val(P ) on G can be solved using logarithmic memory space.

Proof. A shallow tree decomposition T can be computed with logarithmic memory space [13].
We use a depth-first search from an arbitrarily chosen root node to process the bags of T in
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postorder, processing each bag by replacing it with its fixed-size portion of the parse tree,
which is then evaluated bottom-up. The evaluations of all parse tree nodes corresponding to
a bag require constant space, and we store O(log |G|) of them at a time. J

In the PRAM model (see e.g. [1]), the CM algorithm can be parallelized as follows.

I Theorem 9. Let P be a LinCMS problem, and let k,w ∈ N be fixed. In the EREW
PRAM model, given a shallow tree decomposition T of graph G with treewidth w, the problem
k-val(P ) on G can be solved in time O(log |G|) by O(|G|) processors.

Proof. We allocate one processor p(u) for each node u of T , which computes the portion of
the parse tree corresponding to its bag and evaluates all nodes of that portion. Processor
p(u) waits until all processors p(v) of child nodes v of u have finished. The processor of the
root node of T therefore waits O(log |G|) time. Only processor p(u) writes solutions for node
u, and only the parent u′ of u reads them, according to the EREW model. J

Finally, using the algorithm of Bodlaender [5] on O(|G|3w+4) processors to compute a
shallow tree decomposition, we obtain the following.

I Corollary 10. Let P be a LinCMS problem, and let k,w ∈ N be fixed. In the CRCW
PRAM model, given a graph G with treewidth w, the problem k-val(P ) on G can be solved in
time O(log |G|) by O(|G|3w+4) processors.
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