
Merging Nodes in Search Trees: an Exact
Exponential Algorithm for the Single Machine
Total Tardiness Scheduling Problem∗

Lei Shang1, Michele Garraffa2, Federico Della Croce3, and
Vincent T’Kindt4

1 Université François Rabelais de Tours, Laboratoire d’Informatique (EA 6300),
ERL CNRS OC 6305, Tours, France
shang@univ-tours.fr

2 Politecnico di Torino, DAUIN, Torino, Italy
michele.garraffa@polito.it

3 Politecnico di Torino, DIGEP, Torino, Italy
federico.dellacroce@polito.it

4 Université François Rabelais de Tours, Laboratoire d’Informatique (EA 6300),
ERL CNRS OC 6305, Tours, France
tkindt@univ-tours.fr

Abstract
This paper proposes an exact exponential algorithm for the problem of minimizing the total
tardiness of jobs on a single machine. It exploits the structure of a basic branch-and-reduce
framework based on the well known Lawler’s decomposition property. The proposed algorithm,
called branch-and-merge, is an improvement of the branch-and-reduce technique with the em-
bedding of a node merging operation. Its time complexity is O∗(2.247n) keeping the space
complexity polynomial. The branch-and-merge technique is likely to be generalized to other
sequencing problems with similar decomposition properties.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.2.0 General
(Analysis of Algorithms and Problem Complexity), G.2.1 Combinatorics

Keywords and phrases Exact exponential algorithm, Single machine total tardiness, Branch-
and-merge

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.28

1 Introduction

The challenge of designing exact exponential algorithms for NP-hard problems is attracting
more and more researchers, particularly since the beginning of this century. For a survey on
the most effective techniques in designing exact exponential algorithms, readers are kindly
referred to Woeginger’s paper [13] and to the book by Fomin and Kratsch [4]. In spite of the
growing interest on exact exponential algorithms, few results are yet known on scheduling
problems, see the survey of Lenté et al. [8].1 This paper focuses on a pure sequencing
problem, the single machine total tardiness problem, denoted by 1||

∑
Tj . In this problem, a

∗ A full version of the paper is available at [5], https://hal.archives-ouvertes.fr/hal-01477835.
1 Recent results on Parameterized Algorithms of scheduling problems can be found at http://fpt.

wikidot.com/operations-research.

© Lei Shang, Michele Garraffa, Federico Della Croce, and Vincent T’Kindt;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 28; pp. 28:1–28:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.28
https://hal.archives-ouvertes.fr/hal-01477835
http://fpt.wikidot.com/operations-research
http://fpt.wikidot.com/operations-research
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Branch-and-Merge for 1||
∑
Tj

jobset N = {1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j, a
processing time pj and a due date dj are given. The problem asks for arranging the jobset in
a sequence S so as to minimize T (N,S) =

∑n
j=1 Tj =

∑n
j=1 max{Cj − dj , 0}, where Cj is

the completion time of job j in sequence S. The 1||
∑
Tj problem is NP-hard in the ordinary

sense [2]. It has been extensively studied in the literature. The current state-of-the-art
exact method [11] solves to optimality problems with up to 500 jobs. Its complexity was
not discussed in [11] but will be analyzed in this paper. In [7] an exact pseudo-polynomial
dynamic programming algorithm was proposed with complexity O(n4 ∑

pi). Also, the
standard technique of doing dynamic programming across the subsets (see, for instance, [4])
applies and runs with complexity O(n22n) both in time and in space. We refer to [6]
for a comprehensive survey on the problem. In the rest of the paper, the O∗(·) notation
[13], commonly used in the context of exact exponential algorithms, is used. Let T (·) be a
super-polynomial and p(·) be a polynomial, both on integers. In what follows, for an integer n,
we express running-time bounds of the form O(p(n) ·T (n))) as O∗(T (n)). As an example, the
complexity of dynamic programming across the subsets for the total tardiness problem can be
expressed as O∗(2n). The aim of this work is to design a faster exact exponential algorithm
running in O∗(cn) (c being a constant) and polynomial space, exploiting known decomposition
properties of the problem. The designed algorithm, making use of a new technique called
branch-and-merge that avoids the solution of several equivalent subproblems in the branching
tree, is shown to have a complexity O∗(2.247n) in time and requires polynomial space. We
also provide a complexity analysis of the state-of-the-art exact algorithm [11], which runs in
O∗(2.4143n) in time.

2 Preliminaries

We recall some basic properties of the total tardiness problem and related notation. Given a
jobset N = {1, 2, . . . , n}, let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence,
where i < j whenever pi > pj (or pi = pj and di ≤ dj). Let also ([1], [2], . . . , [n]) be an EDD
(Earliest Due Date first) sequence, where i < j whenever d[i] < d[j] (or d[i] = d[j] and
p[i] ≤ p[j]). The order of jobs having identical processing time and due date should be fixed
arbitrarily. Jobs are processed with no interruption starting from time zero. Let Bj and Aj
be the sets of jobs that precede and follow job j in an optimal sequence being constructed.
Correspondingly, the completion time of job j, Cj =

∑
k∈Bj

pk + pj . Also, if job j is assigned
to position k, Cj(k) denotes the corresponding completion time and Bj(k) and Aj(k) the sets
of predecessors and successors of j, respectively. The following known theoretical properties
hold.

I Property 1. [3] Consider two jobs i and j with pi < pj. Then, in at least one optimal
schedule, i precedes j if di ≤ max{dj , Cj}, otherwise j precedes i if di + pi > Cj.

I Property 2. [7] Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1
can be set only in positions h ≥ k and the jobs preceding and following job 1 are uniquely
determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h+ 1], . . . , [n]}.

I Property 3. [7, 9, 10] Consider C1(h) for h ≥ k. Job 1 cannot be set in position h ≥ k
if:
(a) C1(h) ≥ d[h+1], h < n;
(b) C1(h) < d[r] + p[r], for some r = k + 1, . . . , h.

I Property 4. ([12]) For any pair of adjacent positions (i, i+ 1) that can be assigned to job
1, at least one of them is eliminated by Property 3.

L. Shang et. al. 28:3

Algorithm 1 Total Tardiness Branch-and-Reduce (TTBR)
Input: N = {1, ..., n} is the problem to be solved
1: function TTBR(S, t)
2: seqOpt← a random sequence of jobs
3: l← the longest job in N
4: for i = 1 to n do
5: Branch by assigning job l to position i if not discarded by Property 3
6: seqLeft← TTBR(Bl(i), t)
7: seqRight← TTBR(Al(i), t +

∑
k∈Bl(i) pk + pl)

8: seqCurrent← concatenation of seqLeft, l and seqRight
9: seqOpt← best solution between seqOpt and seqCurrent
10: end for
11: return seqOpt
12: end function

A basic branch-and-reduce algorithm TTBR (Total Tardiness Branch-and-Reduce) can
be designed by exploiting Property 2, which allows to decompose the problem into two
smaller subproblems when the position of the longest job l is given and by taking into
account Property 4 which states that for each pair of adjacent positions (i, i+ 1), at least
one of them can be discarded. The basic idea is to iteratively branch by assigning job l to
every possible position {1, ..., n}, discarding ineligible positions by means of the elimination
rules of Property 3, and correspondingly decompose the problem. Each time a certain
position i is selected for job l, two different subproblems are generated, corresponding to
schedule the jobs before l (inducing subproblem Bl(i)) and after l (inducing subproblem
Al(i)), respectively. The algorithm operates by applying to any given jobset S starting at
time t function TTBR(S, t) that computes the corresponding optimal solution. With this
notation, the original problem is indicated by N = {1, ..., n} and the optimal solution is
reached when function TTBR(N, 0) is computed. The algorithm proceeds by solving the
subproblems along the branching tree according to a depth-first strategy and runs until all
the leaves of the search tree have been reached. Finally, it provides the best solution found
as an output. Algorithm 1 summarizes the structure of this approach, while Proposition 5
states its worst-case complexity.

I Proposition 5. Algorithm TTBR runs in O∗((1 +
√

2)n) = O∗(2.4143n) time and polyno-
mial space in the worst case.

Proof. We refer to problems where n is odd, but the analysis for n even is substantially the
same. Whenever the longest job 1 is assigned to the first and the last position of the sequence,
two subproblems of size n− 1 are generated. For each 2 ≤ i ≤ n− 1, two subproblems with
size i− 1 and n− i are generated. Hence, the total number of generated subproblems is at
most 2n− 2. This would induce the following recurrence for the running time T (n):

T (n) = 2T (n− 1) + 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n)) (1)

However, Property 4 indicates that the elimination rules of Property 3 discard at least
one position for every pair of adjacent positions. The worst case occurs when the largest
possible subproblems are kept that is when subproblems with size n− 1, n− 3, n− 5, . . . (that
arise by branching on positions i and n − i + 1 with i odd) are kept and correspondingly
subproblems with size n− 2, n− 4, n− 6, . . . are discarded. This induces a recurrence of the
type:

T (n) = 2T (n− 1) + 2T (n− 3) + ...+ 2T (4) + 2T (2) +O(p(n)) (2)

IPEC 2017

28:4 Branch-and-Merge for 1||
∑
Tj

By replacing n with n− 2, the following expression is derived:

T (n− 2) = 2T (n− 3) + 2T (n− 5) + ...+ 2T (4) + 2T (2) +O(p(n− 2)) (3)

Plugging expression 3 into expression 2, we get:

T (n) = 2T (n− 1) + T (n− 2) +O(p(n)) (4)

that induces as complexity O∗((1 +
√

2)n) = O∗(2.4143n). The space requirement is
polynomial since the branching tree is explored according to a depth-first strategy. J

The current state-of-the-art algorithm described in [11], noted hereafter as BB2001, is
a branch and bound algorithm having a similar structure as that of TTBR. The main
difference is that in BB2001, besides of the decomposition rule given in Property 2, another
decomposition rule, based on Property 6, is applied simultaneously on each branching. We
provide in Proposition 7 our analysis on the time complexity of BB2001, since this is not
discussed in [11]. Notice that even though the time complexity of TTBR is the same as
BB2001, the former one serves as a basis of the final algorithm branch-and-merge.

I Property 6. [1] Let job k in LPT sequence correspond to job [1] in EDD sequence.
Then, job k can be set only in positions h ≤ (n − k + 1) and the jobs preceding job k are
uniquely determined as Bk(h), where Bk(h) ⊆ {k + 1, k + 2, . . . , n} and ∀i ∈ Bk(h), j ∈
{n, n− 1, . . . , k + 1}rBk(h), di ≤ dj

I Proposition 7. Algorithm BB2001 runs in O∗(2.4143n) time and polynomial space in the
worst case.

Proof. Before branching on a node, BB2001 first computes the possible positions for the
longest job and the job with smallest due date. Then a new branch is created by assigning a
pair of compatible positions to these two jobs. We consider two cases as follows.

Firstly, consider the case where job 1 = [n]. The two decomposition rules become
identical and if this condition is also verified in all subproblems, then the time complexity is
O∗(2.4143n) as proved in Proposition 5.

In the case where 1 6= [n], the worst case occurs when 1 = [2] and [n] = 2, since in this
case we have maximum available branching positions: job [n] can be branched on position
i ∈ {1, ..., n − 1} and job 1 can be branched on position j ∈ {2, ..., n}, with i < j for each
branching. Moreover, we recall that the Property 4 is also valid.

Three subproblems (left, middle and right) are created on each double branching (zero-
sized problems are counted). For the sake of simplicity, we note T (l,m, r) = T (l)+T (m)+T (r).

L. Shang et. al. 28:5

The following recurrence holds.

T (n) =
n−1∑
i=1

i is odd

n∑
j=i+1

j is even

(T (i− 1, j − i− 1, n− j)) +O(p(n)) (5)

= T (0, 0, n− 2) + T (0, 2, n− 4) + T (0, 4, n− 6) + ...+ T (0, n− 2, 0)+ (6)
T (2, 0, n− 4) + T (2, 2, n− 6) + ...+ T (2, n− 4, 0)+ (7)

... (8)
T (n− 4, 0, 2) + T (n− 4, 2, 0)+ (9)

T (n− 2, 0, 0)+ (10)
O(p(n)) (11)

= 3 ∗ (T (n− 2) + 2T (n− 4) + 4T (n− 6) + ...+ n

2T (0)) (12)

(13)

By applying a similar process of simplification as in the proof of Proposition 5, the following
result is finally derived:

T (n) = 5T (n− 2)− T (n− 4). (14)

Correspondingly, we have T (n) = O∗(
√

5+
√

21
2

n

) = O∗(2.1890n). Therefore the worst case
occurs when the two decomposition rules overlap, and the resulting time complexity is the
same as TTBR, namely O∗(2.4143n).

In terms of space complexity, BB2001 applies an extra technique called Memorization
which makes use of exponential memory space for accelerating the solution. When this
extra technique is not considered, the space complexity of BB2001 is also polynomial since
depth-first exploration is adopted. J

3 Merging nodes in the search tree

In this section, we describe how to get an algorithm running with complexity O∗(2.247n)
in time and polynomial space by integrating a node-merging procedure into TTBR. The
resulting algorithm will be called branch-and-merge. We recall that in TTBR the branching
scheme is defined by assigning the longest unscheduled job to each available position and
accordingly divide the problem into two subproblems. To facilitate the description of the
algorithm, we focus on the worst-case scenario where the LPT sequence (1, ..., n) coincides
with the EDD sequence ([1], ..., [n]): in this case no position can be eliminated by Property 2
at each branching.

Figure 1 shows how an input problem {1, ..., n} is decomposed by the branching scheme
of TTBR. Each node is labelled by the corresponding subproblem Pj (P denotes the input
problem) and it is assumed in this example that Property 3 is not applied (for convenience
purpose). Notice that from now on Pj1,j2,...,jk

, 1 ≤ k ≤ n, denotes the problem (node in the
search tree) induced by the branching scheme of TTBR when the largest processing time job
1 is in position j1, the second largest processing time job 2 is in position j2 and so on till the
k-th largest processing time job k being placed in position jk.

To roughly illustrate the guiding idea of the merging technique introduced in this section,
consider Figure 1. Noteworthy, nodes P2 and P1,2 are identical except for the initial
subsequence (21 vs 12). This fact implies, in this particular case, that the problem of

IPEC 2017

28:6 Branch-and-Merge for 1||
∑
Tj

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

P3 :{2, 3}1{4, ..., n}
Pn :{2, ..., n}1

P3P2

P1

P1,n

. . .

P1,4P1,3P1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,4 :1{3, 4}2{5, ..., n}
P1,n :1{3, ..., n}2

Figure 1 The branching scheme of TTBR at the root node.

scheduling jobset {3, ..., n} at time p1 + p2 is solved twice. This kind of redundancy can
however be eliminated by merging node P2 with node P1,2 and creating a single node in which
the best sequence among 21 and 12 is scheduled at the beginning and the jobset {3, ..., n},
starting at time p1 + p2, remains to be branched on. Furthermore, the best subsequence
(starting at time t = 0) between 21 and 12 can be computed in constant time. Hence, the
node created after the merging operation involves a constant time preprocessing step plus the
search for the optimal solution of jobset {3, ..., n} to be processed starting at time p1 + p2.
We remark that, in the branching scheme of TTBR, for any constant k ≥ 3, the branches
corresponding to Pi and Pn−i+1, with i = 2, ..., k, are decomposed into two problems where
one subproblem has size n− i and the other problem has size i− 1 ≤ k. Correspondingly,
the merging technique presented on problems P2 and P1,2 can be generalized to all branches
inducing problems of sizes less than k. Notice that, by means of algorithm TTBR, any
problem of size less than k requires, to be solved, at most O∗(2.4143k) time (that is constant
time when k is fixed). In the remainder of the paper, for any constant k, we denote by
left-side branches the search tree branches corresponding to problems P1, ..., Pk.

With respect to algorithm TTBR, the basic idea is to applying merging on the left-side
branches (nodes P1 to Pk) while Property 3 is applied on the remaining branches (nodes
Pk+1 to Pn).

3.1 Merging left-side branches

We first illustrate the merging operations at the root node. The following lemma highlights
two properties of the pairs of problems Pj and P1,j with 2 ≤ j ≤ k.

I Lemma 8. For a pair of problems Pj and P1,j with 2 ≤ j ≤ k, the following conditions
hold:
1. The solution of problems Pj and P1,j involves the solution of a common subproblem which

consists in scheduling jobset {j + 1, ..., n} starting at time t =
∑
i=1,...,j pi.

2. Both in Pj and P1,j, at most k jobs have to be scheduled before jobset {j + 1, ..., n}.

Proof. As problems Pj and P1,j are respectively defined by {2, ..., j}1{j + 1, ..., n} and
1{3, ..., j}2{j + 1, ..., n}, the first part of the property is straightforward.
The second part can be simply established by counting the number of jobs to be scheduled
before jobset {j+1, ..., n} when j is maximal, i.e. when j = k. In this case, jobset {k+1, ..., n}
has (n− k) jobs which implies that k jobs remain to be scheduled before that jobset. J

L. Shang et. al. 28:7

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2, ..., k}1{k + 1, ..., n}

PkP2

P1

P1,n

. . .

P1,kP1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,k :1{3, ..., k}2{k + 1, ..., n}

. . .

. . .

Pn :{2, ..., n}1

P1,n :1{3, ..., n}2

(a) Left-side branches of P before performing the merging operations.

P : {1, ..., n}

PnPkP2

P1

P1,n

. . .

Pσ1,kPσ1,2

. . .

Pσ1,2 :BEST(12, 21){3, ..., n}
Pσ1,k :BEST({2, ..., k}1, 1{3, ..., k}2){k + 1, ..., n}

. . .

. . .

(b) Left-side branches of P after performing the merging operations.

Figure 2 Left-side branches merging at the root node.

Each pair of problems indicated in Lemma 8 can be merged as soon as they share the
same subproblem to be solved. More precisely, (k − 1) problems Pj (with 2 ≤ j ≤ k) can be
merged with the corresponding problems P1,j .

Figure 2 illustrates the merging operations performed at the root node. For any given
2 ≤ j ≤ k, problems Pj and P1,j share the same subproblem {j + 1, ..., n} starting at time
t =

∑j
i=1 pi. Hence, by merging the left part of both problems which is constituted by jobset

{1, ..., j} having size j ≤ k, we can delete node Pj and replace node P1,j in the search tree
by the node Pσ1,j which is defined as follows (Figure 2b):

Jobset {j + 1, ..., n} is the set of jobs on which it remains to branch.
Let σ1,j be the sequence of branching positions on which the j longest jobs 1, ..., j are
branched, that leads to the best jobs permutation between {2, ..., j}1 and 1{3, ..., j}2
when these two are solved. This involves the solution of two problems of size at most
k − 1 (in O∗(2.4143k) time by TTBR) and the comparison of the total tardiness value of
the two sequences obtained.

In the following, we describe how to apply analogous merging operations on any node
of the tree. With respect to the root node, the only additional consideration is that the
children nodes of a generic node may have already been concerned by previous merging
operations. Let us refer to LEFT_MERGE as the procedure which, for any node of the search
tree, perform merging operations on its leftmost child branches. The LEFT_MERGE procedure
operates based on a modified branching scheme, with respect to TTBR.

Let Lσ be a data structure associated to a problem Pσ. It represents a list of k − 1
subproblems that result from a previous merging and are now the first k − 1 children nodes
of Pσ. When Pσ is created by branching, Lσ = ∅. When a merging operation sets the first

IPEC 2017

28:8 Branch-and-Merge for 1||
∑
Tj

k − 1 children nodes of Pσ to Pσ1 , ..., Pσk−1 , we set Lσ = {Pσ1 , ..., Pσk−1}. As a conclusion,
the following branching scheme for a generic node of the tree holds.

I Definition 9. The branching scheme for a generic node Pσ is defined as follows:
If Lσ = ∅, use the branching scheme of TTBR;
If Lσ 6= ∅, extract problems from Lσ as the first k − 1 branches, then branch on the
longest job in the available positions from the k-th to the last according to Property 2.

This branching scheme, whenever necessary, will be referred to as improved branching.

Before describing how merging operations can be applied on a generic node Pσ, we
highlight its structural properties by means of Proposition 10.

I Proposition 10. Let Pσ be a problem to branch on, and σ be the permutation of positions
assigned to jobs 1, . . . , |σ|, with σ empty if no positions are assigned. The following properties
hold:
1. j∗ = |σ|+ 1 is the job to branch on,
2. j∗ can occupy in the branching process, positions {`b, `b + 1, . . . , `e}, where

`b =
{
|σ|+ 1 if σ is a permutation of 1, . . . , |σ| or σ is empty
ρ1 + 1 otherwise

with ρ1 = max{i : i > 0, positions 1, . . . , i are in σ} and

`e =
{
n if σ is a permutation of 1, . . . , |σ| or σ is empty
ρ2 − 1 otherwise

with ρ2 = min{i : i > ρ1, i ∈ σ}

Proof. According to the definition of the notation Pσ, σ is a sequence of positions that are
assigned to the longest |σ| jobs. Since we always branch on the longest unscheduled job, the
first part of the proposition is straightforward. The second part aims at specifying the range
of positions that job j∗ can occupy. Two cases are considered depending on the content of σ:

If σ is a permutation of 1, . . . , |σ|, it means that the longest |σ| jobs are set on the first
|σ| positions, which implies that the job j∗ should be branched on positions |σ|+ 1 to n
If σ is not a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs are not
set on consecutive positions. As a result, the current unassigned positions may be
split into several ranges. As a consequence of Property 2, the longest job j∗ should
necessarily be branched on the first range of free positions, that goes from ρ1 to ρ2.
Under the worst-case scenario, let us consider as an example P1,9,2,8, whose structure
is 13{5, . . . , 9}42{10, . . . , n} and the job to branch on is 5. In this case, we have: σ =
(1, 9, 2, 8), `b = 3, `e = 7. It is easy to verify that 5 can only be branched on positions
{3, . . . , 7} since 5 must stay before 4 as a direct result of Property 2. J

Corollary 11 emphasizes the fact that even though a node may contain several ranges of
free positions, only the first range is the current focus since we only branch on the longest
job in eligible positions.

I Corollary 11. Problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}Ω

with π the subsequence of jobs on the first `b − 1 positions in σ and Ω the remaining subset
of jobs to be scheduled after position `e (some of them can have been already scheduled). The
merging procedure is applied on jobset {j∗, . . . , j∗ + `e − `b} starting at time tπ =

∑
i∈Π pi

where Π is the jobset of π.

L. Shang et. al. 28:9

Pσ

PσkPσ2

Pσ1 . . .

Pσ1,`b+k����Pσ1,`b+1

. . .

. . .

�����
Pσ1,`b+k−1

. . .

Pσ1,j∗+1 Pσ1,j∗+k−1

Figure 3 Merging for a generic left-side branch.

The validity of merging on a general node still holds as indicated in Proposition 12, which
extends the result stated in Proposition 8.

I Proposition 12. Let Pσ be a generic problem and let π, j∗, `b, `e,Ω be computed relatively
to Pσ according to Corollary 11. If Lσ=∅ the j-th child node Pσj is Pσ,`b+j−1 for 1≤j≤k.
Otherwise, the j-th child node Pσj is extracted from Lσ for 1≤j≤k−1, while it is created as
Pσ,`b+k−1 for j=k. For any pair of problems Pσj and Pσ1,`b+j−1 with 2≤j≤k, the following
conditions hold:
1. Problems Pσj and Pσ1,`b+j−1 with 2≤j≤k have the following structure:

Pσj :
πj{j∗+j, . . . , j∗+`e−`b}Ω 1≤j≤k−1 and Lσ 6=∅

π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω (1≤j≤k−1;Lσ=∅)
or j=k

Pσ1,`b+j−1:
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω

2. By solving all the problems of size less than k, that consist in scheduling the jobset
{j∗+1, . . . , j∗+j−1} between π and j∗ and in scheduling {j∗+2, . . . , j∗+j−1} between π1

and j∗+1, both Pσj and Pσ1,`b+j−1 consist in scheduling {j∗+j, ..., j∗+`e−`b}Ω starting
at time tπj =

∑
i∈Πj pi where Πj is the jobset of πj.

Proof. The first part of the statement follows directly from Definition 9 and simply defines
the structure of the children nodes of Pσ. The problem Pσj is the result of a merging
operation with the generic problem Pσ,`b+j−1 and it could possibly coincide with Pσ,`b+j−1,
for each j=1, ..., k−1. Furthermore, Pσj is exactly Pσ,`b+j−1 for j=k. The generic structure
of Pσ,`b+j−1 is π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω, and the merging operations
preserve the jobset to schedule after j∗. Thus, we have Πj=Π∪{j∗, ..., j∗+j−1} for each
j=1, ..., k−1, and this proves the first statement. Analougosly, the structure of Pσ1,`b+j−1 is
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω. Once the subproblem before j∗+1 of
size less than k is solved, Pσ1,`b+j−1 consists in scheduling the jobset {j∗+j, ..., j∗+`e−`b}
at time tπj =

∑
i∈Πj pi. In fact, we have that Πj=Π1∪{j∗+2, . . . , j∗+j−1}∪{j∗+1}=Π∪

{j∗, . . . , j∗+j−1} . J

Analogously to the root node, each pair of problems indicated in Proposition 12 can be
merged. Again, (k−1) problems Pσj (with 2 ≤ j ≤ k) can be merged with the corresponding

IPEC 2017

28:10 Branch-and-Merge for 1||
∑
Tj

Algorithm 2 LEFT_MERGE Procedure
Input: Pσ an input problem of size n, with `b, j∗ accordingly computed
Output: Q: a list of problems to branch on after merging
1: function LEFT_MERGE(Pσ)
2: Q←∅
3: for j=1 to k do
4: Create Pσj (j-th child of Pσ) by the improved branching with the subproblem induced by

jobset {j∗+1, . . . , j∗+j−1} solved if Lσ=∅ or j=k
5: end for
6: for j=1 to k−1 do
7: Create Pσ1j (j-th child of Pσ1) by the improved branching with the subproblem induced by

jobset {j∗+2, . . . , j∗+j−1} solved if Lσ1 =∅ or j=k
8: Lσ1←Lσ1∪BEST(Pσj+1 , Pσ1j)
9: end for
10: Q←Q∪Pσ1

11: return Q
12: end function

problems Pσ1,`b+j−1. Pσj is deleted and Pσ1,`b+j−1 is replaced by Pσ1,j∗+j−1 (Figure 3),
defined as follows:

Jobset {j∗ + j, ..., j∗ + `e − `b}Ω is the set of jobs on which it remains to branch on.
Let σ1,j∗+j−1 be the sequence of positions on which the j∗ + j − 1 longest jobs 1, ..., j∗ +
j − 1 are branched, that leads to the best jobs permutation between πj and π1{j∗ +
2, . . . , j∗ + j − 1}(j∗ + 1) for 2 ≤ j ≤ k − 1, and between π{j∗ + 1, . . . , j∗ + j − 1}j∗ and
π1{j∗ + 2, . . . , j∗ + j − 1}(j∗ + 1) for j = k. This involves the solution of one or two
problems of size at most k − 1 (in O∗(2.4143k) time by TTBR) and the finding of the
sequence that has the smallest total tardiness value knowing that both sequences start at
time 0.

The LEFT_MERGE procedure is presented in Algorithm 2. Notice that this algorithm takes
as input one problem and produces as an output its first children nodes to branch on, which
replace all its k left-side children nodes.

I Lemma 13. The LEFT_MERGE procedure returns one node to branch on in O(n) time and
polynomial space. The corresponding problem is of size n− 1.

Proof. The creation of problems Pσ1,`b+j−1, ∀j = 2, . . . , k, can be done in O(n) time. The
call of TTBR costs constant time. The BEST function called at line 8 consists in computing
then comparing the total tardiness value of two known sequence of jobs starting at the same
time instant: it runs in O(n) time. The overall time complexity of LEFT_MERGE procedure is
then bounded by O(n) time as k is a constant. Finally, as only node Pσ1 is returned, its size
is clearly n− 1 when Pσ has size n. J

3.2 Algorithm and complexity analysis
The main procedure TTBM (Total Tardiness Branch-and-Merge) is stated in Algorithm 3.
It has a similar recursive structure as TTBR. However, each time a node is opened, the
sub-branches required for the merging operations are generated, the subproblems of size less
than k are solved and the procedure LEFT_MERGE is called. Then, the algorithm proceeds
recursively by extracting the next node from Q with a depth-first strategy and terminates
when Q is empty.

I Proposition 14. Algorithm TTBM runs in O∗(2.247n) time and polynomial space.

L. Shang et. al. 28:11

Algorithm 3 Total Tardiness Branch-and-merge (TTBM)
Input: P : {1, ..., n}: input problem of size n

k ≥ 2: an integer constant
Output: seqOpt: an optimal sequence of jobs
1: function TTBM(P ,k)
2: Q← P
3: seqOpt← a random sequence of jobs
4: while Q 6= ∅ do
5: P ∗ ← extract next problem from Q (depth-first order)
6: if (the size of P ∗ < k) then Solve P ∗ by calling TTBR
7: end if
8: if all jobs {1, ..., n} are fixed in P ∗ then
9: seqCurrent← the solution defined by P ∗

10: seqOpt← best solution between seqOpt and seqCurrent
11: else
12: Q← Q ∪ LEFT_MERGE(P ∗)
13: for i = k + 1, ..., n do
14: Create child node Pi like in TTBR
15: if Pi is not eliminated by Property 3 then Q← Q ∪ Pi
16: end if
17: end for
18: end if
19: end while
20: return seqOpt
21: end function

Proof. Starting from Algorithm 3, we can derive that for a given problem P of size n, the
(k − 1) first children nodes P2 to Pk are merged with children nodes of P1. Consequently,
among these nodes, only node P1 remains as a child node of P . For the other (n−k) children
nodes, Property 3 is applied eliminating by the way one node over two. The worst-case is
achieved when n is odd and k is even and we have the following recurrence:

T (n) = T (n− 1) + (T (n− k − 1) + T (k)) + (T (n− k − 3) + T (k + 2)) + ...

+(T (2) + T (n− 3)) + T (n− 1) +O(p(n))

which can be reformulated as

T (n) = 2T (n− 1) + T (n− 3) + ...+ T (n− k + 1) + 2T (n− k − 1) + ...+ 2T (2) +O(p(n))

Following the same approach used in the proof of Proposition 5, we plug T (n− 2) into the
formula and we have

T (n) = 2T (n− 1) + T (n− 2)− T (n− 3) + T (n− k − 1) +O(p(n))−O(p(n− 2))

The solution of this recurrence is T (n) = O∗(cn) with c the largest root of

1 = 2
x

+ 1
x2 −

1
x3 + 1

xk+1

When k is large enough, the last term in the equation can be ignored, leading to a value of
c which tends towards 2.24698 as k increases. More concretely, TTBM runs in O∗(2.247n)
when k ≥ 14. J

4 Conclusions

In this paper an exact exponential algorithm for the single machine total tardiness
problem was provided. By exploiting some inherent properties of the problem, we first

IPEC 2017

28:12 Branch-and-Merge for 1||
∑
Tj

proposed a branch-and-reduce algorithm, denoted by TTBR running in O∗(2.4143n) time
and polynomial space. This algorithm is then improved by means of a merging technique
leading to a time complexity O∗(2.247n) and polynomial space. The resulting algorithm is
named branch-and-merge. The merging technique is shown here on left-side branches only.
However, at the price of a very long and technical study, also merging right-side branches
can be considered leading to a general branch-and-merge algorithm converging to a O∗(2n)
worst-case time complexity (and still polynomial in space). The presentation of the right-side
merging operation is omitted here due to paper length limitation. A complete description
can be found in [5].

As a future development of this work, our aim is twofold. First, we aim at applying
the branch-and-merge approach to other combinatorial optimization problems in order to
establish its potential generalizability. Second, we want to explore the practical efficiency
of branch-and-merge for the single machine total tardiness problem and check whether
the merging mechanism and related memorization techniques may improve in practice the
performances of known approaches such as the one in [11].

References
1 Federico Della Croce, R Tadei, P Baracco, and A Grosso. A new decomposition approach for

the single machine total tardiness scheduling problem. Journal of the Operational Research
Society, pages 1101–1106, 1998.

2 Jianzhong Du and Joseph Y-T Leung. Minimizing total tardiness on one machine is NP-
hard. Mathematics of Operations Research, 15(3):483–495, 1990.

3 Hamilton Emmons. One-machine sequencing to minimize certain functions of job tardiness.
Operations Research, 17(4):701–715, 1969.

4 Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Science &
Business Media, 2010.

5 Michele Garraffa, Lei Shang, Federico Della Croce, and Vincent T’Kindt. An Exact Ex-
ponential Branch-and-Merge Algorithm for the Single Machine Total Tardiness Problem.
submitted to TCS, 2017. URL: https://hal.archives-ouvertes.fr/hal-01477835.

6 Christos Koulamas. The single-machine total tardiness scheduling problem: review and
extensions. European Journal of Operational Research, 202(1):1–7, 2010.

7 Eugene L Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.

8 Christophe Lenté, Mathieu Liedloff, Ameur Soukhal, and Vincent T’Kindt. Exponential
Algorithms for Scheduling Problems. HAL, https://hal.archives-ouvertes.fr/hal-00944382,
2014. URL: https://hal.archives-ouvertes.fr/hal-00944382.

9 C.N Potts and L.N Van Wassenhove. A decomposition algorithm for the single machine
total tardiness problem. Operations Research Letters, 1(5):177–181, 1982.

10 Wlodzimierz Szwarc. Single machine total tardiness problem revisited. Creative and In-
novative Approaches to the Science of Management, Quorum Books, pages 407–419, 1993.

11 Wlodzimierz Szwarc, Andrea Grosso, and Federico Della Croce. Algorithmic paradoxes of
the single-machine total tardiness problem. Journal of Scheduling, 4(2):93–104, 2001.

12 Wlodzimierz Szwarc and Samar K Mukhopadhyay. Decomposition of the single machine
total tardiness problem. Operations Research Letters, 19(5):243–250, 1996.

13 Gerhard J. Woeginger. Exact Algorithms for NP-hard Problems: A Survey. In Michael
Jünger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial Optimization —
Eureka, You Shrink!, volume 2570 of Lecture Notes in Computer Science, pages 185–207.
Springer Berlin Heidelberg, 2003.

https://hal.archives-ouvertes.fr/hal-01477835
https://hal.archives-ouvertes.fr/hal-00944382

	Introduction
	Preliminaries
	Merging nodes in the search tree
	Merging left-side branches
	Algorithm and complexity analysis

	Conclusions

