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Abstract
We discuss the computational complexity, the approximability, the algorithmics and the combin-
atorics of the open shop scheduling problem. We summarize the most important results from the
literature and explain their main ideas, we sketch the most beautiful proofs, and we also list a
number of open problems.
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1 Blacksmiths and horseshoes

“There are four blacksmiths working together. One of them has specialized in putting horseshoes
on the left front leg of a horse, while the other three have specialized respectively in putting
horseshoes on the left hind leg, the right front leg, and the right hind leg. If the work on one
horseshoe takes five minutes, what is the minimum amount of time needed to put twenty-eight
horseshoes on seven horses? (Note that a horse cannot stand on two legs.)”

As each blacksmith has to handle 7 horseshoes, he needs at least 35 minutes of working
time. The following picture with horses A,B,C,D,E, F,G and blacksmiths 1, 2, 3, 4 shows a
schedule that meets this lower bound of 35 minutes. Note that each horse receives its four
horseshoes during four different time slots (so that it never has to stand on two legs), and note
that during each five minute time slot each blacksmith works for exactly five non-interrupted
minutes on a single horse.

minute minute minute minute minute minute minute
00–05 05–10 10–15 15–20 20–25 25-30 30-35

Blacksmith 1 A B C D E F G
Blacksmith 2 B C D G F E A
Blacksmith 3 C D G E A B F
Blacksmith 4 D A F B C G E

2 Problem statement and some definitions

An instance of the open shop scheduling problem consists of m machines M1, . . . ,Mm and n
jobs J1, . . . , Jn. (Throughout, machines will be indexed by i and jobs will be indexed by j.)
Each job Jj consists of m independent operations Oi,j with i = 1, . . . ,m. The operation Oi,j
of job Jj has to be processed on machine Mi, which takes pi,j uninterrupted time units. For
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4:2 The Open Shop Scheduling Problem

every job, the order in which its operations have to be processed is not fixed in advance but
may be chosen arbitrarily by the scheduler; we stress that different jobs may receive different
processing orders.

A schedule assigns every operation Oi,j to a time interval of length pi,j , so that no job is
simultaneously processed on two different machines and so that no machine simultaneously
processes two different jobs. The makespan Cmax of a schedule is the largest job completion
time. The optimal makespan is usually denoted by C∗max. In the standard scheduling
classification scheme of Lawler, Lenstra, Rinnooy Kan & Shmoys [12], this optimization
problem is denoted by O||Cmax (if the number m of machines is given as part of the input)
and by Om||Cmax (if the number m of machines is a fixed constant number).

In the “Blacksmiths and horseshoes” puzzle, the four blacksmiths are four machines
M1,M2,M,M4. Each horse forms a job, and its four legs are the four operations of that job.
All operations Oi,j have length pi,j = 5.

Here are some more notations. The length of the longest operation in an instance is denoted
omax = maxi,j pi,j . The overall processing time of job Jj will be denoted pj =

∑m
i=1 pi,j .

The overall processing time assigned to machine Mi is called the load Li =
∑n
j=1 pi,j of the

machine. The maximum job processing time is denoted pmax = maxj pj and the maximum
machine load is denoted Lmax = maxi Lj . As no job can be simultaneously processed on two
different machines the makespan of any schedule satisfies Cmax ≥ pmax, and as no machine
can simultaneously processes two different jobs the makespan satisfies Cmax ≥ Lmax. This
yields the following lower bound, which will be important throughout the paper:

C∗max ≥ β∗ := max {Lmax, pmax} (1)

We mention in passing that there are two other important shop scheduling problems
that are closely related to the open shop problem: In a flow shop, every job must pass the
machines in the same ordering M1, . . . ,Mm. In a job shop, the ordering of the operations
is fixed a priori for every job, and different jobs may have different orderings of operations.
These variants will not be further discussed in the rest of this paper.

3 Computational complexity

Gonzalez & Sahni [10] prove that the open shop on m = 2 machines allows a very simple
polynomial time solution: There always exists a schedule whose makespan equals the lower
bound β∗ in (1), and this schedule can be found in linear time.

I Theorem 1 (Gonzalez & Sahni [10]). Problem O2||Cmax is solvable in polynomial time.

The algorithm in Theorem 1 is not hard to find (there are many possible approaches), and we
leave it as a puzzle for the reader. A more general problem variant considers the completion
time C1 of the last operation on machineM1 and the completion time C2 of the last operation
on M2, and asks for a schedule that minimizes some objective function f(C1, C2) of the two
machine completion times. Based on extensive case distinctions, Shaklevich & Strusevich [21]
develop linear time algorithms for this variant, if the function f(·, ·) is non-decreasing in both
arguments. Van den Akker, Hoogeveen & Woeginger [23] provide a simpler proof of the same
result. Sahni & Cho [14] prove strong NP-hardness of the no-wait problem O2|no-wait|Cmax
in which the processing of the second operation of each job must start immediately after the
completion of its first operation.

Now let us turn to the cases of Om||Cmax with m ≥ 3 machines. As usual, the complexity
jumps from easy to hard when we move from parameter 2 to parameter 3:
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Figure 1 Illustration of the NP-hardness argument in Theorem 2.

I Theorem 2 (Gonzalez & Sahni [10]). For every fixed m ≥ 3, problem Om||Cmax is NP-hard.

Proof. We only show hardness for m = 3. The proof is a polynomial time reduction from the
NP-hard PARTITION problem [9]: “Given k positive integers q1, . . . , qk with

∑k
i=1 qi = 2Q,

does there exist an index set I ⊆ {1, . . . , k} with
∑
i∈I qi = Q?”

For j = 1, . . . , k we create a job Jj with p1,j = p2,j = p3,j = qj . Furthermore, there is
a job Jk+1 with p1,k+1 = p2,k+1 = p3,k+1 = Q. We claim that the PARTITION instance
has answer YES, if and only if the constructed instance of O3||Cmax has a schedule with
makespan at most 3Q. The (only if part) is straightforward. For the (if part), consider the
three operations of job Jk+1 in a schedule with makespan 3Q. By symmetry, we may assume
that Jk+1 is first processed on machine M1, then on M2, and finally on M3. Then the second
operation generates two time intervals X and Y of length Q on machine M2; see Figure 1
for an illustration. The operations O2,j of the other jobs must be packed into intervals X
and Y , and thereby yield a solution for the PARTITION instance. J

As the PARTITION problem is NP-hard in the weak sense, the argument in Theorem 2
only yields NP-hardness in the weak sense for Om||Cmax. The precise complexity (strong
NP-hardness versus pseudo-polynomial time solvability) of problem Om||Cmax is unknown.
This complexity question has been open since the 1970s, and it forms the biggest and most
important gap in our understanding of open shop scheduling.

I Open problem 3. Prove that for every fixed number m ≥ 3 of machines, problem Om||Cmax
is solvable in pseudo-polynomial time.

Finally, let us discuss the complexity of problem O||Cmax where the number of machines
is specified as part of the input. An unpublished result of Lenstra [13] from the 1970s
establishes strong NP-hardness of O||Cmax. Strong NP-hardness of O||Cmax can also easily
be deduced from a published result by Williamson & al. [24], who prove that O||Cmax is
NP-hard, even if all operations are of length 0, 1, 2 and if the question is to decide whether
there is a schedule with makespan 4.

4 A theorem on vector rearrangements

This section introduces an auxiliary problem and an auxiliary result that will be pivotal for
the next section. Let B ⊂ Rd be the unit ball of a norm ‖ · ‖ on Rd, that is, a d-dimensional
closed convex body that is centrally symmetric about the origin. Suppose we are given n
vectors v1, . . . , vn ∈ Rd that satisfy

n∑
i=1

vi = 0 and ‖vi‖ ≤ 1 for 1 ≤ i ≤ n. (2)

STACS 2018
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The goal is to find a permutation vπ(1), . . . , vπ(n) of these vectors, so that for every k with
1 ≤ k ≤ n the norm ‖vπ(1) + vπ(2) + · · · + vπ(k)‖ of the partial sum is small. Steinitz [22]
proved in 1913 that the norms of these partial sums can be bounded by a constant that
only depends on the unit ball B (and Steinitz showed that the concrete constant 2d always
works). The smallest such constant is called the Steinitz constant c(B) of the norm.

I Theorem 4 (Grinberg & Sevastianov [11]). For any norm with unit ball B ⊂ Rd, the
Steinitz constant satisfies c(B) ≤ d.

The proof of Theorem 4 in [11] is an optimized and streamlined version of an earlier proof by
Sevastianov [15]. It is extremely elegant, and we will sketch it now. Hence, let us consider
vectors v1, . . . , vn ∈ Rd that satisfy (2). In a first step, we prove that there exists a system
of subsets Vd, Vd+1, . . . , Vn of {v1, . . . , vn} that satisfies the following properties.

Vd ⊆ Vd+1 ⊆ · · · ⊆ Vn = {v1, . . . , vn}
|Vk| = k for 1 ≤ k ≤ n
There exist real numbers λk(v) ∈ [0, 1] for d ≤ k ≤ n and v ∈ Vk with
(A)

∑
v∈Vk

λk(v) = k − d for d ≤ k ≤ n, and
(B)

∑
v∈Vk

λk(v) · v = 0 for d ≤ k ≤ n.
In other words, the coefficients λk(v) constitute a linear dependency on Vk where all coefficients
add up to k − d. The subsets Vk and the real numbers λk(v) are constructed by a backward
induction. For k = n, we have Vn = {v1, . . . , vn} and we define λn(v) ≡ (n− d)/n for all v.
These values satisfy condition (A) by definition, while condition (B) follows from (2).

Now assume that the sets Vk+1, . . . , Vn have already been defined together with the
corresponding coefficients λk+1(v), . . . , λn(v). We consider the following system of linear
constraints on k + 1 real variables x(v) for v ∈ Vk+1.∑

v∈Vk+1

x(v) = k − d (3)

∑
v∈Vk+1

x(v) · v = 0 (4)

0 ≤ x(v) ≤ 1 for v ∈ Vk+1 (5)

Note that the system (3)–(5) is solvable, as can be seen for instance by setting

x(v) = k − d
k + 1− d λk+1(v) for v ∈ Vk+1.

Hence the underlying (k + 1)-dimensional polytope is non-empty. Any extreme point x∗ of
this polytope must satisfy k + 1 of the linear constraints with equality. As constraint (3)
yields one such equality and as constraint (4) yields d such equalities (one per dimension), in
an extreme point at least k + 1 − (d + 1) = k − d of the inequalities in (5) must be tight.
Because of (3), this implies that in an extreme point x∗ at least one of the variables x∗(v)
will be equal to zero. We construct the set Vk by dropping the corresponding vector v from
Vk+1 and by setting λk(v) = x∗(v). This completes the construction of the subset system.

In the second step, we transform the subset system into the desired permutation. The
first d vectors vπ(1), . . . , vπ(d) are an arbitrary ordering of the vectors in set Vd. For k ≥ d+ 1,
we choose vector vπ(k) as the unique element of Vk − Vk−1. We claim that in the resulting
permutation, the norm of every partial sum

∑k
i=1 vπ(i) is at most d. Indeed, for k ≤ d the

triangle inequality together with ‖vi‖ ≤ 1 implies ‖
∑k
i=1 vπ(i)‖ ≤

∑k
i=1 ‖vπ(i)‖ ≤ d. For
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d+ 1 ≤ k ≤ n, the claim follows from the following chain of equations and inequalities, which
is based on properties (A) and (B) and on the triangle inequality.

‖
k∑
i=1

vπ(i)‖ = ‖
∑
v∈Vk

v‖ = ‖
∑
v∈Vk

v −
∑
v∈Vk

λk(v) · v‖

≤
∑
v∈Vk

(1− λk(v)) · ‖v‖ ≤
∑
v∈Vk

(1− λk(v))

= |Vk| −
∑
v∈Vk

λk(v) = k − (k − d) = d

This completes the proof of Theorem 4. Note that the constructed permutation does not
depend on the underlying norm. Note furthermore that the entire construction can easily be
implemented in polynomial time.

Banaszczyk [2] slightly strengthened the bound in Theorem 4 on the Steinitz constants
for norms in d-dimensional space to c(B) ≤ d − 1 + 1/d. Bergström [5] showed that the
Steinitz constant of the Euclidean plane (2-dimensional space with Euclidean norm) equals√

5/2 ≈ 1.118. It is known (and easy to see) that the Steinitz constant of the d-dimensional
Euclidean space is at least

√
d+ 3/2, and this might well be the correct value of the d-

dimensional Euclidean Steinitz constant. However, at the current moment not even a
sub-linear upper bound is known and the problem is wide open (even for d = 3).

5 A tractable special case

Recall that omax denotes the length of the longest operation, that pmax denotes the length of
the longest job, and that Lmax denotes the maximum machine load. Throughout this section
we will assume that

L1 = L2 = L3 = · · · = Lm = Lmax and omax = 1. (6)

The equality of all machine loads in (6) can be reached by adding dummy jobs, and omax = 1
can be reached by scaling. We will apply the machinery for vector rearrangements (as
described in the preceding section) to the open shop scheduling problem Om||Cmax. We
introduce a unit ball B∗ for a norm ‖ · ‖∗ in (m− 1)-dimensional space, defined by

B∗ =
{

(x1, . . . , xm−1) ∈ Rm−1 : |xk| ≤ 1 and |xk − x`| ≤ 1 for all k and `
}
. (7)

Every job Jj with processing times pi,j is translated into an (m− 1)-dimensional vector

vj = (p1,j − pm,j , p2,j − pm,j , . . . , pm−1,j − pm,j) . (8)

Because of (6) we have
∑n
j=1 vj = 0 and ‖vj‖∗ ≤ 1 for 1 ≤ j ≤ n, so that the conditions

(2) for the vector rearrangement Theorem 4 are satisfied. Consequently there exists a
permutation vπ(1), . . . , vπ(n) of these vectors, so that

‖vπ(1) + vπ(2) + · · ·+ vπ(k)‖∗ ≤ m− 1 for k = 1, . . . , n. (9)

We construct an infeasible schedule that on each machine processes the jobs without
idle time in the ordering Jπ(1), . . . , Jπ(n); see Figure 2 for an illustration. This schedule is
extremely infeasible, as it schedules all operations of every job into a short time interval; this
is a consequence of (9) and the definition of norm ‖ · ‖∗. The positive effect of this type of
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π(1)

π(1)

π(1)

π(2)

π(2)

π(2)

π(3)

π(3)

π(3)

Figure 2 The infeasible schedule that results from the vector rearrangement.

infeasibility is that we have a good understanding of the global structure of this schedule.
The completion time of operation Oi,j in the infeasible schedule is denoted by Ci,j . Then for
k ≥ 2 we have

C1,π(k) − C2,π(k−1) =
k∑
j=1

p1,π(j) −
k−1∑
j=1

p2,π(j)

=
k−1∑
j=1

(p1,π(j) − p2,π(j)) + p1,π(k) ≤ (d− 1) + 1 = d.

In the inequality, we use (9) and p1,π(k) ≤ omax = 1 from (6). By applying analogous
arguments, we derive

∆1 := max
k≥2

Cm,π(k) − C1,π(k−1) ≤ m

∆2 := max
k≥2

C1,π(k) − C2,π(k−1) ≤ m

∆3 := max
k≥2

C2,π(k) − C3,π(k−1) ≤ m

· · · · · · · · ·

∆m := max
k≥2

Cm−1,π(k) − Cm,π(k−1) ≤ m

This means that we can turn the infeasible schedule into a feasible schedule, by simply
shifting all operations on every machine Mi by (i − 1)m time units into the future. The
makespan of the resulting schedule will be bounded by Lmax + (m− 1)omax, which yields
a reasonable approximation result. We will describe next how to get an even better result.
We wrap the infeasible schedule around a cylinder with circumference Lmax. Each of the
individual machine schedules forms a ring around the cylinder that may be rotated. We
freeze the ring for machine M1, and we mark the starting time of job Jπ(1) as the zero-point.

We rotate the ring for machine M2 by ∆2 time units and thereby shift the starting time
of each operation by ∆2 into the future. By doing this, we resolve all collisions between
operations on M1 and operations on M2: Every job has now disjoint processing intervals on
M1 and M2. Then we rotate the ring for machine M2 by ε2 ≤ omax additional time units, so
that one of the operations on M2 is started at the marked zero-point. Next, we do a similar
rotation of the ring for machine M3 by ∆2 + ∆3 + ε2 + ε3 time units, so that all collisions
between M2 and M3 are resolved and so that one of the operations on M3 is started at the
marked zero-point. And so on. The ring for machine Mi is rotated by

∑i
k=2 ∆k + εk time

units, so that all collisions are resolved and so that some operation starts at the zero-point.
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In the end, we cut the rings open at the marked zero-point and flatten them into a
schedule for the considered open shop instance. If Lmax −∆1 is larger than the total length
of all shifts, the resulting schedule will be feasible: Before the shifting, all operations of
job Jj were scheduled very close to each other in time. The first shift puts O1,j and O2,j
into disjoint processing intervals, and each of the later shifts puts another operation into a
disjoint processing interval. As Lmax is sufficiently large, the later operations of job Jj will
not be shifted all the way around the cylinder and hence cannot cause collisions with the
first operation O1,j of that job. Since ∆i ≤ m and since εi ≤ omax ≤ 1, the total length of
all shifts is at most (m− 1)(m+ 1), and this should be at most Lmax −∆1 ≥ Lmax −m.

I Theorem 5 (Fiala [8]). If an instance of Om||Cmax satisfies Lmax ≥ (m2 +m− 1)omax,
then the optimal makespan is Lmax. Furthermore, an optimal schedule can be computed in
polynomial time.

One consequence of Theorem 5 is that open shop problems in the real world are often
easy to solve: If all jobs are drawn from the same distribution and if there is a sufficiently
large number of jobs, then the condition Lmax ≥ (m2 +m− 1)omax in Theorem 5 will hold
true and the instances become easy to solve.

Belov & Stolin [4] were the first to apply vector rearrangement methods in the area
of scheduling (and they applied them to the flow shop problem). Fiala [8] discovered the
nice connection to the open shop problem; he actually proved a much stronger version of
Theorem 5 where the factor m2 +m− 1 is replaced by 8m′ log2(m′) + 5m′ where m′ is the
smallest power of 2 greater or equal to m. Bárány & Fiala [3] improved Fiala’s bound by a
factor of 2, and Sevastianov [16] improved it down to roughly (16/3)m log2 m. Sevastianov
[17] surveys and summarizes the history of vector rearrangement methods in the area of
scheduling.

In the light of the above results, it is natural to ask for the smallest value η(m), so that
every instance of Om||Cmax with Lmax ≥ η(m)omax automatically satisfies C∗max = Lmax.

I Open problem 6. Derive good upper and lower bounds on η(m) for m ≥ 3.

Sevastianov [18] establishes the upper bound η(m) ≤ m2 − 1 + 1/(m− 1), which is useful for
small values of m. [18] also establishes the lower bound η(m) ≥ 2m − 2. Here is the bad
instance for m = 3 machines that demonstrates η(3) ≥ 4: There is one job with processing
time 1 on each machine. Furthermore, for each machine Mi (i = 1, 2, 3) there are three jobs
with processing time 1− ε on Mi and processing time 0 on the other two machines. Then
Lmax = 4− 3ε and C∗max = 4− ε.

Sevastianov [18] also shows that Om||Cmax remains NP-hard, if it is restricted to instances
with Lmax/omax = ρ where 1 < ρ < 2m− 3. It is not clear, what is going on for instances
with 2m− 3 ≤ ρ < η(m). Perhaps, the instances with ρ < η(m) are all NP-hard; in that case
η(m) would be a threshold at which the complexity jumps from NP-hard to trivial.

I Open problem 7. Determine the computational complexity of the restriction of Om||Cmax
to instances with Lmax/omax = 2m− 2.

6 Approximation for an arbitrary number of machines

Here is a simple greedy algorithm for O||Cmax: Start at time t = 0, and whenever some
machine becomes idle and there is some job available that still needs processing on that
machine then assign that job to that machine. Ties are broken arbitrarily. This greedy
algorithm was formulated by Bárány & Fiala [3] who attribute it to private communication
with Anna Racsmány.

STACS 2018
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Figure 3 A lower bound instance for the greedy algorithm on m = 6 machines. The dummy
jobs are shown in light-gray, while the operations of job J+ are in dark-gray and marked by +.

I Theorem 8 (Bárány & Fiala [3]). The greedy algorithm is a polynomial time approximation
algorithm for O||Cmax with worst case ratio at most 2.

Proof. Consider a greedy schedule, and let Oi,j be an operation that completes last. Then
on machine Mi, the greedy schedule has busy time intervals and idle time intervals. The
total length of the busy time intervals is Li ≤ Lmax. Whenever Mi is idle, it is not processing
job Jj and the only possible reason for this is that job Jj is being processed on one of the
other machines. Therefore the total length of the idle time intervals is at most pj ≤ pmax.
This implies that the greedy makespan is at most Lmax + pmax, which according to (1) is
bounded by 2β∗ ≤ 2C∗max. J

The result in Theorem 8 can also be derived as a corollary to a more general result by
Aksjonov [1]. How good is the worst case analysis in this theorem? Consider the following
instance with m machines and m2 −m+ 1 jobs. For i = 1, . . . ,m there are m− 1 dummy
jobs that each need one unit of processing time on machine Mi and zero processing time on
all other machines. Furthermore, there is a job J+ that needs one unit of processing time on
every machine. There is a greedy schedule with makespan 2m− 1 for this instance, in which
from time 0 to time m− 1 all machines are busy with processing the dummy jobs, and from
time m− 1 to time 2m− 1 they process job J+. As the optimal makespan is C∗max = m, the
worst case ratio of the greedy algorithm is at least 2− 1/m; see Figure 3 for an illustration.
Chen & Strusevich [6] have settled the cases m = 2 and m = 3 of the following open problem
by a tedious case analysis, and Chen & Yu [7] have settled the case m = 4.

I Open problem 9. Prove that the greedy algorithm for Om||Cmax has worst case ratio at
most 2− 1/m.

A difficult open problem in this area asks whether there is a polynomial time approximation
algorithm for O||Cmax with worst case ratio strictly better than 2. One possible approach
would work with the lower bound β∗ defined in (1). Sevastianov & Tchernykh [19] have
proved C∗max ≤ 4β∗/3 for problem O3||Cmax. Their proof is based on heavy case analysis
and on case enumeration with the help of a computer program. As the computer program
described in [19] takes more than 200 hours of computation time, this approach does not
seem to be applicable to m ≥ 4 machines.

I Open problem 10. Prove that any instance of Om||Cmax satisfies C∗max ≤ 3β∗/2.

Here is an instance that demonstrates that the factor 3/2 in this open problem would in fact
be best possible. The instance uses m machines and m+ 1 jobs. For j = 1, . . . ,m the job Jj
consists of the operation Ojj with processing time pjj = m− 1 on machine Mj , and with
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processing times 0 on the other m− 1 machines. The final job Jm+1 has m operations all
with processing time 1. Then β∗ = m and C∗max = dm/2e+m− 1. As m becomes large, the
ratio between C∗max and β∗ tends to 3/2.

Now let us turn to negative results on the worst case ratio of polynomial time approx-
imation algorithms for O||Cmax. Williamson & al. [24] prove that it is NP-hard to decide
whether an O||Cmax instance with integer processing times has optimal makespan at most 4.
Since the optimal makespan of a NO-instance is at least 5, a polynomial time approximation
algorithm with worst case ratio 5/4 − ε would allow us to distinguish the YES-instances
from the NO-instances in polynomial time.

I Theorem 11 (Williamson & al. [24]). Unless P=NP, problem O||Cmax does not allow a
polynomial time approximation algorithm with worst case ratio strictly better than 5/4.

It might be possible to lift the hardness proof in [24] to get stronger inapproximability
results.

I Open problem 12. Analyze the computational complexity of the (a, b)-versions of O||Cmax
instances with integer processing times: Decide whether the optimal makespan does satisfy
C∗max ≤ a or whether it does satisfy C∗max ≥ b.

If this (a, b)-version turns out to be NP-hard for fixed integers a and b, then O||Cmax cannot
have a polynomial time approximation algorithm with worst case ratio strictly better than
b/a unless P = NP . The result in [24] yields NP-hardness of the (4, 5)-version, and [24] also
shows that the (3, 4)-version is solvable in polynomial time. Hence the smallest interesting
open cases would concern the (5, 7)-version and the (6, 8)-version.

7 Approximation for a fixed number of machines

For an arbitrary number of machines, polynomial time approximation algorithms cannot
have worst case ratios very close to 1; see Theorem 11. For a fixed number of machines, the
situation is much better and there is a polynomial time approximation scheme (PTAS).

I Theorem 13 (Sevastianov & Woeginger [20]). For every fixed m ≥ 3, problem Om||Cmax
has a PTAS.

We now show a proof of Theorem 13 for the special case m = 3. (The general case is based
on exactly the same ideas, while some of the details become a bit messier.) So let us consider
some instance of O3||Cmax, and let ε with 0 < ε < 1 be some small real number that indicates
the desired precision of approximation. The running time of our algorithm will be polynomial
in the instance size, but exponential in 1/ε. The resulting makespan will come arbitrarily
close to C∗max, if we let ε tend to 0.

As often in approximation schemes for scheduling problems, the jobs are classified into
big and into small jobs. We call a job big, if one of its operations has length pi,j ≥ εβ∗,
where β∗ is the lower bound defined in (1). All other jobs are small jobs, and we want to
assume for the moment that (***) all operations of all small jobs have length pi,j ≤ ε2β∗; we
will show later how to work around this assumption. Since the total processing time of all
jobs is at most 3Lmax ≤ 3β∗ and as every big job has processing time at least εβ∗, there are
at most 3/ε big jobs. The algorithm now works in two phases.

In the first phase, we determine an optimal schedule for the big jobs. This can be done
in O(1) time, as the running time does only depend on 1/ε and does not depend on the
instance size. In the resulting schedule, every machine processes at most 3/ε operations
with at most 3/ε gaps of idle time between the operations; see Figure 4 for an illustration.
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Figure 4 An optimal schedule for the big jobs in the proof of Theorem 13.

In the second phase, we pack the operations of the small jobs into the idle gaps. This
is done greedily (as in Theorem 8). Start at time t = 0, and whenever some machine
becomes idle at some time t, try to process an unprocessed small operation on that
machine. There are two possible scenarios under which an unprocessed small operation
Oi,j cannot be started at time t: First another operation Okj of the same job might
currently be processed on some other machine. Secondly, the remaining part of the
current gap might be too small to accommodate Oi,j . If one of these scenarios occurs, we
try to schedule some other small operation. If no operation can be scheduled, then the
machine is left idle for the moment.

Now let us analyze the makespan CAmax of the resulting approximating schedule. Let Oi,j
be an operation that completes last. In the first case assume that Oi,j belongs to a big job.
Then CAmax coincides with the optimal makespan for the big jobs, and we actually have found
an optimal schedule. In the second case assume that Oi,j belongs to a small job. Then we
consider the busy time intervals and the idle time intervals on machine Mi. The total length
of all busy time intervals is the load Li ≤ β∗. Whenever machine Mi was idle, it could not
process operation Oi,j . This means that either (i) job Jj was being processed on one of the
other machines, or that (ii) the remaining gap was too small to accommodate Oi,j . The total
idle time of type (i) is bounded by the length of the small job Jj , which is at most 3ε2β∗.
The total idle time of type (ii) is bounded by the number of gaps multiplied by the length
of operation Oi,j , which is at most (3/ε) · (ε2β∗) = 3εβ∗. Altogether, this implies that the
approximating makespan can be bounded as

CAmax = Busy + Idle(i) + Idle(ii) ≤ β∗ + 3ε2β∗ + 3εβ∗ ≤ (1 + 3ε2 + 3ε)C∗max. (10)

As ε tends to 0, the error factor 1 + 3ε2 + 3ε tends to 1. This yields the desired PTAS modulo
the assumption (***).

It remains to discuss what to do with assumption (***), which essentially postulates an
empty no man’s land between big operations (of length at least εβ∗) and small operations
(of length at most ε2β∗). In other words, under assumption (***) non-big jobs must not
contain operations of intermediate length ε2β∗ < pi,j < εβ∗. This assumption will be totally
wrong for most instances, but we can come very close to it by playing around with the value
of ε. This is done as follows.

For a real number δ with 0 < δ < 1, we say that a job is δ-big, if one of its operations has
length pi,j ≥ δβ∗ and otherwise it is δ-small. An operation Oi,j is δ-nasty, if it belongs to
a δ-small job and satisfies the inequality δ2β∗ < pi,j < δβ∗. By N(δ) we denote the total
length of all δ-nasty operations. Now consider the real numbers δk = ε2k for k ≥ 0. Then
every operation Oi,j is δk-nasty for at most one choice of index k. We search for an index k
that satisfies the inequality

N(δk) ≤ εβ∗. (11)
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If some δk violates (11), then the corresponding δk-nasty operations consume at least εβ∗
of the total processing time of all operations (which is at most 3β∗). Hence some k ≤ 3/ε
will indeed satisfy (11). From now on we work with that particular index k and with that
particular value δk.

The final approximation scheme works as follows. First we remove from the instance all
the δk-small jobs that contain some δk-nasty operation. To the surviving jobs we apply the
original approximation algorithm as described above with ε := δk, and thereby find a schedule
with makespan at most (1 + 3δ2

k + 3δk)C∗max according to (10). In the end, we greedily add
the previously removed jobs with δk-nasty operations to this schedule. Since the overall
processing time of all removed jobs is at most 3εβ∗, this increases the makespan by at most
3εβ∗. Since δk ≤ ε, this altogether yields a schedule of makespan at most (1 + 3ε2 + 6ε)C∗max.
This completes the proof of Theorem 13 for the special case m = 3.

An FPTAS (fully polynomial time approximation scheme) is a PTAS whose time com-
plexity is also polynomially bounded in 1/ε. The following open problem is closely linked to
the existence of pseudo-polynomial time exact algorithms for Om||Cmax.

I Open problem 14. Prove that problem Om||Cmax has an FPTAS for every fixed m ≥ 3.
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