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Abstract
The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity
theory, as the problem is closely related to the problem of separating various complexity classes
within P. In this paper, we study the algebraic formula complexity of multiplying d many 2× 2
matrices, denoted IMMd, and show that the well-known divide-and-conquer algorithm cannot be
significantly improved at any depth, as long as the formulas are multilinear.

Formally, for each depth ∆ ≤ log d, we show that any product-depth ∆ multilinear formula
for IMMd must have size exp(Ω(∆d1/∆)). It also follows from this that any multilinear circuit of
product-depth ∆ for the same polynomial of the above form must have a size of exp(Ω(d1/∆)).
In particular, any polynomial-sized multilinear formula for IMMd must have depth Ω(log d), and
any polynomial-sized multilinear circuit for IMMd must have depth Ω(log d/ log log d). Both these
bounds are tight up to constant factors.

Our lower bound has the following consequences for multilinear formula complexity.
1. Depth-reduction: A well-known result of Brent (JACM 1974) implies that any formula

of size s can be converted to one of size sO(1) and depth O(log s); further, this reduction
continues to hold for multilinear formulas. On the other hand, our lower bound implies that
any depth-reduction in the multilinear setting cannot reduce the depth to o(log s) without a
superpolynomial blow-up in size.

2. Separations from general formulas: Shpilka and Yehudayoff (FnTTCS 2010) asked
whether general formulas can be more efficient than multilinear formulas for computing mul-
tilinear polynomials. Our result, along with a non-trivial upper bound for IMMd implied by
a result of Gupta, Kamath, Kayal and Saptharishi (SICOMP 2016), shows that for any size
s and product-depth ∆ = o(log s), general formulas of size s and product-depth ∆ cannot
be converted to multilinear formulas of size sO(1) and product-depth ∆, when the underlying
field has characteristic zero.
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21:2 Small-depth Multilinear Formula Lower Bounds for IMM, with Applications

1 Introduction

Algebraic Complexity theory is the study of the complexity of those computational problems
that can be phrased as computing a multivariate polynomial f(x1, . . . , xN ) ∈ F[x1, . . . , xN ]
over elements x1, . . . , xN ∈ F. Many central algorithmic problems such as the Determinant,
Permanent, Matrix product etc. can be cast in this framework. The natural computational
models that we consider in this setting are models such as Algebraic circuits, Algebraic
Branching Programs (ABPs), and Algebraic formulas (or just formulas), all of which use the
natural algebraic operations of F[x1, . . . , xN ] to compute the polynomial f . These models
have by now been the subject of a large body of work with many interesting upper bounds
(i.e. circuit constructions) as well as lower bounds (i.e. impossibility results). (See, e.g. the
surveys [23, 22] for an overview of many of these results.)

Despite this, many fundamental questions remain unresolved. An important example of
such a question is that of proving lower bounds on the size of formulas for the Iterated Matrix
Multiplication problem, which is defined as follows. Given d n× n matrices M1, . . . ,Md, we
are required to compute (an entry of) the product M1 · · ·Md; we refer to this problem as
IMMn,d. Proving superpolynomial lower bounds on the size of formulas for this problem is
equivalent to separating the power of polynomial-sized ABPs from polynomial-sized formulas,
which is the algebraic analogue of separating the Boolean complexity classes NL and NC1.

A standard divide-and-conquer algorithm yields the best-known formulas for IMMn,d.

More precisely, for any ∆ ≤ log d, this approach yields a formula of product-depth1 ∆ and
size nO(∆d1/∆) for IMMn,d and choosing ∆ = log d yields the current best formula upper
bound of nO(log d), which has not been improved in quite some time. On the other hand,
separating the power of ABPs and formulas is equivalent to showing that IMMn,d does not
have formulas of size poly(nd).

The Iterated Matrix Multiplication problem has many nice features that render its
complexity an interesting object to study. For one, it is the algebraic analogue of the
Boolean reachability problem, and thus any improved formula upper bounds for IMMn,d

could lead to improved Boolean circuit upper bounds for the reachability problem, which
would resolve a long-standing open problem in that area. For another, this problem has strong
self-reducibility properties, which imply that improving on the simple divide-and-conquer
approach to obtain formulas of size no(log d) for any d would lead to improved upper bounds
for all D > d; this implies that the lower-degree variant is no easier than the higher-degree
version of the problem, which can be very useful (e.g. for homogenization [16]). Finally, the
connection to the Reachability problem imbues IMMn,d with a rich combinatorial structure
via its graph theoretic interpretation, which has been used extensively in lower bounds for
depth-4 arithmetic circuits [6, 9, 12, 10, 11].

We study the formula complexity of this problem in the multilinear setting, which restricts
the underlying formulas to only compute multilinear polynomials at intermediate stages of
computation. Starting with the breakthrough work of Raz [15], many lower bounds have been
proved for multilinear models of computation [18, 19, 17, 5]. Further, it is known by a result of
Dvir, Malod, Perifel and Yehudayoff [5] that multilinear ABPs are in fact superpolynomially
more powerful than multilinear formulas. Unfortunately, however, this does not imply any
non-trivial lower bound for Iterated Matrix Multiplication (see the Related Work section

1 The product-depth of an arithmetic circuit or formula is the maximum number of product gates on a
path from output to input. If the product-depth of a circuit or formula is ∆, then its depth can be
assumed to be at least 2∆− 1 and at most 2∆ + 1.
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below), and as far as we know, it could well be the case that there are multilinear formulas
that beat the divide-and-conquer approach in computing this polynomial.

Here, we are able to show that this is not the case for the problem of multiplying 2× 2
matrices (and by extension c× c matrices for any constant c) at any product-depth. Our
main theorem is the following (stated more formally as Theorem 9 later).

I Theorem 1. For ∆ ≤ log d, any product-depth ∆ multilinear formula that computes
IMM2,d must have size 2Ω(∆d1/∆).

This lower bound strengthens a result of Nisan and Wigderson [13] who prove a similar
lower bound in the more restricted set-multilinear setting.

Our result is also qualitatively different from the previous lower bounds for multilinear
formulas since IMM2,d does in fact have polynomial-sized formulas of product-depth O(log d)
(via the divide-and-conquer approach), whereas we show a superpolynomial lower bound for
product-depth o(log d). This observation leads to interesting consequences for multilinear
formula complexity in general, which we now describe.

Depth Reduction: An important theme in Circuit complexity is the interplay between
the size of a formula or circuit and its depth [3, 24, 26, 1, 25]. In the context of algebraic
formulas, a result of Brent [3] says that any formula of size s can be converted into
another of size sO(1) and depth O(log s). Further, the proof of this result also yields the
same statement for multilinear formulas.
Can the result of Brent be improved? Theorem 1 implies that the answer is no in the
multilinear setting (Corollary 12). More precisely, since the IMM2,d polynomial (over O(d)
variables) has formulas of size poly(d) and depth O(log d) but no formulas of size dO(1)

and depth o(log d) (by Theorem 1), we see that any multilinear depth-reduction procedure
that reduces the depth of a size-s formula to o(log s) must incur a superpolynomial blow-
up in size. This strengthens a result of Raz and Yehudayoff [19], whose results imply that
any depth-reduction of multilinear formulas to depth o(

√
log s/ log log s) should incur a

superpolynomial blow-up in size. It is also an analogue in the algebraic setting of some
recent results proved for Boolean circuits [20, 21].
Multilinear vs. general formulas: Shpilka and Yehudayoff [23] ask the question of
whether general formulas can be more efficient at computing multilinear polynomials
than multilinear formulas. This is an important question, since we have techniques for
proving lower bounds for multilinear formulas, whereas the same question for general
formulas (or even depth-3 formulas over large fields) remains wide open.
We are able to make progress towards this question here by showing a separation
between the two models for small depths when the underlying field has characteristic zero
(Corollary 13). We do this by using Theorem 1 in conjunction with a (non-multilinear)
formula upper bound for IMM2,d over fields of characteristic zero due to Gupta et al. [7].
In particular, the result of Gupta et al. [7] implies that for any depth ∆, the polynomial
IMM2,d has formulas of product depth ∆ and size 2O(∆d1/2∆), which is considerably
smaller than our lower bound in the multilinear case for small ∆. From this, it follows
that for any size parameter s and product-depth ∆ = o(log s), general formulas of size
s and product-depth ∆ cannot be converted to multilinear formulas of size sO(1) and
product-depth ∆. Improving our result to allow for ∆ = O(log s) would resolve the
question entirely.

Related Work. The multilinear formula model has been the focus of a large body of work
on Algebraic circuit lower bounds. Nisan and Wigderson [13] proved some of the early

STACS 2018
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results in this model by showing size lower bounds for small-depth set-multilinear2 circuits
computing IMM2,d. They showed that any product-depth ∆ circuit for IMM2,d must have
a size of 2Ω(d1/∆) matching the upper bound from the divide-and-conquer algorithm for
∆ = o(log d/ log log d). Our lower bounds for multilinear formulas imply similar lower bounds
for multilinear circuits of product-depth ∆.

Raz [15] proved the first superpolynomial lower bound for multilinear formulas by showing
an nΩ(logn) lower bound for the n× n Determinant and Permanent polynomials. This was
further strengthened by the results of Raz [14] and Raz and Yehudayoff [18] to a similar
lower bound for an explicit polynomial family that has polynomial-sized multilinear circuits.
In particular, these results show the tightness of the depth-reduction procedure for algebraic
circuits in the multilinear setting [26, 18].

Similar polynomial families were also used in the work of Raz and Yehudayoff [19] to prove
exponential lower bounds for multilinear constant-depth circuits. By proving a tight lower
bound for depth-∆ circuits computing an explicit polynomial (similar to the construction of
Raz [14]), Raz and Yehudayoff [19] showed superpolynomial separations between multilinear
circuits of different depths.

In particular, the result of Raz and Yehudayoff [19] implies that the polynomial families
of [14, 18], which have formulas of size nO(logn), cannot be computed by formulas of size
less than some s(n) = nω(logn) if the product-depth ∆ = o(logn/ log logn). This yields the
superpolynomial separation between formulas of size s and depth o(

√
log s/ log log s) alluded

to above. Unfortunately, these polynomials also have nearly optimal formulas of depth just
O(logn) = O(

√
log s), so they cannot be used to obtain the optimal size s vs depth o(log s)

separation we obtain here.

Dvir et al. [5] showed that there is an explicit polynomial on n variables that has
multilinear ABPs of size poly(n) but no multilinear formulas of size less than nΩ(logn).

One might hope that this yields a superpolynomial lower bound for multilinear formulas
computing IMMN,d for some N, d but this unfortunately does not seem to be the case. The
reason for this is that while any polynomial f on n variables that has an ABP of size poly(n)
can be reduced via variable substitutions to IMMN,d for N, d = nO(1), this reduction might
substitute different variables in the IMMN,d polynomial by the same variable x of f and in
the process destroy multilinearity.

Gupta et al. [7] showed the surprising result that general (i.e. non-multilinear) formulas
of depth-3 can beat the divide-and-conquer approach for computing IMMn,d, when the
underlying field has characteristic zero. Their result implies that, in this setting, IMMn,d

has product-depth 1 formulas of size nO(
√
d), as opposed to the nO(d)-sized formula that

is obtained from the traditional divide-and-conquer approach. Using the self-reduction
properties of IMMn,d, this can be easily seen to imply the existence of nO(∆d1/2∆)-sized
formulas of product-depth ∆. This construction uses the fact that the formulas are allowed
to be non-multilinear. Our result shows that this cannot be avoided.

2 Set-multilinear circuits are further restrictions of multilinear circuits. A set-multilinear circuit for
IMMn,d is defined by the property that each intermediate polynomial computed must be a linear
combination of monomials that contain exactly one variable from each matrix Mi (i ∈ S), for some
choice of S ⊆ [d].
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Figure 1 The directed acyclic graph Gd that defines the polynomial IMMd with its labeling.

2 Preliminaries

2.1 Basic setup
Unless otherwise stated, let F be an arbitrary field. Let d ∈ N be a growing integer parameter.
We define X(1), . . . , X(d) to be disjoint sets of variables where each X(i) = {x(i)

j,k | j, k ∈ [2]}
is a set of four variables that we think of forming a 2× 2 matrix. Let X =

⋃
i∈[d]X

(i).
A polynomial P ∈ F[X] is called multilinear if the degree of P in each variable x ∈ X

is at most 1. We define the multilinear polynomial IMMd ∈ F[X] as follows. Consider
the matrices M (1), . . . ,M (d) where the entries of M (i) are the variables of X(i) arranged in
the obvious way. Define the matrix M = M (1) · · ·M (d); the entries of M are multilinear
polynomials over the variables in X. We define IMMd = M(1, 1) +M(1, 2), i.e. the sum of
the (1, 1)th and (1, 2)th entries of M . Note, in particular, that the polynomial IMMd does
not depend on the variables x(1)

2,1 and x(1)
2,2.

This is a slight variant of the Iterated Matrix Multiplication polynomial seen in the
literature, as it is usually defined to be either the matrix entry M(1, 1) or the trace M(1, 1) +
M(2, 2). Our results can easily be seen to hold for these variants, but we deal with the
definition above for some technical simplicity.

Another standard way of defining the polynomial IMMd is via graphs. Define the edge-
labelled directed acyclic graph Gd = (V,E, λ) as follows: the vertex set V is defined to be the
disjoint union of vertex sets V (0), . . . , V (d) where V (i) = {v(i)

1 , v
(i)
2 }. The edge set E is the

set of all possible edges from some set V (i) to V (i+1) (for all i < d). The labelling function
λ : E → X is defined by λ((v(i)

j , v
(i+1)
k )) = x

(i+1)
j,k . See Figure 1 for a depiction of this graph.

Given a path π in the graph Gd, λ(π) is defined to be the product of all labels of edges
in π. In this notation, IMMd can be seen to be the following.

IMMd =
∑

paths π from v
(0)
1

to v(d)
1 or v(d)

2

λ(π) =
∑

π1,...,πd∈{1,2}

x
(1)
1,π1

x(2)
π1,π2

· · ·x(d)
πd−1,πd

(1)

2.2 Multilinear formulas and circuits
We refer the reader to the standard resources (e.g. [23, 22]) for basic definitions related to
algebraic circuits and formulas. Having said that, we do make a few remarks.

All the gates in our formulas and circuits will be allowed to have unbounded fan-in.

STACS 2018
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The size of a formula or circuit will refer to the number of gates (including input gates)
in it, and depth of the formula or circuit will refer to the number of gates on the longest
path from an input gate to output gate.
Further, the product-depth of the formula or circuit (as in [18]) will refer to the maximum
number of product gates on a path from an input gate to the output gate. Note that the
product depth of a formula or circuit can be assumed to be within a factor of two of the
overall depth (by collapsing sum gates if necessary).

Multilinear circuits and formulas. An algebraic formula F (resp. circuit C) computing a
polynomial from F[X] is said to be multilinear if each gate in the formula (resp. circuit)
computes a multilinear polynomial 3. Moreover, a formula F is said to be syntactic multilinear
if for each multiplication gate Φ of F with children Ψ1, . . . ,Ψt, we have Supp(Ψi)∩Supp(Ψj) =
∅ for each i 6= j, where Supp(Φ) denotes the set of variables that appear in the subformula
rooted at Φ. Finally, for ∆ ≥ 1, we say that a multilinear formula (resp. circuit) is a (ΣΠ)∆Σ
formula (resp. circuit) if the output gate is a sum gate and along any path, the sum and
product gates alternate, with each product gate appearing exactly ∆ times and the bottom
gate being a sum gate. We can define (ΣΠ)∆,ΣΠΣ,ΣΠΣΠ formulas and circuits similarly.

For a gate Φ in a syntactically multilinear formula, we define a set of variables Vars(Φ)
in a top-down fashion as follows.

I Definition 2. Let C be a syntactically multilinear formula computing a polynomial on
the variable set X. For the output gate Φ, we define Vars(Φ) = X. If Φ is a sum gate with
children Ψ1, . . . ,Ψk and Vars(Φ) = S ⊆ X, then for each 1 ≤ i ≤ k, Vars(Ψi) = S. If Φ is a
product gate with children Ψ1, . . .Ψk and Vars(Φ) = S ⊆ X, then Vars(Ψi) = Supp(Ψi) for
1 ≤ i ≤ k − 1 and Vars(Ψk) = S \

(
∪k−1
i=1 Vars(Ψi)

)
.

It is easy to see that Vars(·) satisfies the properties listed in the following proposition.

I Proposition 3. For each gate Φ in a syntactically multilinear formula C, let Vars(Φ) be
defined as in Definition 2 above.
1. For any gate Φ in C, Supp(Φ) ⊆ Vars(Φ).
2. If Φ is a sum gate, with children Ψ1,Ψ2, . . . ,Ψk, then ∀i ∈ [k], Vars(Ψi) = Vars(Φ).
3. If Φ is a product gate, with children Ψ1,Ψ2, . . . ,Ψk, then Vars(Φ) = ∪ki=1Vars(Ψi) and

the sets Vars(Ψi) (i ∈ [k]) are pairwise disjoint.

We will use the following structural results that convert general multilinear circuits (resp.
formulas) to (ΣΠ)∆Σ circuits (resp. formulas).

I Lemma 4 (Raz and Yehudayoff [19], Claims 2.3 and 2.4). For any multilinear formula F of
product depth at most ∆ and size at most s, there is a syntactic multilinear (ΣΠ)∆Σ formula
F ′ of size at most (∆ + 1)2 · s computing the same polynomial as F .

I Lemma 5 (Raz and Yehudayoff [19], Lemma 2.1). For any multilinear circuit C of product
depth at most ∆ and size at most s, there is a syntactic multilinear (ΣΠ)∆Σ formula F of
size at most (∆ + 1)2 · s2∆+1 computing the same polynomial as C.

We will also need the following structural result.

3 It is important to note that any multilinear polynomial can be computed by a non-multilinear formula
(resp. circuit) as well.
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I Lemma 6 (Raz, Shpilka and Yehudayoff [17], Claim 5.6). Let F be a syntactic multilinear
formula computing a polynomial f and let Φ be any gate in F computing a polynomial g.
Then f can be written as f = Ag + B, where A ∈ F[X \ Vars(Φ)], B ∈ F[X] and B is
computed by replacing Φ with a 0 in F .

A standard divide-and-conquer approach (see [2, Proposition 3.10]) yields the best-known
multilinear formulas/circuits for IMMd for all depths. (A proof sketch is presented in [4].)

I Lemma 7. For each ∆ ≤ log d,4 IMMd is computed by a syntactic multilinear (ΣΠ)∆

circuit C∆ of size at most dO(1) · 2O(d1/∆) and a syntactic multilinear (ΣΠ)∆ formula F∆ of
size at most 2O(∆d1/∆).

We will show that the above bounds are nearly tight in the multilinear setting. If we
remove the multilinear restriction on (ΣΠ)∆Σ formulas computing IMMd, we can get better
upper bounds, as long as the underlying field has characteristic zero.

I Lemma 8 (follows from [7]). Let F be a field of characteristic zero. For each ∆ ≤ log d,
IMMd has a (ΣΠ)∆Σ formula F∆ of size at most 2O(∆d1/(2∆)).

A proof sketch for the above lemma is presented in the full version [4].

3 Lower bounds for multilinear formulas and circuits computing IMMd

The main theorem of this section is the following lower bound.

I Theorem 9. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d. Any syntactic
multilinear (ΣΠ)∆Σ formula for IMMd must have a size of 2Ω(∆d1/∆).

By applying Theorem 9 and Lemmas 4, 5, we get the following (immediate) corollaries.

I Corollary 10. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d/ log log d. Any
multilinear circuit of product-depth at most ∆ for IMMd must have a size of 2Ω(d1/∆).

In particular, any polynomial-sized multilinear circuit for IMMd must have product-depth
Ω(log d/ log log d).

I Corollary 11. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d. Any multilinear
formula of product depth at most ∆ for IMMd must have size 2Ω(∆d1/∆). In particular, any
polynomial-sized multilinear formula for IMMd must have product-depth Ω(log d).

As the product-depth of a formula is at most its depth, Lemma 7, Corollary 11 imply:

I Corollary 12 (Tightness of Brent’s depth-reduction for multilinear formulas). For each d ≥ 1,
there is an explicit polynomial Fd on O(d) variables such that Fd has a multilinear formula
of size dO(1), but any multilinear formula of depth o(log d) for Fd must have a size of dω(1).

Choosing parameters carefully, we also obtain the following.

I Corollary 13 (Separation of multilinear formulas and general formulas over zero characteristic).
Let F be a field of characteristic zero. Let s ∈ N be any growing parameter and ∆ ∈ N be
such that ∆ ≤ o(log s). There is an explicit multilinear polynomial Fs,∆ that has a (ΣΠ)∆Σ
formula of size s, but any (ΣΠ)∆Σ multilinear formula for Fs,∆ must have a size of sω(1).

4 All our logarithms will be to base 2.
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21:8 Small-depth Multilinear Formula Lower Bounds for IMM, with Applications

Proof. We choose the polynomial Fs,∆ to be IMMd for suitable d and then simply apply
Corollary 11 and Lemma 8 to obtain the result. Details follow.

Say ∆ = log s
f(s) for some f(s) = ω(1). By Lemma 8, for any d, IMMd has a product-depth

∆ formula of size s(d,∆) = 2O(∆d1/2∆); we choose d so that s(d,∆) = s. It can be checked
that for d = Θ(f(s))2∆, this is indeed the case.

Having chosen d as above, we define Fs,∆ = IMMd. Clearly, Fs,∆ has a (non-multilinear)
formula of product-depth ∆ and size at most s. On the other hand, by Theorem 9, any
multilinear product-depth ∆ formula for IMMd must have size at least 2Ω(∆d1/∆) = sΩ(d1/2∆) =
sΩ(f(s)) = sω(1), which proves the claim.

It can also be proved similarly that for d as chosen above, IMMd in fact has no multilinear
formulas of size sO(1) and product-depth up to (2− ε)∆ for any absolute constant ε. J

4 Proof of Theorem 9

Our proof follows a two-step argument as in [15, 19] (see the exposition in [23, Section 3.6]).

Step 1 – The product lemma. The first step is a “product-lemma” for multilinear formulas.
Formally, define a polynomial f ∈ F[X] to be a t-product polynomial if we can write f as
f1 · · · ft , where we can find a partition of X into non-empty sets Xf

1 , . . . , X
f
t such that fi

is a multilinear polynomial from F[Xf
i ].5 We say that Xf

i is the set ascribed to fi in the
t-product polynomial f . We use Vars(fi) (with a slight abuse of notation)6 to denote Xf

i .
We drop f from the superscript if f is clear from the context.

We define f ∈ F[X] to be r-simple if f = L1 · · ·Lr′ ·G, where r′ ≤ r, is an (r′+1)-product
polynomial where L1, . . . , Lr′ are polynomials of degree at most 1, the sets Xf

1 , . . . , X
f
r′

ascribed to these linear polynomials satisfy
∣∣∣⋃i≤r′ Xf

i

∣∣∣ ≥ 400r. We prove the following.

I Lemma 14. Let ∆ ≤ log d. Assume that f ∈ F[X] can be computed by a syntactic
multilinear (ΣΠ)∆Σ formula F of size at most s. Then, f is the sum of at most s many
t-product polynomials and at most s many t-simple polynomials for t = Ω(∆d1/∆).

While our proof (presented in the full version [4]) of this lemma is motivated by earlier
work [23, 8, 19], we give slightly better parameters, which is crucial for proving tight lower
bounds for formulas. In particular, [19, Claim 5.5] yields the above but with t = Ω(d1/∆).

Step 2 – Rank measure and the hard polynomial. The second step is to show that any
such decomposition for IMMd must have many terms. Our proof of this step is inspired by
the proof of the multilinear formula lower bound of Raz [15] for the determinant and also
the slightly weaker lower bound of Nisan and Wigderson [13] for IMMd in the set-multilinear
case. Following [15], we define a suitable random restriction ρ, of the IMMd polynomial by
assigning variables from the set X to Y ∪ Z ∪ {0, 1}, where Y and Z are disjoint sets of new
variables. As the restriction sets distinct variables in X to distinct variables in Y ∪ Z or
constants, it preserves multilinearity.

Having performed the restriction, we consider the partial derivative matrix of the restricted
polynomial, which is defined as follows. Let g ∈ F[Y ∪Z] be a multilinear polynomial. Define

5 Note that we do not need fi to depend non-trivially on all (or any) of the variables in Xf
i .6 Vars(·) is used to describe variables ascribed to gates in a circuit as well as to denote variables ascribed

to polynomials.
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Algorithm 1 Sampling algorithm S.
1: Choose π uniformly at random from {1, 2}d. Define π(0) = 1.
2: Choose a uniformly at random from {0, 1}d. Let A = {i | ai = 1}.
3: for i ∈ [d] do
4: Let bi = 0 if π(i− 1) = π(i) and 1 if π(i− 1) 6= π(i).
5: end for
6: for i = 1 to d do
7: if i 6∈ A then
8: Choose ρ|X(i) such thatM (i) is I if bi = 0 and E if bi = 1. (In particular, all variables

are set to constants from {0, 1}.)
9: else if i ∈ A and i is the jth smallest element of A for odd j then
10: Fix

ρ(x(i)
u,v) =


ydj/2e if u = π(i− 1) and v = π(i),
1 if u = π(i− 1) and v = π(i),
0 otherwise.

11: else
12: Now, i ∈ A and i is the jth smallest element of A for even j. We fix

ρ(x(i)
u,v) =


zj/2 if u = π(i− 1) and v = π(i),
1 if u = π(i− 1) and v = π(i),
0 otherwise.

13: end if
14: end for

the 2|Y |×2|Z| matrixM(Y,Z)(g) such that rows and columns are labelled by distinct multilinear
monomials in Y and Z respectively and the (m1,m2)th entry of M(Y,Z)(g) is the coefficient
of the monomial m1 ·m2 in g.

Our restriction is defined to have the following two properties.
1. The rank of M(Y,Z)(g) is equal to its maximum possible value (i.e. min{2|Y |, 2|Z|}) with

probability 1 where g is the restricted version of IMMd.
2. On the other hand, let f be either a t-product or a t-simple polynomial, and let f ′ denote

its restriction under ρ. Then, the rank of M(Y,Z)(f ′) is small with high probability.

Now, if IMMd has a (ΣΠ)∆Σ formula F of small size, then it is a sum of a small number
of t-product and t-simple polynomials by Lemma 14 and hence by a union bound, we will
be able to find a restriction under which the partial derivative matrices of each of these
polynomials have a small rank. By the subadditivity of rank, this will imply that M(Y,Z)(g)
will itself have low rank, contradicting the first property of our restriction.

To make the above precise, we first define our restrictions. Let Ỹ = {y1, . . . , yd} and
Z̃ = {z1, . . . , zd} be two disjoint sets of variables. A restriction ρ is a function mapping the
set X to Ỹ ∪ Z̃ ∪ {0, 1}. We consider the following process for sampling a random restriction.

Recall that M (i) is the 2 × 2 matrix whose (u, v)th entry is x(i)
u,v. Let I and E denote

the standard 2× 2 identity matrix and the 2× 2 flip permutation matrix respectively. For
a ∈ {1, 2}, we use a to denote the other element of the set.

We give a procedure S for sampling a random restriction ρ : X → Ỹ ∪ Z̃ ∪ {0, 1} in
Algorithm 1. Based on the output ρ of S, we define the (random) sets Y = Ỹ ∩ Img(ρ) and
Z = Z̃ ∩ Img(ρ). Let m = m(ρ) = min{|Y |, |Z|}.

STACS 2018
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X1 X2 X3 X4 X5 X6 X7 X8 X9

1 1 1

y1

1
z1

1 y2
1

z2

1

y3

1

1

1

11
1

Figure 2 Effect of ρ on IMM9 when the sampling algortithm S yields π = (2, 2, 1, 1, 1, 2, 2, 1, 1)
and a = (1, 0, 1, 0, 1, 0, 1, 0, 1). Thus, IMM9|ρ in this case yields us (1 + y1z1)(1 + y2z2)(1 + y3).

I Observation 15. The restriction ρ satisfies the following.
1. |Y | = d|A|/2e and |Z| = b|A|/2c. Hence, |Z| ≤ |Y | ≤ |Z|+ 1 and m = |Z|.
2. Distinct variables in X cannot be mapped to the same variable in Y ∪ Z.
3. Only the variables of the form x

(i)
π(i−1),π(i) can be set to variables in Y ∪ Z by ρ. The rest

are set to constants.

Note that b is distributed uniformly over {0, 1}d. Given a polynomial f ∈ F[X], the
restriction ρ yields a natural polynomial f |ρ ∈ F[Y ∪ Z] by substitution. Note, moreover,
that if f is multilinear then so is f |ρ since distinct variables in X cannot be mapped to the
same variable in Y ∪ Z (Observation 15).

I Lemma 16. Let us assume that ρ is sampled as above. Then we have the following:
1. rank(M(Y,Z)(IMMd|ρ)) = 2m with probability 1.
2. If f ∈ F[X] is any t-product polynomial, then for some absolute constant ε > 0,,

Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−εt] ≤ 1
2Ω(t) .

3. If f ∈ F[X] is any r-simple polynomial, then for some absolute constant δ > 0,
Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−δr] ≤ 1

2Ω(r) .

Given Lemmas 14 and 16, we can finish the proof of Theorem 9 as follows.

Proof of Theorem 9 assuming Lemma 16. Assume that IMMd is computed by a syntactic
mulitlinear (ΣΠ)∆Σ formula F of size at most s. By Lemma 14, we get that f can be
expressed as a sum of at most 2s many summands, say f1, f2, . . . , fs and g1, g2, . . . , gs, where
each summand fi is a t-product polynomial and each summand gj is a t-simple polynomial
for t = Ω(∆d1/∆).

For each i ∈ [s], Lemma 16 implies that Pr[rank
(
M(Y,Z)(fi|ρ)

)
≥ 2m−εt] ≤ 1

2Ω(t) and
Pr[rank

(
M(Y,Z)(gi|ρ)

)
≥ 2m−δt] ≤ 1

2Ω(t) , where ε and δ are absolute constants.
Thus, unless s ≥ 2Ω(t), we see by a union bound that there exists a ρ such that for each

i ∈ [s], rank
(
M(Y,Z)(fi|ρ)

)
≤ 2m−εt and rank

(
M(Y,Z)(gi|ρ)

)
≤ 2m−δt. For such a ρ, we have

rank(M(Y,Z)(F |ρ)) ≤ 2m ·
(
s

2εt + s
2δt
)
< 2m unless s ≥ 2Ω(t).

From Lemma 16, we also know that for any choice of ρ in the sampling algorithm S,
we have rank(M(Y,Z)(IMMd|ρ)) ≥ 2m. In particular, since F computes IMMd, we must have
s ≥ 2Ω(t) = 2Ω(∆d1/∆). J

Proof of Lemma 16.

Part 1: IMMd has high rank. Let π ∈ {1, 2}d and a ∈ {0, 1}d be arbitrary. Note that in
our sampling algorithm, ρ,A, b are completely determined given π and a.

Let us now examine the effect of ρ on IMMd. We take the graph theoretic view of the
polynomial IMMd as given in Section 2.1.
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Figure 2 illustrates how this restriction affects the variables labelling the edges of the graph
Gd defined in Section 2.1. By substituting according to ρ in (1), we get that IMMd(X)|ρ =∏m
i=1 (1 + yizi) if |A| = 2m and

∏m
i=1 (1 + yizi) · (1 + ym+1) if |A| = 2m+ 1, where m = |Z|.

For any S ⊆ [m], let ZS (resp., YS) denote the monomial
∏
i∈S zi (resp.,

∏
i∈S yi). Now

consider the matrix M(Y,Z)(IMMd|ρ) . We will simply useM to denote this matrix. For the
sake of simplicity let us assume that |A| = 2m. (The case when |A| = 2m + 1 is similar.)
Let the rows and columns ofM be labelled by the subsets of [m] and letM(S, T ) be the
coefficient of YS ·ZT in IMMd|ρ. It is easy to see thatM(S, T ) = 0 if S 6= T and 1 otherwise.
That is,M is the Identity matrix of size 2m × 2m and hence it has full rank.7 C

Part 2: t-product polynomials have low rank. We now prove that for a t-product polyno-
mial f , rank(M(Y,Z)(f |ρ)) is small w.h.p.

Let f be a t-product polynomial, i.e. f = f1f2 . . . ft. Let χ : X → [t] be a coloring
function, which assigns colors to all the variables in X, so that χ−1(i) = Xf

i , where X
f
i is

the variable set ascribed to fi. That is, all the variables ascribed to fi are assigned color i
under the coloring function. To prove the lemma, we first show that, with high probability
(over the choice of π), a constant fraction of the t colors appear along the path defined by
π, i.e. along (π(0), π(1)), (π(1), π(2)), . . . , (π(d− 1), π(d)). Given such a multi-colored path,
we then show that with a high probability, over the choice of a, many of the colors have an
imbalance. A color is said to have an imbalance under ρ if more variables from X of that
color are mapped to the Y variables than the Z variables or vice versa. We then appeal to
arguments similar to those in [15, 19, 5] to conclude that the imbalance results in a low rank.

Variable coloring, t-product polynomials and imbalance. We start with some notation.
Given a string π ∈ {1, 2}d, let the path defined by π be the following sequence of pairs
(π(0), π(1)), (π(1), π(2)), . . . , (π(d− 1), π(d)) (we call it a path since these pairs correspond
naturally to the edges of a path in the graph Gd defined in Section 2.1). We say that a color
γ ∈ [t] appears in layer ` ∈ [d] if there exist u, v ∈ {1, 2} such that γ = χ(x(`)

u,v).
Let C0 = ∅ and let Ci = Ci−1 ∪ {χ(x(i)

u,v) | u, v ∈ {1, 2}} for i ∈ [d], i.e., Ci contains all
the distinct colors appearing in layers {1, 2 . . . , i}. Therefore, |Cd| = t. We will also define
O2i+1 to be all the colors appearing in odd numbered layers up to 2i+1, i.e. O2i+1 = O2i−1∪
{χ(x(2i+1)

u,v ) | u, v ∈ {1, 2}}. Similarly, we define E2i = E2i−2 ∪ {χ(x(2i)
u,v ) | u, v ∈ {1, 2}}.

Let C0
π = ∅ and Ciπ = Ci−1

π ∪ {χ(x(i)
(π(i−1),π(i)))}, i.e. C

i
π contains all the distinct colors

appearing along the path defined by π up to layer i. We first observe a property of Cdπ stated
in the claim below.

I Claim 17. If |Cd| = t, then Prπ[|Cdπ| ≤ t/100] ≤ 1/2Ω(t) .

We will assume the claim and finish the proof of Part 2 of Lemma 16. The above claim
shows that a lot of colors appear on the uniformly random path π with high probability.
Using this, we will now show that a constant fraction of these colors also exhibit an imbalance
with a high probability. Using the multiplicativity of the rank, we will then show that the
imbalance for a large number of factors results in the low rank of the matrix MY,Z(f |ρ).

We will say that π is good if |Cdπ| > t/100. Let L = t/100. The above claim shows that a
random π is good with high probability. In what follows, we condition on picking a good
π. Let a ∈ {0, 1}d be chosen uniformly at random as in the sampling algorithm. Let ρ be
defined as in the sampling algorithm for π, a.

7 If |A| = 2m+ 1 thenM has a 2m × 2m sized Identity matrix as a submatrix.
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Let γ ∈ Cdπ be a color that appears along π. Let πγ be the elements along the path
defined by π with color γ, i.e. πγ = {(π(i − 1), π(i)) | χ(x(i)

(π(i−1),π(i))) = γ}. Let ρ(πγ) =
{ρ(x(i)

(π(i−1),π(i))) | (π(i−1), π(i)) ∈ πγ}∩(Y ∪Z) . A color γ ∈ [t] is said to have an imbalance
w.r.t. ρ if ||ρ(πγ) ∩ Y | − |ρ(πγ) ∩ Z|| ≥ 1.

It is easy to see that if |ρ(πγ)| is odd, then γ has an imbalance w.r.t. ρ. Note that the former
event is equivalent to the event that

⊕
i∈Pγ ai equals 1 where Pγ = {i | (π(i−1), π(i)) ∈ πγ}.

Hence for any γ ∈ Cdπ, Pr[γ has an imbalance with respect to ρ along π] = 1/2. Further, as
|Cdπ| ≥ L and the events corresponding to distinct γ ∈ Cdπ are mutually independent, the
Chernoff bound gives Pr[≤ L/4 colors have an imbalance w.r.t. ρ along π] ≤ 1/2Ω(L). C

Assuming Claim 17 we are now done. The proof of Claim 17 can be found in [4].

Imbalance implies low rank. Let us recall that f = f1f2 . . . ft is a t-product polynomial
that is defined over the disjoint variable partition X = X1∪X2∪· · ·∪Xt such that |Xi| ≥ 1 for
all i ∈ [t]. The following lemma (see, e.g., [19]) will be useful in bounding rank(M(Y,Z)(f |ρ)).

I Lemma 18 ([19], Proposition 2.5). Let g = g1g2 · · · gt be a t-product polynomial over the set
of variables Y ∪Z where Vars(gi) = Yi∪Zi. Then rank(M(Y,Z)(g)) =

∏
i∈[t] rank(M(Yi,Zi)(gi)).

From Lemma 18, we get that rank(M(Y,Z)(f |ρ)) =
∏t
i=1 rank(M(Yi,Zi)(fi|ρ)) where

Yi = Y ∩ {ρ(x)|x ∈ Xi} and Zi = Z ∩ {ρ(x)|x ∈ Xi} . For all i ∈ [t], from the definition
it is clear that the rank of the matrix M(Yi,Zi)(fi|ρ) is upper bounded by 2min{|Yi|,|Zi|} ≤
2(|Yi|+|Zi|)/2. Let us note that these disjoint partitions in the t-product polynomial correspond
to the colors in the coloring χ with all variables in Xi colored i. Hence if color i has
imbalance w.r.t. ρ, then rank(M(Yi,Zi)(fi|ρ)) ≤ 2min{|Yi|,|Zi|} ≤ 2(|Yi|+|Zi|−1)/2. Thus,
rank(M(Y,Z)(f |ρ)) ≤

∏t
i=1 2(|Yi|+|Zi|−1)/2 = 2((|Y |+|Z|)/2)−(`/2) ≤ 2m−(`−1)/2 where ` is the

number of colors that have imbalance w.r.t. ρ. From the above discussion, we can infer that
Prπ[rank (MY,Z(f |ρ)) ≥ 2m−(t/1000)] ≤ Prπ[` ≤ t/400] ≤ 1

2Ω(t) .

Part 3: r-simple polynomials have low rank. Here we prove that if f ∈ F[X] is any r-simple
polynomial, then for some absolute constant δ > 0, Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−δr] ≤ 1

2Ω(r) .
As f is an r-simple polynomial we know that f =

(∏r′

i=1 Li

)
·G, where r′ ≤ r, Lis are

linear polynomials, ∀i ∈ [r′] Xi is the set of variables ascribed to Li and Xr′+1 is the set of
variables ascribed to G. Moreover, | ∪r′i=1 Xi| ≥ 400r.

To prove the above statement we set up some notation. Let f |ρ =
(∏r′

i=1 Li|ρ
)
·G|ρ . Let

Yi = {ρ(x) | x ∈ Xi} ∩ Y and Zi = {ρ(x) | x ∈ Xi} ∩ Z for each i ∈ [r′]. Let Y ′ = ∪r′i=1Yi
and Z ′ = ∪r′i=1Zi. Also, let Y ′′ = Y \ Y ′ and Z ′′ = Z \ Z ′. Let U denote ∪r′i=1Xi and let
U |ρ = (∪r′i=1Yi) ∪ (∪r′i=1Zi).

In the following claim we show that if U is a large set to begin with then with high
probability (over the restriction ρ defined by the sampling algorithm), U |ρ is also large.

I Claim 19. If |U | ≥ 400r, then Pr[|U |ρ| ≤ 4r] ≤ 1
2Ω(r) .

We first finish the proof of Part 3 of Lemma 16 assuming this claim.
We say that a restriction ρ is good if we get |U |ρ| ≥ 4r. In what follows we will

condition on the event that we have a good ρ. For a restriction ρ, for each i ∈ [r′], we
can write Li|ρ(Yi, Zi) as L′i|ρ(Yi)+ L′′i |ρ(Zi) as Lis are linear polynomials. Therefore we get∏r′

i=1 Li|ρ(Y ′, Z ′) =
∑
S⊆[r′]

∏
i∈S L

′
i|ρ(Yi) ·

∏
j∈[r′]\S L

′′
j |ρ(Zj).
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Let LS denote the polynomial
∏
i∈S L

′
i|ρ(Yi)·

∏
j∈[r′]\S L

′′
j |ρ(Zj). Note that for all S ⊆ [r′],

rank
(
M(Y ′,Z′)(LS)

)
is at most 1. Therefore, by the subadditivity of matrix rank, we get that

rank
(
M(Y ′,Z′)

(∏r′

i=1 Li|ρ(Y ′, Z ′)
))
≤ 2r′ ≤ 2r . We can now bound rank

(
M(Y,Z) (f |ρ)

)
.

rank
(
M(Y,Z) (f |ρ)

)
2(|Y |+|Z|)/2 =

rank
(
M(Y,Z)

(∏r′

i=1 Li|ρ ·G|ρ
))

2(|Y |+|Z|)/2

=
rank

(
M(Y ′,Z′)

(∏r′

i=1 Li|ρ
))

2(|Y ′|+|Z′|)/2 ·
rank

(
M(Y ′′,Z′′) (G|ρ)

)
2(|Y ′′|+|Z′′|)/2

≤ 2r

2|U |ρ|/2
· 1 ≤ 2r

22r = 1
2r .

where the second equality follows from Lemma 18. Therefore, we have rank
(
M(Y,Z) (f |ρ)

)
≤

2(|Y |+|Z|)/2/2r ≤ 2m+(1/2)−r for any good ρ.
As Claim 19 tells us that ρ is good with probability 1− 1/2Ω(r), we are done. C
Assuming Claim 19 (proof in [4]) we are done with the proof of Part 3 of Lemma 16. J
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