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Abstract
In recent years, knapsack problems for (in general non-commutative) groups have attracted at-
tention. In this paper, the knapsack problem for wreath products is studied. It turns out that
decidability of knapsack is not preserved under wreath product. On the other hand, the class of
knapsack-semilinear groups, where solutions sets of knapsack equations are effectively semilinear,
is closed under wreath product. As a consequence, we obtain the decidability of knapsack for
free solvable groups. Finally, it is shown that for every non-trivial abelian group G, knapsack (as
well as the related subset sum problem) for the wreath product G o Z is NP-complete.
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1 Introduction

In [15], Myasnikov, Nikolaev, and Ushakov began the investigation of classical discrete
optimization problems, which are formulated over the integers, for arbitrary (possibly non-
commutative) groups. The general goal of this line of research is to study to what extent
results from the commutative setting can be transferred to the non-commutative setting.
Among other problems, Myasnikov et al. introduced for a finitely generated group G the
knapsack problem and the subset sum problem. The input for the knapsack problem is a
sequence of group elements g1, . . . , gk, g ∈ G (specified by finite words over the generators
of G) and it is asked whether there exists a solution (x1, . . . , xk) ∈ Nk of the equation
gx1

1 · · · g
xk

k = g. For the subset sum problem one restricts the solution to {0, 1}k. For the
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32:2 Knapsack Problems for Wreath Products

particular case G = Z (where the additive notation x1 · g1 + · · · + xk · gk = g is usually
preferred) these problems are NP-complete (resp., TC0-complete) if the numbers g1, . . . , gk, g

are encoded in binary representation [7, 6] (resp., unary notation [2]).
Another motivation is that decidability of knapsack for a group G implies that the

membership problem for every fixed polycyclic subgroup of G is decidable. This follows from
the well-known fact that every polycyclic group A has a generating set {a1, . . . , ak} such that
every element of A can be written as an1

1 · · · a
nk

k for n1, . . . , nk ∈ N, see e.g. [17, Chapter 9].
In [15], Myasnikov et al. encode elements of the finitely generated group G by words over

the group generators and their inverses, which corresponds to the unary encoding of integers.
There is also an encoding of words that corresponds to the binary encoding of integers, so
called straight-line programs, and knapsack problems under this encodings have been studied
in [11]. In this paper, we only consider the case where input words are explicitly represented.
Here is a (non-complete) list of known results concerning knapsack and subset sum problems:

Subset sum and knapsack can be solved in polynomial time for every hyperbolic group
[15]. In [3] this result was extended to free products of any number of hyperbolic groups
and finitely generated abelian groups.
For every virtually nilpotent group, subset sum belongs to nondeterministic logspace [8].
On the other hand, there are nilpotent groups of class 2 for which knapsack is undecidable.
Examples are direct products of sufficiently many copies of the discrete Heisenberg group
H3(Z) [8], and free nilpotent groups of class 2 and sufficiently high rank [14].
Knapsack for H3(Z) is decidable [8]. In particular, together with the previous point it
follows that decidability of knapsack is not preserved under direct products.
For the following groups, subset sum is NP-complete (whereas the word problem can be
solved in polynomial time): free metabelian non-abelian groups of finite rank, the wreath
product Z o Z, Thompson’s group F , the Baumslag-Solitar group BS(1, 2) [15], and every
polycyclic group that is not virtually nilpotent [16].
Knapsack is decidable for every co-context-free group [8].
Knapsack belongs to NP for all virtually special groups (finite extensions of subgroups of
graph groups) [11]. For graph groups (also known as right-angled Artin groups) a complete
classification of the complexity of knapsack was obtained in [12]: If the underlying graph
contains an induced path or cycle on 4 nodes, then knapsack is NP-complete; in all other
cases knapsack can be solved in polynomial time (even in LogCFL).
Decidability of knapsack is preserved under finite extensions, HNN-extensions over finite
associated subgroups and amalgamated free products over finite subgroups [11].

In this paper, we study the knapsack problem for wreath products. The wreath product
is a fundamental construction in group theory and semigroup theory, see Section 4 for the
definition. An important application of wreath products in group theory is the Magnus
embedding theorem [18], which allows to embed the quotient group Fk/[N,N ] into the wreath
product Zk o (Fk/N), where Fk is a free group of rank k and N is a normal subgroup of Fk.
In particular, free solvable groups can be embedded into iterated wreath products of free
abelian groups; a fact that we will use in this paper. Wreath products also have some nice
algorithmic properties: The word problem for a wreath product G oH is AC0-reducible to the
word problems for the factors G and H, and the conjugacy problem for G oH is TC0-reducible
to the conjugacy problems for G and H and the so called power problem for H [13].

As in the case of direct products, it turns out that decidability of knapsack is not preserved
under wreath products: For this we consider direct products of the form H3(Z)× Z`, where
H3(Z) is the discrete 3-dimensional Heisenberg group. It was shown in [8] that for every
` ≥ 0, knapsack is decidable for H3(Z)× Z`. We prove that for every non-trivial group G
and every sufficiently large `, knapsack for G o (H3(Z)× Z`) is undecidable.
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By the above discussion, we need stronger assumptions on G and H to obtain decidability
of knapsack for G oH. We exhibit a very weak condition on G and H, knapsack-semilinearity,
which is sufficient for decidability of knapsack for G oH. A finitely generated group G is
knapsack-semilinear if for every knapsack equation, the set of all solutions (a solution can be
seen as an vector of natural numbers) is effectively semilinear.

Clearly, for every knapsack-semilinear group, the knapsack problem is decidable. While
the converse is not true, the class of knapsack-semilinear groups is extraordinarily wide. The
simplest examples are finitely generated abelian groups, but it also includes the rich class
of virtually special groups [11], all hyperbolic groups [4], and all co-context-free groups [8].
Furthermore, it is known to be closed under direct products (an easy observation), going
to a finitely generated subgroup, going to a finite extension, HNN-extensions over finite
associated subgroups and amalgamated free products over finite subgroups (the last three
closure properties are simple extensions of the transfer theorems in [11]). In fact, the only
non-knapsack-semilinear groups with a decidable knapsack problem that we are aware of are
the groups H3(Z)× Zn for n ≥ 0.

We prove in Section 6 that the class of knapsack-semilinear groups is closed under wreath
products. As a direct consequence of the Magnus embedding, it follows that knapsack is
decidable for every free solvable group. Recall that, in contrast, knapsack for free nilpotent
groups is in general undecidable [14].

Finally, we consider the complexity of knapsack for wreath products. We prove that
for every non-trivial finitely generated abelian group G, knapsack for G o Z is NP-complete
(the hard part is membership in NP). This result includes important special cases like for
instance the lamplighter group Z2 o Z and Z o Z. Wreath products of the form G o Z with G
abelian turn out to be important in connection with subgroup distortion [1]. Our proof also
shows that for every non-trivial finitely generated abelian group G, the subset sum problem
for G o Z is NP-complete. In [15] this result is only shown for infinite abelian groups G.

Missing proofs can be found in the full version [4].

2 Preliminaries

We assume standard notions concerning groups. A group G is finitely generated if there
exists a finite subset Σ ⊆ G such that every element g ∈ G can be written as g = a1a2 · · · an
with a1, a2, . . . , an ∈ Σ. We also say that the word a1a2 · · · an ∈ Σ∗ evaluates to g (or
represents g). The set Σ is called a finite generating set of G. We always assume that Σ is
symmetric in the sense that a ∈ Σ implies a−1 ∈ Σ. Elements of G will be represented by
words from Σ∗. An element g ∈ G is called torsion element if there is an n ≥ 1 with gn = 1.
The smallest such n is the order of g and is denoted by ord(g). If g is not a torsion element,
we set ord(g) =∞.

A set A ⊆ Nk is linear if A = {v0 + λ1 · v1 + · · · + λn · vn | λ1, . . . , λn ∈ N} for
vectors v0, . . . , vn ∈ Nk. The tuple of vectors (v0, . . . , vn) is a linear representation of A.
A set A ⊆ Nk is semilinear if it is a finite union of linear sets A1, . . . , Am. A semilinear
representation of A is a list of linear representations for the linear sets A1, . . . , Am. It is
well-known that the semilinear subsets of Nk are exactly the sets definable in Presburger
arithmetic. These are those sets that can be defined with a first-order formula ϕ(x1, . . . , xk)
over the structure (N, 0,+,≤) [5]. Moreover, the transformations between such a first-order
formula and an equivalent semilinear representation are effective. In particular, the semilinear
sets are effectively closed under Boolean operations.

STACS 2018
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3 Knapsack for groups

Let G be a finitely generated group with the finite symmetric generating set Σ. Moreover, let
V be a set of formal variables that take values from N. For a subset U ⊆ V , we use NU to
denote the set of maps ν : U → N, which we call valuations. An exponent expression over G is
a formal expression of the form E = v0u

x1
1 v1u

x2
2 v2 · · ·uxk

k vk with k ≥ 0 and words ui, vi ∈ Σ∗.
Here, the variables do not have to be pairwise distinct. If every variable in an exponent
expression occurs at most once, it is called a knapsack expression. Let VE = {x1, . . . , xk} be
the set of variables that occur in E. For a valuation ν ∈ NU such that VE ⊆ U (in which case
we also say that ν is a valuation for E), we define ν(E) = v0u

ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xk)

k vk ∈ Σ∗.
We say that ν is a solution of the equation E = 1 if ν(E) evaluates to the identity element
1 of G. With Sol(E) we denote the set of all solutions ν ∈ NVE of E. We can view Sol(E)
as a subset of Nk. The length of E is defined as |E| = |v0|+

∑k
i=1 |ui|+ |vi|, whereas k is

its depth. If the length of a knapsack expression is not needed, we will write an exponent
expression over G also as E = h0g

x1
1 h1g

x2
2 h2 · · · gxk

k hk where gi, hi ∈ G. We define solvability
of exponent equations over G, ExpEq(G) for short, as the following decision problem:
Input: A finite list of exponent expressions E1, . . . , En over G.
Question: Is

⋂n
i=1 Sol(Ei) non-empty?

The knapsack problem for G, KP(G) for short, is the following decision problem:
Input: A single knapsack expression E over G.
Question: Is Sol(E) non-empty?
We also consider the uniform knapsack problem for powers Gm =

∏m
i=1 Gi with Gi ∼= G. We

denote this problem with KP(G∗). Formally, it is defined as follows:
Input: A number m ≥ 0 (in unary notation) and a knapsack expression E over Gm.
Question: Is Sol(E) non-empty?
It turns out that the problems KP(G∗) and ExpEq(G) are inter-reducible:

I Proposition 3.1. KP(G∗) is decidable if and only if ExpEq(G) is decidable.

Note that the exponent equation v0u
x1
1 v1u

x2
2 v2 · · ·uxk

k vk = 1 is equivalent to the expo-
nent equation (v0u1v

−1
0 )x1(v0v1u2v

−1
1 v−1

0 )x2 · · · (v0 · · · vk−1ukv
−1
k−1 · · · v

−1
0 )xk (v0 · · · vk) = 1.

Hence, it suffices to consider exponent expressions of the form ux1
1 ux2

2 · · ·u
xk

k v.
The group G is called knapsack-semilinear if for every knapsack expression E over G,

the set Sol(E) is a semilinear set of vectors and a semilinear representation can be effectively
computed from E. The following classes of groups only contain knapsack-semilinear groups:

virtually special groups [11]: these are finite extensions of subgroups of graph groups
(aka right-angled Artin groups). The class of virtually special groups is very rich. It
contains all Coxeter groups, one-relator groups with torsion, fully residually free groups,
and fundamental groups of hyperbolic 3-manifolds.
hyperbolic groups [4]
co-context-free groups [8], i.e., groups where the set of all words over the generators that
do not represent the identity is a context-free language. Lehnert and Schweitzer [9] have
shown that the Higman-Thompson groups are co-context-free.

Since emptiness of the intersection of finitely many semilinear sets is decidable, we have:

I Lemma 3.2. If G is knapsack-semilinear, then KP(G∗) and ExpEq(G) are decidable.

An example of a group G, where KP(G) is decidable, but KP(G∗) and ExpEq(G) are
undecidable is the Heisenberg group H3(Z) (the group of all upper triangular (3×3)-matrices
over Z with all diagonal entries equal to 1) [8]. Hence, H3(Z) is not knapsack-semilinear.
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4 Wreath products

Let G andH be groups. Consider the direct sumK =
⊕

h∈H Gh, where Gh is a copy of G. We
view K as the set G(H) of all mappings f : H → G such that supp(f) = {h ∈ H | f(h) 6= 1}
is finite, together with pointwise multiplication as the group operation. The set supp(f) ⊆ H
is called the support of f . The group H has a natural left action on G(H) given by
hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding semidirect product
G(H) oH is the wreath product G oH. In other words:

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).
The following intuition might be helpful: An element (f, h) ∈ G oH can be thought of as a
finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the map f)
together with the distinguished element h ∈ H, which can be thought of as a cursor moving
in H. The product (f1, h1)(f2, h2) is computed as follows. First, we shift the finite collection
of G-elements (that corresponds to the mapping f2) by h1: If g ∈ G \ {1G} is sitting at
a ∈ H (i.e., f2(a) = g), then we remove g from a and put it to the new location h1a ∈ H.
This new collection corresponds to the mapping f ′2 : a 7→ f2(h−1

1 a). After this shift, the two
collections of G-elements are multiplied pointwise: If in a ∈ H the elements g1 and g2 are
sitting (i.e., f1(a) = g1 and f ′2(a) = g2), then we put the product g1g2 into the location a.
Finally, the new distinguished H-element (the new cursor position) becomes h1h2.

By identifying f ∈ G(H) with (f, 1H) ∈ G o H and h ∈ H with (1G(H) , h), we regard
G(H) and H as subgroups of G o H. Hence, for f ∈ G(H) and h ∈ H, we have fh =
(f, 1H)(1G(H) , h) = (f, h). There are two natural projection maps σGoH : G oH → H (which is
a morphism) and τGoH : G oH → G(H) with σGoH(f, h) = h and τGoH(f, h) = f . If G (resp.
H) is generated by the set Σ (resp. Γ) with Σ ∩ Γ = ∅, then G oH is generated by the set
{(fa, 1H) | a ∈ Σ} ∪ {(f1G

, b) | b ∈ Γ}, where for g ∈ G, the mapping fg : H → G is defined
by fg(1H) = g and fg(x) = 1G for x ∈ H \ {1H}. We identify this generating set with Σ ] Γ.

5 Main results

In this section, we state the main results of the paper. We begin with a general necessary
condition for knapsack to be decidable for a wreath product. Note that if H is finite, then
G oH is a finite extension of G|H| [10, Proposition 1], meaning that KP(G oH) is decidable if
and only if KP(G|H|) is decidable [11, Theorem 11] (in [11], preservation of NP-membership
was shown, but the proof also yields preservation of decidability). Therefore, we are only
interested in the case that H is infinite.

I Proposition 5.1. Suppose H is infinite. If KP(G o H) is decidable, then KP(H) and
KP(G∗) are decidable.

Of course, as a subgroup of G oH, H inherits decidability of knapsack. On the other hand,
given m ∈ N, one can easily compute an embedding of Gm into G oH and thus solve knapsack
instances over Gm uniformly in m. Proposition 5.1 shows that KP(H3(Z) oZ) is undecidable:
It was shown in [8] that KP(H3(Z)) is decidable, whereas for some m > 1, the problem
KP(H3(Z)m) is undecidable.

Proposition 5.1 raises the question whether decidability of KP(H) and KP(G∗) implies
decidability of KP(G oH). We disprove this in the following theorem. The second statement
is due to the fact that for every ` ∈ N, KP(H3(Z)× Z`) is decidable, as shown in [8].

STACS 2018
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I Theorem 5.2. There is an ` ∈ N such that for every G 6= 1, KP(G o (H3(Z) × Z`))
is undecidable. In particular, there are groups G, H such that KP(G∗) and KP(H) are
decidable and KP(G oH) is undecidable.

We therefore need to strengthen the assumptions on H in order to show decidability of
KP(G o H). Under the weak additional assumption of knapsack-semilinearity for H, we
obtain a partial converse to Proposition 5.1. In Section 6 we prove:

I Theorem 5.3. Let H be knapsack-semilinear and infinite. Then KP(G oH) is decidable if
and only if KP(G∗) is decidable.

If G is knapsack-semilinear, the solution sets are effectively semilinear:

I Theorem 5.4. The group G oH is knapsack-semilinear if and only if both G and H are
knapsack-semilinear.

Since every free abelian group is clearly knapsack-semilinear, it follows that the iterated
wreath products G1,r = Zr and Gd+1,r = Zr oGd,r are knapsack-semilinear. By the well-known
Magnus embedding, the free solvable group Sd,r embeds into Gd,r. Hence, we get:

I Corollary 5.5. Every free solvable group is knapsack-semilinear. Hence, solvability of
exponent equations is decidable for free solvable groups.

Finally, we consider the complexity of knapsack for wreath products. In Section 7 we prove
NP-completeness for an important special case:

I Theorem 5.6. For every finitely generated abelian group G 6= 1, KP(G oZ) is NP-complete.

6 (Un)decidability: Proofs of Theorems 5.2, 5.3, and 5.4

Undecidability. We begin with a proof sketch for Theorem 5.2. Here, the only property of
H3(Z) that we use is that solvability of knapsack instances of some fixed depth k over the
group H3(Z)m is undecidable for some m ≥ 0, which was shown in [8]. Using this property,
we prove that KP(Gm o (H3(Z)× Zk·m)) is undecidable. Since every group Gn oH embeds
into G o (H × Z), this implies undecidability of KP(G o (H3(Z)× Zk·m+1)).

Undecidability of KP(Gm o (H3(Z) × Zk·m)) is shown as follows. Consider a knapsack
expression E over H3(Z)m of depth k. We turn E into m knapsack expressions E1, . . . , Em
over H3(Z) of depth k so that E has a solution if and only if there is a common solution
to E1, . . . , Em so that for every i ∈ [1, k], the i-th variable for each expression has the same
value. We construct a knapsack expression over Gm o (H3(Z) × Zk·m) as follows. We pick
an a ∈ G \ {1} and use it as a “breadcrumb”: It is placed at a particular cursor position in
H3(Z)×Zk·m in one of the m coordinates of Gm and is later collected by multiplying a−1 in
the same coordinate of Gm. Fix a correspondence between the k ·m variables in E1, . . . , Em
and the coordinates of Zk·m. Our new expression operates in three phases. The first phase
performs for each j = 1, . . . ,m the following. It places a breadcrumb in the j-th coordinate
of Gm and then moves the cursor by some value of Ej . At the same time, for each variable in
Ej , it moves the cursor in the corresponding coordinate of Zk·m by the value of that variable.

In the second phase, we check that for each i ∈ [1, k], the i-th variable for each expression
has the same value and move the cursor back to the origin. To this end, we move the cursor
in the Zk·m-coordinates so that two coordinates that correspond to two variables that are to
be compared are decremented simultaneously. After this, we collect the first breadcrumb.
In the third phase, it remains to check that each Ej evaluates to 1 ∈ H3(Z). Since we are
already in the origin, this amounts to checking that we can collect the remaining breadcrumbs
2, . . . ,m by moving just in the Zk·m-coordinates. The full proof can be found in [4].
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Decidability. The rest of this section is devoted to the positive results, Theorems 5.3
and 5.4. Let us fix a wreath product G oH. Recall the projections σ = σGoH : G oH → H

and τ = τGoH : G oH → G(H) from section 4. For g ∈ G oH we write supp(g) for supp(τ(g)).
A knapsack expression E = h0g

x1
1 h1 · · · gxk

k hk over G oH is called torsion-free if for each
i ∈ [1, k], either σ(gi) = 1 or σ(gi) has infinite order. A simple conjugation argument shows
that it suffices to prove Theorem 5.3 and 5.4 for torsion-free knapsack expressions. For the
rest of this section let us fix a torsion-free knapsack expression E over G oH. We can assume
that E = gx1

1 gx2
2 · · · g

xk

k gk+1 (note that if g has infinite order than also c−1gc has infinite
order). We partition the set VE = {x1, . . . , xk} of variables in E as VE = S ]M , where
S = {xi ∈ VE | σ(gi) = 1} and M = {xi ∈ VE | ord(σ(gi)) = ∞}. In this situation, the
following notation will be useful. If U = A ]B for a set of variables U ⊆ V and µ ∈ NA and
κ ∈ NB, then we write µ⊕ κ ∈ NU for the valuation with (µ⊕ κ)(x) = µ(x) for x ∈ A and
(µ⊕ κ)(x) = κ(x) for x ∈ B.

Computing powers. A key observation in our proof is that in order to compute the group
element τ(gm)(h) (in the cursor intuition, this is the element labeling the point h ∈ H in the
wreath product element gm) for h ∈ H and g ∈ G oH, where σ(g) has infinite order, one only
has to perform at most |supp(g)| many multiplications in G, yielding a bound independent
of m. We begin by introducing a partial order on H. Suppose h ∈ H has infinite order (i.e.
ord(h) =∞). For h′, h′′ ∈ H, we write h′ 4h h′′ if there is an n ≥ 0 with h′ = hnh′′. Then,
4h is transitive. Moreover, since h has infinite order, 4h is also anti-symmetric and thus a
partial order. Observe that if knapsack is decidable for H, given h, h′, h′′ ∈ H, we can decide
whether h has infinite order and whether h′ 4h h′′. This notion is used because for g ∈ G oH,
the order 4σ(g) determines how to evaluate the mapping τ(gm) at a certain element of H.
We will sometimes want to multiply all elements ai for i ∈ I such that the order in which
we multiply is specified by some linear order on I. If (I,≤) is a finite linearly ordered set
with I = {i1, . . . , in}, i1 < i2 < . . . < in, then we write

∏≤
i∈I ai for

∏n
j=1 aij . If the order ≤

is clear from the context, we just write
∏
i∈I ai.

Addresses. A central concept in our proof is that of an address. A solution to the equation
E = 1 can be thought of as a sequence of instructions on how to walk through the Cayley
graph of H and place elements of G at those nodes. Here, being a solution means that in
the end, all the nodes contain the identity of G. In order to express that every node carries
1 in the end, we want to talk about at which points in the product E = gx1

1 gx2
2 · · · g

xk

k gk+1
a particular node is visited. An address is a datum that contains just enough information
about such a point to determine which element of G has been placed during that visit.

A pair (i, h) with i ∈ [1, k + 1], and h ∈ H is called an address if h ∈ supp(gi). The set of
addresses of the expression E is denoted by A. Note that A is finite and computable. To
each address (i, h), we associate the group element γ(i, h) = gi of the expression E.

A linear order on addresses. We will see that if a node is visited more than once, then (i)
each time1 it does so at a different address and (ii) the order of these visits only depends on
the addresses. To capture the order of these visits, we define a linear order on addresses.

We partition A =
⋃
i∈[1,k+1] Ai, where Ai = {(i, h) | h ∈ supp(gi)} for i ∈ [1, k+ 1]. Then,

for a ∈ Ai and a′ ∈ Aj with i < j, we let a < a′. It remains to order addresses within each

1 Here, we count two visits inside the same factor gi, i ∈ [1, k], with σ(gi) = 1 as one visit.
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Ai. Within Ak+1, we pick an arbitrary order. If i ∈ [1, k] and σ(gi) = 1, we also order Ai
arbitrarily. Finally, if i ∈ [1, k] and σ(gi) has infinite order, then we pick a linear order ≤ on
Ai so that for h, h′ ∈ supp(gi), h 4σ(gi) h

′ implies (i, h) ≤ (i, h′). Note that this is possible
since 4σ(gi) is a partial order on H.

Cancelling profiles. In order to express that a solution for E yields the identity at every
node of the Cayley graph of H, we need to compute the element of G that is placed after the
various visits at a particular node. We therefore associate to each address an expression over
G that yields the element placed during a visit at this address a ∈ A. In analogy to τ(g) for
g ∈ G oH, we denote this expression by τ(a). If a = (k+ 1, h), then we set τ(a) = τ(gk+1)(h).
Now, let a = (i, h) for i ∈ [1, k]. If σ(gi) = 1, then τ(a) = τ(gi)(h)xi . Finally, if σ(gi) has
infinite order, then τ(a) = τ(gi)(h).

This allows us to express the element of G that is placed at a node h ∈ H if h has
been visited with a particular set of addresses. To each subset C ⊆ A, we assign the
expression EC =

∏
a∈C τ(a), where the order of multiplication is given by the linear order on

A. Observe that only variables in S ⊆ {x1, . . . , xk} occur in EC . Therefore, given κ ∈ NS ,
we can evaluate κ(EC) ∈ G. We say that C ⊆ A is κ-cancelling if κ(EC) = 1.

In order to record which sets of addresses can cancel simultaneously (meaning: for the
same valuation), we use profiles. A profile is a subset of P(A) (the power set of A). A profile
P ⊆ P(A) is said to be κ-cancelling if every C ∈ P is κ-cancelling. A profile is cancelling if
it is κ-cancelling for some κ ∈ NS .

Clusters. We also need to express that there is a node h ∈ H that is visited with a particular
set of addresses. To this end, we associate to each address a ∈ A another expression σ(a).
As opposed to τ(a), the expression σ(a) is over H and variables M ′ = M ∪ {yi | xi ∈ M}.
Let a = (i, h) ∈ A. When we define σ(a), we will also include factors σ(gj)xj and σ(gj)yj

where σ(gj) = 1. However, since these factors do not affect the evaluation of the expression,
this should be interpreted as leaving out such factors.
1. If i = k + 1 then σ(a) = σ(g1)x1 · · ·σ(gk)xkh.
2. If i ∈ [1, k] then σ(a) = σ(g1)x1 · · ·σ(gi−1)xi−1σ(gi)yih.
We now want to express that when multiplying gν(x1)

1 · · · gν(xk)
k gk+1, there is a node h ∈ H

such that the set of addresses with which one visits h is precisely C ⊆ A. In this case, we will
call C a cluster. Let µ ∈ NM and µ′ ∈ NM ′ . We write µ′ @ µ if µ′(xi) = µ(xi) for xi ∈M and
µ′(yi) ∈ [0, µ(xi)− 1] for every yi ∈M ′. We can now define the set of addresses at which one
visits h ∈ H: For h ∈ H, let Aµ,h = {a ∈ A | µ′(σ(a)) = h for some µ′ ∈ NM ′ with µ′ @ µ}.
A subset C ⊆ A is called a µ-cluster if C 6= ∅ and there is an h ∈ H such that C = Aµ,h.
It can now be shown that if ν = µ ⊕ κ for κ ∈ NS and µ ∈ NM , evaluating τ(ν(E)) at a
node h ∈ H amounts to evaluating κ on the expression EC where C is the µ-cluster Aµ,h.
In other words, we have τ(ν(E))(h) = κ(EC). From this, we obtain a characterization of
solutions of the knapsack expression E.

I Proposition 6.1. Let ν ∈ NVE with ν = µ ⊕ κ for µ ∈ NM and κ ∈ NS. Then ν(E) = 1
if and only if σ(ν(E)) = 1 and there is a κ-cancelling profile P such that every µ-cluster is
contained in P .

This allows us to decompose a knapsack instance for G oH into two tasks: determining which
profiles are cancelling and finding a µ ∈ NM such that all µ-clusters are contained in a given
profile. The first task can be reduced to solving exponent equation systems over G: For each
profile P ⊆ P(A), let KP ⊆ NS be the set of all κ ∈ NS such that P is κ-cancelling.
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I Lemma 6.2. Let P be a given profile. If KP(G∗) is decidable, then it is decidable whether
KP 6= ∅. If G is knapsack-semilinear, then KP ⊆ NS is effectively semilinear.

For our second task, we employ the effective semilinearity of knapsack solution sets for H.
Let LP ⊆ NM be the set of all µ ∈ NM such that every µ-cluster belongs to P .

I Lemma 6.3. Let H be knapsack-semilinear. For every profile P ⊆ P(A), the set LP is
effectively semilinear.

We can define LP in Presburger arithmetic: In order to express that a given C ⊆ A is a
µ-cluster, we employ universal quantification to state that no other address a ∈ A \ C is
visited at the same node as the addresses in C. This leads to a Π2-formula.

We can now prove Theorem 5.3 and 5.4. Let H be knapsack-semilinear and let KP(G∗)
be decidable. Observe that for ν = µ⊕ κ, where µ ∈ NM and κ ∈ NS , the value of σ(ν(E))
only depends on µ. The set T ⊆ NM of all µ such that σ(ν(E)) = 1 is effectively semilinear by
knapsack-semilinearity of H. Proposition 6.1 tells us that Sol(E) =

⋃
P⊆P(A) KP ⊕ (LP ∩ T )

and LP is effectively semilinear by Lemma 6.3. This implies Theorem 5.3: We can decide
solvability of E by checking, for each profile P ⊆ P(A), whether KP 6= ∅ (which is decidable
by Lemma 6.2) and whether LP ∩ T 6= ∅. Moreover, if G is knapsack-semilinear, then KP

and thus Sol(E) are effectively semilinear as well. This proves Theorem 5.4.

7 Complexity: Proof of Theorem 5.6

Throughout the section we fix a finitely generated group G. The goal of this section is to
show that if G is abelian and non-trivial, then KP(G o Z) is NP-complete.

7.1 Periodic words over groups
With Gω we denote the group of all mappings f : N→ G with the pointwise multiplication
(fg)(n) = f(n)g(n). The identity element is the mapping id with id(n) = 1 for all n ∈ N.
If G is abelian, then also Gω is abelian and we write

∑n
i=1 fi for f1 · · · fn with fi ∈ Gω. A

function f ∈ Gω is periodic with period q ≥ 1 if f(k) = f(k + q) for all k ≥ 0. Note that q is
not assumed to be minimal. Let Gρ be the set of all periodic functions from Gω. With G+

we denote the set of all tuples (g0, . . . , gq−1) over G of arbitrary length q ≥ 1. A periodic
function f ∈ Gρ with period q can be specified by the tuple (f(0), . . . , f(q − 1)) ∈ G+.
Vice versa, a tuple u = (g0, . . . , gq−1) ∈ G+ defines the periodic function fu ∈ Gω with
fu(n · q + r) = gr for n ≥ 0 and 0 ≤ r < q. One can view this mapping as the sequence uω
obtained by taking infinitely many repetitions of u. If f1 is periodic with period q1 and f2 is
periodic with period q2, then f1f2 is periodic with period q1q2 (in fact, lcm(q1, q2)). Hence,
Gρ forms a countable subgroup of Gω. Note that Gρ is not finitely generated: The subgroup
generated by elements fi ∈ Gρ with period qi (1 ≤ i ≤ n) contains only functions with period
lcm(q1, . . . , qn). For n ≥ 0 let Gρn ≤ Gρ be the subgroup of all f ∈ Gρ with f(k) = 1 for all
0 ≤ k ≤ n− 1. The uniform membership problem for subgroups Gρn, Membership(Gρ∗), is
the following problem:
Input: Tuples u1, u2, . . . , un ∈ G+ and a binary encoded number m.
Question: Does the product fu1fu2 · · · fun

∈ Gρ belong to Gρm?

I Theorem 7.1. For every finitely generated abelian group G, Membership(Gρ∗) can be
solved in polynomial time.
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Proof. We use the additive notation for Gω. Let u1, . . . , un ∈ G+, qi = |ui|, and f =∑n
i=1 fui

. We show that if there exists a position m such that f(m) 6= 0, then there exists a
position m <

∑n
i=1 qi such that f(m) 6= 0. This suffices to prove the theorem since the word

problem for a finitely generated abelian group can be solved in polynomial time.
Let m ≥

∑n
i=1 qi and assume that f(j) = 0 for all j with m −

∑n
i=1 qi ≤ j < m. We

show that f(m) = 0, which proves the above claim.
Note that fui

(j) = fui
(j − qi) for all j ≥ qi, 1 ≤ i ≤ n. For M ⊆ [1, n] let qM =

∑
i∈M qi.

Moreover, for 1 ≤ k ≤ n letMk = {M ⊆ [1, n], |M | = k}. For 1 ≤ k ≤ n− 1 we get∑
M∈Mk

∑
i∈M

fui(m−qM ) =
∑

M∈Mk

∑
i∈[1,n]\M

−fui(m−qM ) =
∑

M∈Mk

∑
i∈[1,n]\M

−fui(m−qM−qi)

=
n∑
i=1

∑
M∈Mk,i/∈M

−fui
(m− qM∪{i}) =

∑
M∈Mk+1

∑
i∈M
−fui

(m− qM ).

We can write

f(m) =
n∑
i=1

fui
(m) =

n∑
i=1

fui
(m− qi) =

∑
M∈M1

∑
i∈M

fui
(m− qM ).

From the above identities we get by induction:

f(m) = ±
∑

M∈Mn

∑
i∈M

fui(m− qM ) = ±
∑
i∈[1,n]

fui(m− q[1,n]) = ±f(m−
n∑
i=1

qi) = 0.

This proves the claim and hence the theorem. J

7.2 Automata for Cayley representations
The main technical result of this section is:

I Proposition 7.2. Let G be a finitely generated abelian group. If ExpEq(G) ∈ NP and
Membership(Gρ∗) ∈ NP, then also KP(G o Z) ∈ NP.

We start with some definitions. An interval [a, b] ⊆ Z supports an element (f, d) ∈ G o Z if
{0, d} ∪ supp(f) ⊆ [a, b]. If (f, d) ∈ G o Z is a product of length n over the generators, then
the minimal interval [a, b] which supports (f, d) satisfies b− a ≤ n. A knapsack expression
E = v0u

x1
1 v1 · · ·uxk

k vk is called rigid if each ui evaluates to an element (fi, 0) ∈ G o Z.
Intuitively, the movement of the cursor is independent from the values of the variables xi up
to repetition of loops. In particular, every variable-free expression is rigid.

In the following we define the so called Cayley representation of a rigid knapsack expression.
This is a finite word, where every symbol is a marked knapsack expression over G. A marked
knapsack expression over G is of the form E, E, E, or E, where E is a knapsack expression
over G. We say that E and E (resp., E and E) are top-marked (resp., bottom-marked).

Let E = v0u
x1
1 v1 · · ·uxk

k vk be a rigid knapsack expression over G o Z. For an assignment
ν let (fν , d) ∈ G o Z be the element to which ν(E) evaluates, i.e. (fν , d) = ν(E). Note that
d does not depend on ν. Because of the rigidity of E, there is an interval [a, b] ⊆ Z that
supports (fν , d) for all assignments ν. For each j ∈ [a, b] let Ej be a knapsack expression
over G with the variables x1, . . . , xk such that fν(j) = ν(Ej) for all assignments ν. Then we
call the formal expression

r =


EaEa+1 · · · E−1 E0 E1 · · · Ed−1 EdEd+1 · · · Eb if d > 0
EaEa+1 · · · E−1 E0 E1 · · · Eb if d = 0
EaEa+1 · · · Ed−1 EdEd+1 · · · E−1 E0 E1 · · · Eb if d < 0

.
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-1 0 1 2 3 4 5 6 7 8 9 10 11 12
ax ax bx

1 1
by by by

b a b−1 a a

b a b−1 a a

b a b−1 a a

b a b−1 a a

b a b−1 a a

ax axb bxbya by bya2 a a2 a a2 a a2 ab−1 a a

Figure 1 Cayley representation.

a Cayley representation of E (or E is represented by r). Formally, a Cayley representation
r is a sequence of marked knapsack expressions, and the length of this sequence is denote
by |r|. In our examples, we separate for better readability consecutive marked knapsack
expressions in r by commas. By the above definition, r depends on the chosen supporting
interval [a, b]. However, compared to the representation of the minimal supporting interval,
any other Cayley representation differs only by adding 1’s (i.e., trivial knapsack expressions
over G) at the left and right end of r.

A Cayley representation of E records for each point in Z an expression that describes
which element will be placed at that point. Multiplying an element of G o Z always begins
at a particular cursor position; in a Cayley representation, the marker on top specifies
the expression that is placed at the cursor position in the beginning. Moreover, a Cayley
representation describes how the cursor changes when multiplying ν(E): The marker on the
bottom specifies where the cursor is located in the end.

I Example 7.3. Consider the wreath product F2 oZ, where F2 is the free group generated by
{a, b} and Z is generated by t, and the rigid knapsack expression E = ux1u2u

y
3u

5
4 with u1 =

at−1at2bt−1 (represented by a a b), u2 = t (represented by 1 1), u3 = btbtbt−2 (represented
by b b b), and u4 = at−1bt2b−1tatat−1 (represented by b a b−1 a a).

A Cayley representation of ux1 is ax ax b−1 and a Cayley representation of uy3 is by by by.
The diagram in Figure 1 illustrates how to compute a Cayley representation r of E, which is
shown in the bottom line. Here, we have chosen the supporting interval minimal. Note that
if we replace the exponents 5 in u5

4 by a larger number, then we only increase the number of
repetitions of the factor a, a2 in the Cayley representation.

Let E be an arbitrary knapsack expression over G o Z. We can assume that E has the
form ux1

1 · · ·u
xk

k uk+1. Let X0 be the set of all variables xi where ui evaluates to an element
(f, 0) ∈ G oZ, and let X1 = {x1, . . . , xk} \X0. For a partial assignment ν : X1 → N we obtain
a rigid knapsack expression Eν by replacing in E every variable xi ∈ X1 by ν(xi). A set R
of Cayley representations is a set representation of E if

for each assignment ν : X1 → N there exists r ∈ R such that r represents Eν ,
for each r ∈ R there exists an assignment ν : X1 → N such that r represents Eν and
ν(x) ≤ |r| for all x ∈ X1.

I Example 7.4. Consider the non-rigid knapsack expression E′ = ux1u2u
y
3u
z
4 over F2 o Z,

where u1, u2, u3, u4 are taken from Example 7.3. We have X0 = {x, y} and X1 = {z}. A set
representation R of E′ consists of the following Cayley representations: ax, ax, bxby, by, by
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for ν(z) = 0, ax, axb, bxbya, byb−1, bya, a for ν(z) = 1, and

ax, axb, bxbya, by, bya2, (a, a2)ν(z)−2, ab−1, a, a for ν(z) ≥ 2.

Only finitely many different marked knapsack expressions appear in this set representation
R, and R is clearly a regular language over the finite alphabet consisting of this finitely many
marked knapsack expressions.

We can now sketch the proof of Proposition 7.2. The main idea is to construct a non-
deterministic finite automaton (NFA) that accepts a set representation of E = ux1

1 · · ·u
xk

k uk+1.
Let n = |E|. First, we compute polynomial-size NFAs Ai (i ∈ [1, k + 1]), where Ai accepts a
set representation of uxi

i (or uk+1 for i = k + 1). For uk+1 and expressions uxi
i with xi ∈ X0

these set representations are singletons and the construction of Ai is straightforward, see e.g.
Example 7.3. For expressions uxi

i with xi ∈ X1 one has to construct an NFA that accepts a
set containing a Cayley representation of every umi (a variable-free knapsack expression over
G) for m ≥ 0. The main observation is that all these Cayley representations are periodic
(except for a short prefix and suffix) with the same period.

From the NFAs Ai one obtains an NFA A accepting a set representation of E using a
simple product construction. This NFA A has exponential size in n, so we cannot construct
it. However, its exponential size bound on A yields that E = 1 has a solution if and only
if there exists a solution ν such that ν(x) is exponentially bounded in n for all x ∈ X1.
Since each Ai accepts a set representation of uxi

i , i ∈ [1, k] or of uk+1, this implies that
solvability of E is witnessed by words αi ∈ L(Ai) for i ∈ [1, k + 1] whose length is bounded
exponentially in n. The periodic nature of the words αi allows to represent these words in
polynomial space as a concatenation of powers βm for binary encoded numbers m. We guess
such representations of the αi.

It remains to verify that the guessed words αi indeed witness a solution of E = 1. This
means that there exists a valuation ν : X0 → N such that for every position p the (k+1)-tuple
consisting of the p-th entries of the αi evaluates to 1 under ν. There exist only polynomially
many positions p where an expression ux with x ∈ X0 occurs in some αi. Thus, we can
construct from all these positions an instance of ExpEq(G). The remaining pieces of the αi
only contain group elements from G and are periodic. The question, whether they cancel at
all remaining positions is an instance of Membership(Gρ∗).

Proposition 7.2 yields the NP upper bound for Theorem 5.6: If G is a finitely generated
abelian group, then ExpEq(G) corresponds to the solvability problem for linear equation
systems over the integers, possibly with modulo-constraints. This problem is well known to
be in NP. Moreover, Membership(Gρ∗) can be solved in polynomial time by Theorem 7.1.

It remains to prove the NP-hardness part of Theorem 5.6. Using a reduction from
3-dimensional matching, one can show the following [4]:

I Theorem 7.5. If G is non-trivial and H contains an element of infinite order, then
knapsack and subset sum for G oH are NP-hard.

8 Open problems

The main open problem is to characterize those G and H for which KP(G oH) is decidable.
Concerning complexity, we are confident that our NP upper bound for KP(G o Z), where G
is finitely generated abelian, can be extended to KP(G oH), where H is a finitely generated
free group or Zn for some n ≥ 0. Another question is whether the assumption on G being
abelian can be weakened. In particular, we want to investigate whether polynomial time
algorithms exist for Membership(Gρ∗) for certain non-abelian groups G.
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