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—— Abstract

Population protocols are a well established model of distributed computation by mobile finite-
state agents with very limited storage. A classical result establishes that population protocols
compute exactly predicates definable in Presburger arithmetic. We initiate the study of the
minimal amount of memory required to compute a given predicate as a function of its size.
We present results on the predicates x > n for n € N, and more generally on the predicates
corresponding to systems of linear inequalities. We show that they can be computed by protocols
with O(logn) states (or, more generally, logarithmic in the coefficients of the predicate), and that,
surprisingly, some families of predicates can be computed by protocols with O(loglogn) states.
We give essentially matching lower bounds for the class of 1-aware protocols.
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1 Introduction

Population protocols [4] are a model of distributed computation by anonymous, identical,
and mobile finite-state agents. Initially introduced to model networks of passively mobile
sensors, they also capture the essence of distributed computation in trust propagation or
chemical reactions, the latter under the name of chemical reaction networks (see e.g. [18]).
Structurally, population protocols can also be seen as a special class of Petri nets or vector
addition systems [11].

Since the agents executing a protocol are anonymous and identical, its global state —
called a configuration — is completely determined by the number of agents at each local state.
In each computation step, a pair of agents, chosen by an adversary subject to a fairness
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condition stating that any repeatedly reachable configuration is eventually reached, interact
and move to new states according to a joint transition function. In a closely related model,
the adversary chooses the pair of agents uniformly at random.

A protocol computes a boolean value for a given initial configuration if in all fair executions
all agents eventually agree to this value — so, intuitively, population protocols compute by
reaching consensus. Given a set of initial configurations, the predicate computed by a protocol
is the function that assigns to each configuration C' the boolean value computed by the
protocol starting from C.

Much research on population protocols has focused on their expressive power, i.e., the
class of predicates computable by different classes of protocols (see e.g. [3, 6, 13, 16, 7]). In
a famous result [6], Angluin et al. have shown that predicates computable by population
protocols are exactly the predicates definable in Presburger arithmetic. There is also much
work on complexity metrics for protocols. The main two metrics are the runtime of a protocol
— defined for the model with a randomized adversary as the expected number of pairwise
interactions until all agents have the correct output value — and its state space size, e.g. the
number of states of each agent. In [5], Angluin et al. show that every Presburger predicate is
computed with high probability by a population protocol with a leader — a distinguished
auxiliary agent that assumes a specific state in the initial configuration irrespective of the
input — in O(n log® n) interactions in expectation, where n is the number of agents of the
initial configuration. Several recent papers study time-space trade-offs for specific tasks, like
electing a leader [10], or for specific predicates, like majority [2, 1, 9].

In this paper we study the state space size of protocols as a function of the predicate they
compute. In particular, we are interested in the minimal number of states needed to evaluate
systems of linear constraints (a large subclass of the predicates computed by population
protocols) as a function of the number of bits needed to describe the system. To the best
of our knowledge, this question has not been considered so far. We study the question for
protocols with and without leaders. Our results show that protocols with leaders can be
exponentially more compact than leaderless protocols.

In order to introduce our results in the simplest possible setting, in the first part of the
paper we focus on the family of predicates {x > n : n € N}. These predicates specify the
well-known flock-of-birds problem [4], in which tiny sensors placed on birds have to reach
consensus on whether the number of sick birds in a flock exceeds a given constant. The
minimal number of states for computing x > n formalizes a very natural question about
emerging behavior: How many states must agents have in order to exhibit a “phase transition”
when their number reaches n? The standard protocol for the predicate > n (see Example 1)
has n+ 1 states. We are interested in protocols with at most O(logn) states, either leaderless
or with at most O(logn) leaders. In the second part of the paper, we generalize our results
to a much larger class of predicates, namely systems of linear inequalities Ax > b. Since
x > nis a (very) special case, our lower bounds for flock-of-birds protocols apply, while the
upper bounds require new (and involved) constructions.

Protocol size for the flock-of-birds problem. In a first warm-up phase we exhibit a family

of leaderless protocols with only O(logn) states. More precisely, we prove:

(1) There exists a family {P,, : n € N} of leaderless population protocols such that P, has
O(log, n) states and computes the predicate > n for every n € N.

We also give a lower bound:

(2) For every family {P,, : n € N} of leaderless population protocols such that P,, computes
x > n, there exist infinitely many n such that P, has at least (logn)'/* states.
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However, this bound is only ezistential (“there exists infinitely many n” instead of “for all

n”). Moreover, it follows from a counting argument that does not provide any information

on the values of n realizing the bound. Is there a poly-logarithmic universal bound? We

show that, surprisingly, the answer is negative:

(3) There exists a family {P,, : n € N} of population protocols with two leaders, and values
cp < ¢1 < ... €N, such that P, has O(loglogc,) states and computes the predicate

T > ¢y, for every n € N.

Observe that in these protocols the “phase transition” occurs at * = ¢,, even though no
agent has enough memory to index a particular bit of c¢,.

Can one go even further, and design O(log loglog c,,) protocols? We show that the answer
is negative for I-aware protocols. Both the standard protocol for > n and the families of
(1) and (3) have the following, natural property: If the number of agents is greater than or
equal to n, then the agents not only reach consensus 1, they also eventually know that they
will reach this consensus. We say that these protocols are 1-aware.

We obtain lower bounds for 1-aware protocols that essentially match the upper bounds
of (1) and (3):

(4) Every leaderless, 1-aware population protocol computing x > n has at least logs n states.
(5) Every l-aware protocol (leaderless or not) computing z > n has at least (loglog(n)/151)/9
states.

Protocols for systems of linear inequalities. In the second part of the paper we show that
our results can be extended to other predicates. First, instead of the simple predicate x > n,
we study the general linear predicate aiz1 + asxo + -+ + apxy > c for arbitrary integer
coefficients a1, ..., ar,c € Z. By means of a delicate construction we give protocols whose
number of states grows only logarithmically in the size of the coefficients:
(6) There is a protocol with at most O(kn) states and O(n) leaders that computes ajx; +
-+ + agxg > ¢, where n is the size of the binary encoding of max(|a1], |as|, - .-, |ak|, |c|)-
Finally, in the most involved construction of the paper, we show that the same applies to
arbitrary systems of linear inequalities. Note that the standard conjunction construction,
which produces a protocol for ¢1 A @s from protocols computing predicates ¢, and 2, cannot
be applied because it would lead to exponentially large protocols.
(7) There is a protocol with at most O((logm + n)(m + k)) states and O(m(logm + n))
leaders that computes Ax > ¢, where A € Z™*F and n is the size of the largest entry in
A and c.

Structure of the paper. Section 2 introduces basic definitions, protocols with and without
leaders, and a simple construction with an involved correctness proof showing how to simulate
protocols with k-way interactions by standard protocols. Sections 3 to 5 present our bounds
on the flock-of-birds predicates, and Section 6 the bounds on systems of linear inequalities.
Due to space constraints, some proofs are deferred to the full version of this paper.

2 Preliminaries

Numbers. Let n € Nyy. The logarithm in base b of n is denoted by log, n. Whenever
b = 2, we omit the subscript. We define bits(n) as the set of indices of the bits occurring
in the binary representation of n, e.g. bits(13) = {0,2,3} since 13 = 11015. The size of
n, denoted size(n), is the number of bits required to represent n in binary. Note that
|bits(n)| < size(n) = |logn] + 1.
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Multisets. A multiset over a finite set E is a mapping M : E — N. The set of all multisets
over E is denoted N¥. For every e € E, M(e) denotes the number of occurrences of e in
def

M, and for every E' C E we define M(E') = Y . M(e). The support and size of M are
defined respectively as [M] = {e € E: M(e) > 0} and |M| = Y ecrp M(e). Addition and

comparison, are extended to multisets componentwise, i.e. (M + M')(e) <= M(e) + M’(e) for
every e € E,and M < M’ <= M(e) < M(e) for every e € E. We define multiset difference
as (M & M')(e) = max(M (e) — M'(e),0) for every e € E. The empty multiset is denoted 0.
We sometimes denote multisets using a set-like notation, e.g. { f,2 - g, h§ is the multiset M

such that M(f) =1, M(g) =2, M(h) =1 and M(e) =0 for every e € E\ {f, g, h}.

Population protocols. We introduce a rather general model of population protocols, al-
lowing for interactions between more than two agents and for leaders. A k-way population
protocol is a tuple P = (Q, T, I, L,O) such that

Q@ is a finite set of states,

T C Ui @ % Q' is a set of transitions,

I C Q is a set of initial states,

L € N9 is a set of leaders, and

0: Q — {0,1} is the output mapping.

We assume throughout the paper that agents can always interact, i.e., that for every pair of
states (p, q), there exists a pair of states (p/,¢’) such that ((p,q), (»',¢')) € T.

A configuration of P is a multiset C' € N¥ such that |C| > 0. Intuitively, C' describes a
non empty collection containing C(q) agents in state g for every ¢ € Q. We denote the set of
configurations over £ C @ by Pop(E). A configuration C' is initial if C = D + L for some
D € Pop(I). So, intuitively, leaders are distinguished agents that are present in every initial
configuration. The number of leaders of P is |L|. We say that P is leaderless if it has no
leader, i.e. if L = 0. We discuss protocols with and without leaders later in this section.

Let t = ((p1,p2,---,0i),(q1,q2,--.,q;)) be a transition. To simplify the notation, we
denote t as p1,p2,...,P;i — q1,42,.--,¢q;. Intuitively, ¢ describes that ¢ agents at states
p1,--.,p; may interact and move to states qi,...,q;. The preset and postset of t are
respectively defined as *t = {py,pa,...,p;} and t* = {q1, ¢z, ...,q}. We extend presets and
postsets to sets of transitions, e.g. *T E UteT *t. The pre-multiset and post-multiset of t are
respectively defined as pre(t) S {p1,p2,-..,p:§ and post(t) S la1,q2, - -, 45

We say that t is enabled at C' € Pop(Q) if C > pre(t). If ¢ is enabled at C, then it can
occur, in which case it leads to the configuration C’ = (C' © pre(t)) + post(t)). We denote this
by C Lo We say that ¢ is silent if pre(t) = post(t). In particular, if ¢ is silent and C iN c’,
then C' = C’. We write C' — C” if C' 5 C' for some t € T. We write C' 2%, ¢ if there
exist Cp, C1,...,Ck € Pop(Q) and t1,ta,...,t; € T such that C' = Cj 1IN Ch LN Oy =0,
We write C' 5 C” if C' % €' for some o € T*. We say that C' is reachable from C if C' 5 C".
The support of a sequence o = tity---t, € T* is [o] = {t; : 1 < i < n}.

» Example 1. The flock-of-birds protocol mentioned in the introduction is formally defined
as P, = (Q,T,I,L,0) where Q@ ={0,1,...,n}, [ ={1}, L=0,0(a) =1 <= a=n, and
where T consists of the following transitions:
Sab : @b — 0,min(a + b, n) for every 0 < a,b < n,
ty:a,mn—mn,n for every 0 < a < n.

P, is 2-way and leaderless. Intuitively, it works as follows. Each agent stores a number.
When two agents meet, one agent stores the sum of their values and the other one stores
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0. Sums cap at n. Once an agent reaches n, all agents eventually get converted to n. To

illustrate the above definitions, observe that: ®ss3 = {2,3}, t3 = {n}, pre(sz3) = {2,3§

and post(ta) = {n,n§. Configuration {1,1,1§ is initial, but {1,0,2§ is not. We have
S1,1

11,1,15 225 71,0, 25 22 71,2, 25 25 72,2, 25, or more concisely {1,1,15 % 12,2, 2§ where
g = Sthotl.

Computing with population protocols. An ezecution 7 is an infinite sequence of configur-
ations CyCy - -+ such that Cy — C7 — ---. We say that « is fair if for every configuration D
the following holds!:

if {i € N:C; = D} is infinite, then {i € N: C; = D} is infinite.

In other words, fairness ensures that a configuration cannot be avoided forever if it can be
reached infinitely often along w. We say that a configuration C'is a consensus configuration if
O(p) = O(q) for every p,q € [C]. If a configuration C is a consensus configuration, then its
output O(C) is the unique output of its states, otherwise it is L. An execution m = CoC - - -
stabilizes to b € {0,1} if O(C;) = O(Ci11) = -+ = b for some i € N. The output of 7 is
O(m) = b if it stabilizes to b, and O(7) = L otherwise. A consensus configuration C' is
stable if every configuration C’ reachable from C' is a consensus configuration such that
O(C") = O(C). Tt can easily be shown that a fair execution stabilizes to b € {0,1} if and
only if it contains a stable configuration whose output is b.

A population protocol P = (Q,T, I, L,O) is well-specified if for every initial configuration
Cy, there exists b € {0, 1} such that every fair execution 7 starting at Cy has output b. If P
is well-specified, then we say that it computes the predicate ¢: Pop(I) — {0, 1} if for every
D € Pop(I), every fair execution starting at D + L has output (D).

» Example 2. Consider the protocol Py defined in Example 1 (i.e, n = 2). We have
0({1,1,15) =0, O({2,2,25) =1 and O({1,0,2§) = L. The execution {1,1,1§ — {1,0,2§ —
(1,2,2§ — {2,2,2§ — (2,2,2§ — --- is fair and its output is 1. However, the execution
(1,1,1§ = 11,0,2§ — {1,0,2§ — -- - is not fair since {1, 0, 2§ occurs infinitely often and can
lead to {2,2,2§ which does not occur.

Leaders. Intuitively, leaders are extra agents present in every initial configuration. Allowing
a large number of leaders may help to compute predicates with fewer states. To illustrate
this, consider the leaderless protocol of Example 1. It computes x > n with n + 1 states.
We describe a 2-way protocol with only 4 states, but n leaders. It is an adaptation of the
well-known basic majority protocol (see, e.g., [8]). Let P, = (Q, T, I, L,, O) be the protocol
where Q = {z,y, 7,5}, I = {z}, L, = {n-y5, O(z) = 0(@) = 1, O(y) = OF) = 0, and
where T consists of the following transitions:

T,y = T, Y, T,y T, T, Y, Ty, Y, T,y — T,T.

Informally, “active” agents in states x and y collide and become “passive” agents in states
T and §. At some point, some active agents “win” and convert all passive agents to their
output. It is known that this protocol is well-specified and computes the predicate = > y
when there are no leaders (i.e., if we set L, = 0). So, by initially fixing n leaders in state y,
P, computes z > n.

! This definition of fairness differs from the original definition of Angluin et al. [4], but is equivalent.
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Thus, the predicate z > n can be computed either with O(n) states and no leaders, or
with 4 states and O(n) leaders. This indicates a trade-off between states and leaders, and
one should avoid hiding all of the complexity in one of them. For this reason, we make these
two quantities explicit in all of our results.

The reason for considering protocols with leaders is that, as we shall see, even a constant
number of leaders demonstrably leads to exponentially more compact protocols for some
predicates. Other papers have made similar observations with respect to other resource
measures (see e.g. [5, 14]).

From k-way to 2-way protocols. In our constructions it is very convenient to use k-way
transitions for £ > 2. The following lemma shows that k-way protocols can be transformed
into 2-way protocols by introducing a few extra states. Intuitively, a k-way transition is
simulated by a chain of 2-way transitions. The first part of the chain “collects” k participants
one by one. First, two agents agree to participate, and one of them becomes “passive”,
while the second “searches” for a third participant. This is iterated until k£ participants are
collected. In the second part, the last collected agent “informs” all passive agents, one by
one, that k agents have been collected; upon hearing this, the passive agents move to their
destination states and become active again. To prevent faulty behavior when there are not
enough agents, all transitions of the first part can be “reversed”, that is, the agent that
is currently searching and the last collected agent can “repent” and “undo” the transition.
While the construction is simple and intuitive, its correctness proof is very involved, because
agents that reach their destination can engage in other interactions while other participants
are still passive. The construction is presented in the full version of this paper.

» Lemma 3. Let P = (Q,T,1I,L,0) be a well-specified k-way population protocol. For every
3 <i <k, let n; be the number of i-way transitions of P. There exists a 2-way population
protocol P’, with at most |Q| + > ;<) 31 - n; states, which is well-specified and computes
the same predicate as P. -

3 Leaderless protocols for x > n

In this section, we consider leaderless protocols for the predicate x > n. We first show that
the number of states required to compute this predicate can be reduced from the known O(n)

bound to O(logn), using a similar binary encoding as in [1]. Then we show an existential
lower bound of O((logn)'/*).

A protocol with O(logn) states. We describe a leaderless size(n)-way protocol P, =
(Qn, T, I1,,0,0,,) with size(n) + 3 states that computes > n. The states are Q, £
{0,20,...,251%e() pnl and the sole initial state is I,, = {2°}. The output mapping is defined
as O,(n) = 1 and O, (¢q) = 0 for every state ¢ # n.

Before defining the set T;, of transitions, we need some preliminaries. For every state g €
Qn, let val(g) denote the number ¢ stands for, i.e. val(0) = 0, val(n) = n and val(2!) = 2¢ for
every 0 < i < size(n). Moreover, for every configuration C, let val(C') = > qeq, vala) - C(q).
A configuration C is a representation of m if val(C) = m. For example, the configuration
{0,21,5.23§ is a representation of 0+2% +5-23 = 42. Observe that every initial configuration
Cy is a representation of |Cp|.

T,, is the union of two sets T} and T'2. Intuitively, 77} allows the protocol to reach from a
representation of a number, say m, other representations of m. Formally, the transitions of
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T} are:
2t 2t 2+l for every 0 < i < size(n)
2it1 0 — 212 for every 0 < i < size(n)
{2':i € bits(n)§ ~ n,0,---,0
———

|bits(n)|—1 copies

The transitions of T2 allow agents in state n to “attract” all other agents to n. Formally,
they are:

n,g — n,n forevery q¢€ @Q,.

Let us show that P,, computes z > n. Let Cy = {m -2°§. If m < n, then C(n) = 0
holds for every representation C' of m. Therefore, every configuration C' reachable from Cj
satisfies C'(n) = 0 and, since n is the only state with output 1, the protocol stabilizes to 0. If
m > n, then it is possible to reach a representation C' of m satisfying C'(n) > 0, for example
C = {n,(m —n) - 29§. Since for every transition 2!, 2! — 211 0 the set T}, also contains
the reverse transition 211 0 +— 21 21 every representation C' of m satisfying C'(n) = 0 can

reach a representation C’ of m satisfying C’(n) > 0. Let 1 = CoC1Cs - - - be a fair execution.

By fairness, there is some i € N such that C;(n) > 0. Again by fairness, and because of T2,
there is also an index j such that C = {m - nf§ for every k > j, and so 7 stabilizes to 1.

Note that |Q,| = size(n) + 3. Moreover, P,, has one |bits(n)|-way transition. Thus, by
Lemma 3, we obtain the following theorem:

» Theorem 4. There exists a family {Po, P, ...} of leaderless and 2-way population protocols
such that P,, has at most 4|logn| + 7 states and computes the predicate x > n.

An existential (logn)'/4 lower bound. We show that every family {P, } ey of leaderless
and 2-way protocols computing the family of predicates {& > n},en must contain infinitely
many members of size Q((logn)'/*). We call this an existential lower bound, contrary to a
universal lower bound, which would state that P, has size Q((logn)'/*) for every n > 1.

» Theorem 5. Let {Py,P1,...} be an infinite family of leaderless and 2-way population
protocols such that P, computes the predicate x > n for every n € N. There exist infinitely
many indices n such that P, has at least (logn)/* states.

Proof sketch. The proof boils down to bounding the number d(m) of unary predicates
computed by protocols with m states. The number of distinct sets of transitions, excluding
silent ones, is bounded by 9m"=m* The number of possible initial states and output mappings
are respectively m and 2™. Altogether, we obtain:

P2 gmt <

S

d(m) S 2m4—m2 .m - 2m — 2m

4 A O(loglogn) protocol with leaders for some > n

The lower bound of Section 3 is not valid for every n, it only ensures that, for some values
of n, protocols computing z > n must have a logarithmic number of states. We prove
that, surprisingly, there is an infinite sequence n; < ng < --- of values that break through
the logarithmic barrier: The predicates x > n; can be computed by protocols with only
O(loglogn;) states and two leaders. So, loosely speaking, a flock of birds can decide if it
contains at least n; birds, even though no bird has enough memory to index a bit of n;.
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The result is based on a construction of [15]. In this paper, Mayr and Meyer study the
word problem for commutative semigroup presentations. Given a finite set A of generators,
a presentation of a commutative semigroup generated by A is a finite set of productions
S={li =>r,...,l;m = rm}, where l;,r; € A* for every 1 < i < m, satisfying:
Commutativity: ab — ba € S for every a,b € A;? and
Reversibility: if ] - r € S, thenr — 1 € S.
Given «, 5 € A*, we say that § is derived from « in one step, denoted by a« — 3, if a =~ 10
and 8 = v rd for some v,0 € A* and some r — | € S. We say that 8 is derived from « if
a = B, where = is the reflexive transitive closure of the relation induced by —. Observe
that, by reversibility, we have a = f iff 3 = «. Further, by commutativity we have a — j
iff 7(a) = 7/(B) for every permutation 7 of A.
Mayr and Meyer study the following question: given a commutative semigroup presenta-
tion S over A, and initial and final letters s, f € A, what is the length of the shortest word «
such that s = fa? They exhibit a family of presentations of size O(n) for which the shortest
a has double exponential length 22”. More precisely, in [15, Sect. 6], they construct a family
{8 }n>1 of presentations over alphabets {A, },>1 satisfying the following properties:
(1) |A,| = 14n + 10, |S,| = 20n + 8, and max{|l|,|r|: | - r € S,} =5.
(2) {sn, fu,bn,cn} C A, for every n > 1.
(3) sncn = faaviff a = cnbff" [15, Lemma 6 and 8].
To apply this result, for each n > 1 we construct a 5-way population protocol P, =
(Qn, T, In, Ly, O,) with two leaders as follows:
Qn = A, U{z} for some z ¢ A,.
T, = T} UT2, where:
T} contains a transition pad(p) for every production p = [ — r of S,,, obtained by
“padding” p with x so that its left and right sides have the same length. For example,
pad(aab — cd) = a,a,b+— ¢,d,z, and pad(a — bc) = a,z +— b, c,
Tr% = {frnsa = fo, fo | ¢ € Qu},

I, = {z},

L,%~ {¢n, sn 5, and

def

On(fn) =1 and O, (q) = 0 for every q # fn.

Intuitively, T} allows P,, to simulate derivations of S,,: a step C M C’ of P,, simulates a
one-step derivation of S,,. We make this more precise. Given a € A% and m > |a|, let Cq
be the configuration of P, defined as follows: Cy n,(z) = m, and Cy . (a) = |a|, for every
a € A,, where |/, is the number of occurrences of a in «. Further, given a configuration C
of P,, let ac be the element of S,, given by ac = af(al) . qSlam)
fixed enumeration of A,,. We have:

, where ay,...,a, is a

» Lemma 6. Let o, 8 € A} and let C,C’ be configurations of Py,.
(a) If« PLPY B in Sy, then for every m > 4k, Cam M) Cs
m’ > 0.
pad(p1)---pad(pk) , . P1 Pk .
(b) If C —————= C" in P, then ac — agr in S,,.

m n Py, for some

From Lemma 6, (1) and (3), the following can be shown:

» Theorem 7. For everyn € N, there is a 5-way protocol P,, with at most 14n+11 states and
at most 34n + 19 transitions that computes the predicate x > ¢, for some number ¢, > 22"

2 In [15], the elements of S are written using uppercase letters. We use lowercase for convenience.
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Using Theorem 7 and Lemma 3, we obtain:

» Corollary 8. There exists a family {Po, P1, ...} of 2-way protocols with two leaders and a
family {co, c1,...} of natural numbers such that for every n € N the following holds: ¢, > 2%"
and protocol Py, has at most 3141oglogc,, + 131 states and computes the predicate x > ¢y, .

5 Universal lower bounds for 1-aware protocols

To the best of our knowledge, all the protocols in the literature for predicates x > n, including
those of Section 3 and Section 4, share a very natural property: if the number of agents is
greater than or equal to n, then the agents not only eventually reach consensus 1, they also
eventually know that they will reach this consensus. Let us formalize this idea:

» Definition 9. A well-specified population protocol P = (Q,T,I,L,0) is I-aware if there
isaset Q1 CQ\ (I U[L]) of states such that for every initial configuration Cy and every
fair execution m = CyC1 - - -

(1) if 7 stabilizes to 0, then C;(Q1) = 0 for every ¢ > 0, and

(2) if 7 stabilizes to 1, then there is some 7 > 0 such that C;(Q \ Q1) = 0 for every j > i.

If in the course of an execution 7 an agent reaches a state of ()1, then 7 cannot stabilize
to 0 by (1), and so, since P is well-specified, it stabilizes to 1; intuitively, at this moment the
agent “knows” that the consensus will be 1. Further, if an execution stabilizes to 1, then
all agents eventually reach and remain in Q; by (2), and so eventually all agents “know”.?
Albeit seemingly restrictive, 1-aware protocols compute a significant subclass of predicates:
monotonic Presburger predicates (see the full version of the paper for more details).

We say that a state g is coverable from a configuration C' if C' = C” for some configuration
C’ such that C’(q) > 0. The fundamental property of 1-aware protocols is that, loosely

speaking, consensus reduces to coverability:

» Lemma 10. Let P = (Q,T,{z}, L,0) be a 1-aware protocol computing a unary predicate
. We have p(n) =1 if and only if some state of Q1 is coverable from {n - x§+ L.

We show that for 1-aware protocols, the bounds of Sections 3 and 4 are essentially tight.

Leaderless protocols. We prove that a 1-aware, leaderless and 2-way protocol computing
x > n has at least logs n states. By Lemma 10, it suffices to show that some state of @ is
coverable from (3% . ¢§, where ¢ is the initial state. Proposition 11 below is the key to the

proof. Tt states that for every finite execution C; = Cy, there is C/ Ll CY such that C}
has the same support as Cy and is not too large, and C} contains a “record” of all states
encountered during the execution of 7 (this is the set [C1] U [7]*).

Let us define the norm of a configuration C as ||C]| = max{C(q) : ¢ € [C]}. We obtain:

» Proposition 11. Let P = (Q,T, I, L, O) be a k-way population protocol and let Cy 5 Cy be

a finite execution of P. There exists a finite execution C ~= C% such that (a) [C}] = [C1],
(b) [C3] = [C1] U '], and (c) ICT]] < (k + 1)1,

3 We could also require the seemingly weaker property that eventually at least one agent “knows”. However,
by adding transitions that “attract” all other agents to X1, we can transform a protocol in which some
agent “knows” into a protocol computing the same predicate in which all agents “know”.
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» Theorem 12. Every I-aware, leaderless and 2-way population protocol P = (Q,T,{qo}, 0,
O) computing x > n has at least logs n states.

Proof. Let Q1 C @ be the set of states from the definition of 1-awareness. Since L = 0,
Co = {n-qo§ is the smallest initial configuration with output 1, and by Lemma 10 the smallest
initial configuration from which some state ¢ € Q; is coverable. Let Cy = C' > {¢;§. Since
¢1 # qo, we have ¢; € [r]*. By Proposition 11, and since P is 2-way, ¢; is also coverable from
O} satisfying [C)] = [Co] = {qo} and ||C}| = 3!9I. Thus, C} = {39 - ¢o§. By minimality of
n, we get n < 3!9l and thus |Q| > logs n. <

Observe that the proof Theorem 12 uses the fact that P is leaderless to conclude
Ch = 13121 0§ from [C})] = [Co] and ||C}]|| = 319!, which is not necessarily true with leaders.

Protocols with leaders. In the case of protocols with leaders we obtain a lower bound from
Rackofl’s procedure for the coverability problem of vector addition systems [17].

A wvector addition system of dimension k (k-VAS) is a pair (A, ), where vy € N* is
an initial vector and A C ZF is a set of vectors. An execution of a k-VAS is a sequence
Vo1 - - - v, of vectors of N* such that each v;; = v; +a; for some a; € A. We write v 5 o,
and say that the execution has length n. A vector v is coverable in (A, vg) if vg 5 v/ for
some v’ > v. The size of a vector v € Z* is Y, ;.. size(max(|v(i)[,1)). The size of a set of
vectors is the sum of the size of its vectors. In [17] Rackoff proves:

» Theorem 13 ([17]). Let A C Z* be a set of vectors of size at most n and dimension k < n,
and let vo € N¥ be a vector of size n. For every v € N¥_ if v is coverable in (A, vy), then v
is coverable by means of an execution of length at most 23™"

Using a standard construction from the Petri net literature, it can be shown that every
2-way protocol P with n states can be simulated by a VAS Vp of size at most 12n8, where
each execution of P has a corresponding execution twice as long in Vp. Thus, by Theorem 13:

» Proposition 14. Let P = (Q,T,1,L,0) be a 2-way population protocol and let q € Q.
For every configuration C, if q is coverable from C, then it is coverable by means of a finite
exzecution of length at most 2™ =1 where m = 12|Q|®.

Using the above proposition, we derive:

» Theorem 15. Let P be a 1-aware and 2-way population protocol. For everyn > 2, if P
computes x > n, then P has at least (loglog(n)/151)'/9 states.

6 Protocols for systems of linear inequalities

In Section 3, we have shown that the predicate = > ¢ can be computed by a leaderless
protocol with O(log c) states. In this section, we will see that adding a few leaders allows to
compute systems of linear inequalities. More formally, we show that there exists a protocol
with O((m+k)-log(dm)) states and O(m -log(dm)) leaders computing the predicate Az > ¢,
where A € Z™** ¢ € Z™ and d is the the largest absolute value occuring in A and c.

There are three crucial points that make systems of linear inequalities more complicated
than flock-of-birds predicates: (1) variables have coefficients, (2) coefficients may be positive
or negative, and (3) they are the conjunction of linear inequalities. We will explain how to
address the two first points by considering the special case of linear inequalities. We will
then discuss how to handle the third point.
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Linear inequalities. Note that the predicate ), .., a;z; > cis equivalent to Y, o, ., a;z;+
(1—c) > 0. Therefore, it suffices to describe protocols for predicates of the form >, ;<. a;x;+
¢ > 0. In order to make the presentation more pleasant, we will first restrain ourselves to the
predicate ax — by + ¢ > 0 for some fixed a,b € N and ¢ € Z. Such a predicate admits the
difficult aspects, i.e. coefficients and negative numbers. Moreover, as we will see, handling
more than two variables is not an issue.

Let us now describe a protocol P}, for the predicate ax — by + ¢ > 0. The idea
is to keep a representation of ax — by + ¢ throughout executions of the protocol. Let
n = size(max(log|al,log |b],log|c|,1)). As in Section 3, we construct states to represent
powers of two. However, this time, we also need states to represent negative numbers:

— def

QF={+2':0<i<n} and QT ={-2":0<i<n}.

def def

We also need states X = {x,y} for the variables, and two additional states R = {+0, —0}.
The set of all states of Py, is @ = X UQT UQ™ U R, and the initial states are I = X.

Let us explain the purpose of R. Intuitively, we would like to have the transitions:
x> {42 i € bits(a)§ and y— (=27 € bits(|b])§.

This way, every agent in state x (resp. y) could be converted to the binary representation of
a (resp. b). Unfortunately, this is not possible as these transitions produce more states than
they consume. This is where leaders become useful. If R initially contains enough leaders,
then R can act as a reservoir of extra states which allow to “pad” transitions. More formally,
let rep(z): Z — Pop(Q \ X) be defined as follows:

{421 :i € bits(2)§  if 2 >0,
rep(z) = ¢ {—2':i € bits(|z])§ if z <0,
1—05 if 2 =0,

For every r € R, we add to Py, the following transitions:

addxr @ x,7,7,...,7—=>rep(a) and addy,: y,r,7,...,r > rep(d).
N—— ——

|rep(a)]—1 times |rep(b)|—1 times

We set the leaders to L = rep(c) + { (4n + 2) - —0§. We claim that 4n + 2 reservoir states
are enough, we will explain later why. Now, the key idea of the construction is that it is
always possible to put 2n agents back into R. Thus, fairness ensures that the number of
agents in X eventually decreases to zero, and then that the value represented over QT U Q™
is ax — by 4 c. We let the representations over Q1 and @~ “cancel out” until one side “wins”.
If the positive (resp. negative) side wins, i.e. if ax — by + ¢ > 0 (resp. ax — by + ¢ < 0), then
it signals all agents in R to move to 40 (resp. —0). To achieve this, for every 0 < i < n,
we add transition cancel; : +2%, —2! — 40, —0 to the protocol. Since bits of the positive
and negative numbers may not be “aligned”, we follow the idea of Section 3 and add further
transitions to change representations to equivalent ones:

up) 42 42— 421 4o, downj,, . : 42" i 428 420

up; : —21 —2' s —2iF1 o, down;, . : =2 i —20 20

where 0 < i < n and r € R. Finally, for every 0 < ¢ < n, we add transitions to signal which
side wins:

signal} : +2 —0+— +2i 40, signal : —0,+0 — —0, —0,
signal; : —2 40— —2! —0.
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Note that —0 “wins” over 40 because the predicate is false whenever ax — by + ¢ = 0. It
remains to specify the output mapping of P}, which we define as expected, i.e. O(q) = if
g € QT U{+0}, and O(q) = 0 otherwise.

Let us briefly explain why 4n + 2 reservoir states suffice. At any reachable configuration
C, transitions of the form up;-|r and up; can occur until C(£2') < 1 for every 0 < i < n.
Afterwards, at most 2n agents remain in these states. There can however be many agents in
S = {+2", —2"}. But, these two states represent numbers respectively larger and smaller
than any coefficient, hence the number of agents in S can only grow by one each time a state
from X is consumed. Overall, this means that C' = C’ for some C’ such that C’(R) > 2n.

In order to handle more variables {x1, o, ...,z }, note that all we need to do is to set
X = {x1,X2,...,xx} instead, and add transitions addy, , for every 1 <i < k and r € R.

By applying Lemma 3 on Py, we obtain:

» Theorem 16. Let a1, aq,...,a5,¢c € Z and let n = size(max(|a1],|az|,. .., |akl,|c|,1)).
There exists a 2-way population protocol, with at most 10kn states and at most bn+ 2 leaders,
that computes the predicate Zlgigk a;x; +c¢> 0.

Conjunction of linear inequalities. We briefly explain how to lift the construction for linear
inequalities to systems of linear inequalities. The details of the formal construction and
proofs are a bit involved, and are thus deferred to the full version of this paper. Let us fix
some A € Z™** and ¢ € Z™. We sketch a protocol Psys for the predicate Az + ¢ > 0. For
every 1 < i < m, we construct a protocol P; for the predicate Zlgjgk Aij-xj+¢>0.
Protocol P; is obtained as presented earlier, but with some modifications. The largest power
of two is picked as n = size(d) + [log 2m?] where

def

d=max(1,{|4;;|:1<i<m,1<j <k}, {lc|:1<1<m}).

The reason for this modification is that the number of agents, in a largest power of two,
should now increase by at most 1/m each time an initial state is consumed, as opposed to 1.

We also replace each positive state ¢ € QT of P; by two states qo and ¢q1, its 0-copy and
1-copy. The reason behind this is that positive states should not necessarily have output 1.
Indeed, one linear inequality may be satisfied while the other ones are not. Therefore, —0
and each negative state ¢ € QQ~ should be able to signal a 0-consensus to the positive states.
The transitions of the form up;r, down;f and cancel; are adapted accordingly.

Protocol Py is obtained as follows. First, subprotocols Py, P, ..., Py, are put side by
side. Their initial (resp. reservoir) states are merged into a single set X (resp. R). For
every 1 < j <k, transitions addy, , of the m subprotocols are replaced by a single transition
consuming x;j, and enough reservoir states, and producing rep(4; ;) in each subprotocol P;,
where 1 <7 < m. The signal mechanisms are replaced by these new ones:

the O-copy of state +2° of all subprotocols can meet to convert —0 to 40,
state 40 can convert any positive state to its 1-copy,

state —O0 or any negative state can convert 40 to —0, and any positive state to its O-copy.
A careful analysis of the formal construction of Psys combined with Lemma 3 yields:

» Theorem 17. Let A € Z™** ¢ € Z™ andn = size(max (1, {|4; ;| : 1 <i <m,1 < j <k}),
{le;| : 1 <@ <'m}). There exists a 2-way population protocol, with at most 27(log m+n)(m+k)
states and at most 14m(logm + n) leaders, that computes the predicate Ax + ¢ > 0.



M. Blondin, J. Esparza, and S. Jaax

7 Conclusion and further work

We have initiated the study of the state space size of population protocols as a function of
the size of the predicate they compute. Previous lower bounds were only for single predicates,
like the majority predicate x < y, or for a variant of the model in which the number of states
is a function of the number of agents.

There are many open questions. We conjecture that systems of linear inequalities can
be computed by leaderless protocols with a polynomial number of states. A second, very
intriguing question is whether the function f(n) giving the minimal number of states of
a two-leader protocol computing = > n exhibits large gaps, i.e., if there are (families of)
numbers ¢ and ¢ + 1 such that f(c) is exponentially larger than f(c+ 1). A third question
is whether there exist protocols with O(logloglogn) states for the flock-of-birds predicates
x > n. Such protocols cannot be 1-aware, but they might exist. Their existence is linked to
the long standing question of whether the reachability problem for reversible VAS (a model
equivalent to the commutative semigroup representations of [15]) has the same complexity
as reachability for arbitrary VAS (see [12] for a brief introduction).
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