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Abstract
Minimizing the sum of weighted completion times on m identical parallel machines is one of the
most important and classical scheduling problems. For the stochastic variant where processing
times of jobs are random variables, Möhring, Schulz, and Uetz (1999) presented the first and
still best known approximation result, achieving, for arbitrarily many machines, performance
ratio 1 + 1

2 (1 + ∆), where ∆ is an upper bound on the squared coefficient of variation of the
processing times. We prove performance ratio 1 + 1

2 (
√

2 − 1)(1 + ∆) for the same underlying
algorithm—theWeighted Shortest Expected Processing Time (WSEPT) rule. For the special case
of deterministic scheduling (i.e., ∆ = 0), our bound matches the tight performance ratio 1

2 (1+
√

2)
of this algorithm (WSPT rule), derived by Kawaguchi and Kyan in a 1986 landmark paper. We
present several further improvements for WSEPT’s performance ratio, one of them relying on
a carefully refined analysis of WSPT yielding, for every fixed number of machines m, WSPT’s
exact performance ratio of order 1

2 (1 +
√

2)−O(1/m2).
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1 Introduction

In an archetypal machine scheduling problem, n independent jobs have to be scheduled on m
identical parallel machines or processors. Each job j is specified by its processing time pj > 0
and by its weight wj > 0. In a feasible schedule, every job j is processed for pj time units
on one of the m machines in an uninterrupted fashion, and every machine can process at
most one job at a time. The completion time of job j in some schedule S is denoted by CS

j .
The goal is to compute a schedule S that minimizes the total weighted completion time
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∑n
j=1 wjC

S
j . In the standard classification scheme of Graham, Lawler, Lenstra, and Rinnooy

Kan [7], this NP-hard scheduling problem is denoted by P ||
∑
wjCj .

Weighted Shortest Processing Time Rule. By a well-known result of Smith [24], sequen-
cing the jobs in order of non-increasing ratios wj/pj gives an optimal single-machine schedule.
List scheduling in this order is known as the Weighted Shortest Processing Time (WSPT) rule
and can also be applied to identical parallel machines, where it is a 1

2 (1 +
√

2)-approximation
algorithm; see Kawaguchi and Kyan [14]. A particularly remarkable aspect of Kawaguchi
and Kyan’s work is that, in contrast to the vast majority of approximation results, their
analysis does not rely on some kind of lower bound. Instead, they succeed in explicitly
identifying a class of worst-case instances. In particular, the performance ratio 1

2 (1 +
√

2) is
tight: For every ε > 0 there is a problem instance for which WSPT has approximation ratio
at least 1

2 (1 +
√

2)− ε. The instances achieving these approximation ratios, however, have
large numbers of machines when ε becomes small. Schwiegelshohn [20] gives a considerably
simpler version of Kawaguchi and Kyan’s analysis.

Stochastic Scheduling. Many real-world machine scheduling problems exhibit a certain
degree of uncertainty about the jobs’ processing times. This characteristic is captured
by the theory of stochastic machine scheduling, where the processing time of job j is no
longer a given number pj but a random variable pj . As all previous work in the area, we
always assume that these random variables are stochastically independent. At the beginning,
only the distributions of these random variables are known. The actual processing time
of a job becomes only known upon its completion. As a consequence, the solution to a
stochastic scheduling problem is no longer a simple schedule, but a so-called non-anticipative
scheduling policy. Precise definitions on stochastic scheduling policies are given by Möhring,
Radermacher, and Weiss [16]. Intuitively, whenever a machine is idle at time t, a non-
anticipative scheduling policy may decide to start a job of its choice based on the observed
past up to time t as well as the a priori knowledge of the jobs processing time distributions
and weights. It is, however, not allowed to anticipate information about the future, i.e., the
actual realizations of the processing times of jobs that have not yet finished by time t.

It follows from simple examples that, in general, a non-anticipative scheduling policy
cannot yield an optimal schedule for each possible realization of the processing times. We
are therefore looking for a policy which minimizes the objective in expectation. For the
stochastic scheduling problem considered in this paper, the goal is to find a non-anticipative
scheduling policy that minimizes the expected total weighted completion time. This problem
is denoted by P |pj ∼ stoch|E[

∑
wjCj ].

Weighted Shortest Expected Processing Time Rule. The stochastic analogue of the
WSPT rule is greedily scheduling the jobs in order of non-increasing ratios wj/E[pj ].
Whenever a machine is idle, the Weighted Shortest Expected Processing Time (WSEPT) rule
immediately starts the next job in this order. For a single machine this is again optimal; see
Rothkopf [18]. For identical parallel machines, Cheung, Fischer, Matuschke, and Megow [3]
and Im, Moseley, and Pruhs [10] independently show that WSEPT does not even achieve
constant performance ratio. More precisely, for every R > 0 there is a problem instance for
which WSEPT’s expected total weighted completion time is at least R times the expected
objective value of an optimal non-anticipative scheduling policy. In the special case of
exponentially distributed processing times, Jagtenberg, Schwiegelshohn, and Uetz [12] show a
lower bound of 1.243 on WSEPT’s performance. On the positive side, WSEPT is an optimal
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Figure 1 Bounds on WSEPT’s performance ratio.

policy for the special case of unit weight jobs with stochastically ordered processing times,
P |pj ∼ stoch(�st)|E[

∑
Cj ]; see Weber, Varaiya, and Walrand [25]. Moreover, Weiss [26, 27]

proves asymptotic optimality of WSEPT for bounded second moments of the residual pro-
cessing time distributions. Möhring, Schulz, and Uetz [17] show that WSEPT achieves
performance ratio 1 + 1

2 (1 + ∆)(1− 1
m ), where ∆ is an upper bound on the squared coefficient

of variation of the processing times.

Further Approximation Results from the Literature. While there is a PTAS for the
deterministic problem P ||

∑
wjCj [23], no constant-factor approximation algorithm is known

for the stochastic problem P |pj ∼ stoch|E[
∑
wjCj ]. WSEPT’s performance ratio 1+ 1

2 (1+∆)
(for arbitrarily many machines) proven by Möhring et al. [17] is the best hitherto known
performance ratio. The only known approximation ratio not depending on the jobs’ squared
coefficient of variation ∆ is due to Im et al. [10], who, for the special case of unit job weights
P |pj ∼ stoch|E[

∑
Cj ], present an O(log2 n+m logn)-approximation algorithm.

The performance ratio 1 + 1
2 (1 + ∆) has been carried over to different generalizations of

P |pj ∼ stoch|E[
∑
wjCj ]. Megow, Uetz, and Vredeveld [15] show that it also applies if jobs

arrive online in a list and must immediately and irrevocably be assigned to machines, on
which they can be sequenced optimally. An approximation algorithm with this performance
ratio for the problem on unrelated parallel machines is designed by Skutella, Sviridenko, and
Uetz [22]. If these two features are combined, i.e., in the online list-model with unrelated
machines, Gupta, Moseley, Uetz, and Xie [8] develop a (8 + 4∆)-approximation algorithm.

The performance ratios are usually larger if jobs are released over time: In the offline
setting with identical machines the best known approximation algorithm has performance
ratio 2 + ∆; see Schulz [19]. This performance ratio is also achieved for unrelated machines
[22] and by a randomized online algorithm [19]. In the online setting there exist furthermore
a deterministic (max{2.618, 2.309 + 1.309∆})-approximation on identical machines [19] and
a deterministic (144 + 72∆)-approximation on unrelated machines [8].

Our Contribution and Outline. We present the first progress on the approximability of
the basic stochastic scheduling problem on identical parallel machines with expected total
weighted completion time objective P |pj ∼ stoch|E[

∑
wjCj ] since the seminal work of

Möhring et al. [17]; see Figure 1. We prove that WSEPT achieves performance ratio

STACS 2018
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Figure 2 Graph of the function m 7→ 1 + 1
2 (
√

(2m− km)km − km)/m, which for m ∈ N gives
the worst-case approximation ratio of WSPT for P ||

∑
wjCj with m machines (dots), compared to

the machine-independent Kawaguchi-Kyan bound.

1 + 1
2 min

{√
(2m− km)km − km

m
,

1
1 + min{2,

√
2 + 2∆}

}
(1 + ∆), (1)

where km :=
⌊(

1 − 1
2
√

2
)
m
⌉
is the nearest integer to

(
1 − 1

2
√

2
)
m. Notice that, for every

number of machines m, the performance ratio given by the first term of the minimum in (1)
is bounded from above by 1 + 1

2 (
√

2− 1)(1 + ∆), and for m→∞ it converges to this bound.
As (1 + min{2,

√
2 + 2∆})−1 ≤

√
2− 1 for all ∆ > 0, when considering an arbitrary number

of machines, the second term in the minimum dominates the first term. In the following, we
list several points that emphasize the significance of the new performance ratio (1).

For the special case of deterministic scheduling (i.e., ∆ = 0), the machine-independent
performance ratio in (1) matches the Kawaguchi-Kyan bound 1

2 (1 +
√

2), which is known
to be tight [14]. In particular, we dissolve the somewhat annoying discontinuity of the
best previously known bounds [14, 17] at ∆ = 0; see Figure 1.
Again for deterministic jobs, our machine-dependent bound 1+ 1

2 (
√

(2m− km)km−km)/m
is tight and slightly improves the 30 years old Kawaguchi-Kyan bound for every fixed
number of machines m; see Figure 2.
For exponentially distributed processing times (∆ = 1), our results imply that WSEPT
achieves performance ratio 4/3. This solves an open problem by Jagtenberg et al. [12],
who give a lower bound of 1.243 on WSEPT’s performance and ask for an improvement
of the previously best known upper bound of 2− 1/m due to Möhring et al. [17].
WSEPT’s performance bound due to Möhring et al. [17] also holds for the MinIncrease
policy, introduced by Megow et al. [15], which is a fixed-assignment policy, i.e. it determines
for each job beforehand on which machine it is processed. Our stronger bound, together
with a lower bound in [22], shows that WSEPT beats every fixed-assignment policy.

The improved performance ratio in (1) is derived as follows. In Section 2 we present one of
the key results of this paper (see Theorem 1 below): If WSPT has performance ratio 1 +β for
some β, then WSEPT achieves performance ratio 1 + β(1 + ∆) for the stochastic scheduling
problem. For the Kawaguchi-Kyan bound 1 + β = 1

2 (1 +
√

2), this yields performance
ratio 1 + 1

2 (
√

2 − 1)(1 + ∆). It is also interesting to notice that the performance ratio of
Möhring et al. [17] follows from this theorem by plugging in 1 + β = 3/2− 1/(2m), which
is WSPT’s performance ratio obtained from the bound of Eastman, Even, and Isaacs [4];
see Kawaguchi and Kyan [14]. We generalize Theorem 1 to performance ratios w.r.t. the
weighted sum of α-points as objective function, where the α-point of a job j is the point in
time when it has been processed for exactly αpj time units.
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The theorems derived in Section 2 provide tools to carry over bounds for the WSPT rule
to the WSEPT rule. The concrete performance ratio for the WSEPT rule obtained this
way thus depends on good bounds for the WSPT rule. In Section 3 we derive performance
ratios for WSPT w.r.t. the weighted sum of α-points objective. For α = 1

2 this performance
ratio follows easily from a result by Avidor, Azar, and Sgall [1]. As a consequence we obtain
performance ratio 1 + 1

6 max{2, 1 + ∆} for WSEPT. By optimizing the choice of α, we finally
obtain the performance ratio 1 + 1

2 (1 + min{2,
√

2 + 2∆})−1(1 + ∆). The various bounds
derived in Sections 2 and 3 are illustrated in Figure 1. Finally, in Section 4 the analysis
of Schwiegelshohn [20] for the WSPT rule is refined for every fixed number of machines m,
entailing the machine-dependent bound for the WSEPT rule in (1).

Due to space constraints, some proofs are omitted in this extended abstract. They can
be found in the full version of this paper [11].

2 Performance ratio of the WSEPT rule

Let ∆ ≥ Var[pj ]/E[pj ]2 for all j ∈ {1, . . . , n}. In Theorems 1 and 3 we demonstrate how
performance ratios for the WSPT rule for deterministic scheduling can be carried over to
stochastic scheduling. Theorem 1 starts out from a performance ratio for WSPT with respect
to the usual objective function: the weighted sum of completion times. In Theorem 3 this is
generalized insofar as a performance ratio for WSPT with the weighted sum of α-points as
objective function is taken as a basis. Only Theorem 1 is proven in this extended abstract.

I Theorem 1. If the WSPT rule on m machines has performance ratio 1 + βm for the
problem P ||

∑
wjCj, then the WSEPT rule achieves performance ratio 1 + βm(1 + ∆) for

P |pj ∼ stoch|E[
∑
wjCj ] on m machines.

The reason why the bound for the WSPT rule does not directly carry over to the WSEPT
rule is that under a specific realization of the processing times the schedule obtained by the
WSEPT policy may differ from the WSPT schedule for this realization. Still, under every
realization the WSEPT schedule is a list schedule. Hence, usually a bound that is valid
for every list schedule is used: The objective value of a list schedule on m machines is at
most 1/m times the objective value of the list schedule on a single machine plus (m− 1)/m
times the weighted sum of processing times. This bound, holding because a list scheduling
policy assigns each job to the currently least loaded machine, is applied realizationwise
to obtain a corresponding bound on the expected values in stochastic scheduling (cf. [17,
Lemma 4.1]), which is then compared to an LP-based lower bound on the expected total
weighted completion time under an optimal scheduling policy.

In order to benefit from the precise bounds known for the WSPT rule nevertheless, we
regard the following auxiliary stochastic scheduling problem: For each job, instead of its
weight wj , we are given a weight factor ρj . The actual weight of a job is ρj times its actual
processing time, i.e., if a job takes longer, it also becomes more important. The goal is again
to minimize the total weighted completion time. For the thus defined stochastic scheduling
problem list scheduling in order of the ρj has the nice property that it creates a WSPT
schedule in every realization. So, any performance ratio of the WSPT rule directly carries
over to this list scheduling policy for the auxiliary scheduling problem. In the following proof
of Theorem 1 we first compare the expected total weighted completion time of a WSEPT
schedule for the original problem to the expected objective value of the schedule obtained by
list scheduling in order of ρj for the auxiliary problem, then apply the performance ratio
of the WSPT rule, and finally compare the expected total weighted completion time of an

STACS 2018
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optimal schedule for the auxiliary problem to the expected objective value of the schedule
obtained by an optimal policy for the original problem. The transitions between the two
problems lead to the additional factor 1 + ∆ in the performance ratio.

Proof. Consider an instance of P |pj ∼ stoch|E[
∑
wjCj ] consisting of n jobs andm machines,

and let β := βm and ρj := wj/E[pj ] for j ∈ {1, . . . , n}. For every realization ~p = (p1, . . . , pn)
of the processing times we consider the instance I(~p) of P ||

∑
wjCj which consists of n jobs

with processing times p1, . . . , pn and weights ρ1p1, . . . , ρnpn, so that the jobs in this instance
have Smith ratios ρ1, . . . , ρn under all possible realizations. Therefore, for every realization ~p
the schedule obtained by the WSEPT policy is a WSPT schedule for I(~p). Let CWSEPT

j (~p)
denote the completion time of job j in the schedule obtained by the WSEPT policy in the
realization ~p, let C∗j (I(~p)) denote its completion time in an optimal schedule for I(~p), and
let CΠ∗

j (~p) denote j’s completion time in the schedule constructed by an optimal stochastic
scheduling policy under the realization ~p. For every realization ~p of the processing times,
since the WSEPT schedule obeys the WSPT rule for I(~p), its objective value is bounded by

n∑
j=1

(ρjpj)CWSEPT
j (~p) ≤ (1 + β) ·

n∑
j=1

(ρjpj)C∗j (I(~p)).

As the schedule obtained by an optimal stochastic scheduling policy is feasible for I(~p),
n∑
j=1

(ρjpj)C∗j (I(~p)) ≤
n∑
j=1

(ρjpj)CΠ∗
j (~p).

By putting these two inequalities together and taking expectations, we get the inequality

E

 n∑
j=1

ρjpjC
WSEPT
j

 ≤ (1 + β) · E

 n∑
j=1

ρjpjC
Π∗
j

 ,
where CWSEPT

j = CWSEPT
j ((p1, . . . ,pn)) and CΠ∗

j = CΠ∗
j ((p1, . . . ,pn)). Using the latter

inequality, we can bound the expected total weighted completion time of the WSEPT rule:

E

 n∑
j=1

wjC
WSEPT
j

 =
n∑
j=1

ρjE[pj ]E[CWSEPT
j ]

(∗)=
n∑
j=1

ρjE[pjCWSEPT
j ]−

n∑
j=1

ρjVar[pj ] = E

 n∑
j=1

ρjpjC
WSEPT
j

− n∑
j=1

ρjVar[pj ]

≤ (1 + β)E

 n∑
j=1

ρjpjC
Π∗
j

− n∑
j=1

ρjVar[pj ] = (1 + β)
n∑
j=1

ρjE[pjCΠ∗
j ]−

n∑
j=1

ρjVar[pj ]

(∗)= (1 + β) ·

 n∑
j=1

ρjE[pj ]E[CΠ∗
j ] +

n∑
j=1

ρjVar[pj ]

− n∑
j=1

ρjVar[pj ]

= (1 + β) ·
n∑
j=1

wjE[CΠ∗
j ] + β

n∑
j=1

ρjVar[pj ] ≤ (1 + β) ·
n∑
j=1

wjE[CΠ∗
j ] + ∆β

n∑
j=1

wjE[pj ]

≤ (1 + β(1 + ∆)) ·
n∑
j=1

wjE[CΠ∗
j ] = (1 + β(1 + ∆)) · E

 n∑
j=1

wjC
Π∗
j

 .
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The equalities marked with (∗) hold because for any stochastic scheduling policy Π and all j

E[pjCΠ
j ] = E[pjSΠ

j ] + E[p2
j ] = E[pj ]E[SΠ

j ] + E[pj ]2 + Var[pj ] = E[pj ]E[CΠ
j ] + Var[pj ],

where SΠ
j denotes the starting time of job j under policy Π. The independence of pj and SΠ

j

follows from the independence of the processing times and the non-anticipativity of policy Π,
and the last inequality uses the fact that E[pj ] ≤ E[CΠ∗

j ] for every job j. J

By plugging in the Kawaguchi-Kyan bound, we immediately get the following performance
ratio (see Figure 1).

I Corollary 2. The WSEPT rule has performance ratio 1 + 1
2 (
√

2 − 1) · (1 + ∆) for the
problem P |pj ∼ stoch|E[

∑
wjCj ].

For α ∈ (0, 1] the α-point CS
j (α) of a job j is the (first) point in time at which it has been

processed for αpj time units. Introduced by Hall, Shmoys, and Wein [9] in order to convert
a preemptive schedule into a non-preemptive one, the concept of α-points is often used in
the design of algorithms (see e.g. [5, 2, 6, 21]). In contrast, we use them in the definition of
an alternative objective function in order to improve the analysis of the WSEPT rule.

We consider as objective function the weighted sum of α-points
∑n
j=1 wjC

S
j (α) for

α ∈ (0, 1]. This differs only by the constant (1 − α)
∑n
j=1 wjpj from the weighted sum of

completion times. So as for optimal solutions the objective functions are equivalent. The
same applies to the stochastic variant, where the two objectives differ by (1−α)

∑n
j=1 wjE[pj ].

We now generalize Theorem 1 to the (expected) weighted sum of α-points.

I Theorem 3. If the WSPT rule has performance ratio 1 + β for the deterministic problem
P ||
∑
wjCj(α), then the WSEPT rule has performance ratio 1 + β(1 + ∆) for the problem

P |pj ∼ stoch|E[
∑
wjCj(α)] and 1 + β ·max{1, α(1 + ∆)} for P |pj ∼ stoch|E[

∑
wjCj ].

The proof relies on the same idea as the proof of Theorem 1, namely to apply the
bound for P ||

∑
wjCj(α) realizationwise to the auxiliary stochastic problem described above.

Theorem 1 follows from Theorem 3 by plugging in α = 1.

3 Performance ratios for WSPT with weighted sum of α-points
objective

In this section we derive performance ratios for P ||
∑
wjCj(α). The two classical performance

guarantees for P ||
∑
wjCj by Eastman, Even, and Isaacs [4] and by Kawaguchi and Kyan [14]

can both be generalized to this problem. While the Eastman-Even-Isaacs bound can be
established for every α ∈ (0, 1], the Kawaguchi-Kyan bound carries over only for α ∈ [ 1

2 , 1].
In return, the generalized Kawaguchi-Kyan bound is better for these α.

For a problem instance I denote by N (I) its job set, by CWSPT
j (α)(I) the α-point of

job j in the WSPT schedule for I, and by C∗j (α)(I) the α-point of job j in some fixed (‘the’)
optimal schedule for I. Hence CWSPT

j (1)(I) = CWSPT
j (I) is the completion time of j in the

WSPT schedule, and analogously for the optimal schedule. Furthermore, let MWSPT
i (I) and

M∗i (I) denote the load of the i-th machine and MWSPT
min (I) and M∗min(I) denote the load of

the least loaded machine, in the WSPT schedule and the optimal schedule for I, respectively.
Moreover, let WSPTα(I) and OPTα(I) denote the weighted sum of α-points of the schedule
obtained by the WSPT rule and of the optimal schedule, respectively. Finally, denote by
λα(I) := WSPTα(I)/OPTα(I) the approximation ratio of the WSPT rule for the instance I.
We assume that if multiple jobs have the same ratio wj/pj , the WSPT rule processes them
according to an arbitrary job order given as part of the input.

STACS 2018
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It is a well-known fact (see e.g. [20]) that for the weighted sum of completion times
objective the worst case for the WSPT rule occurs if all jobs have the same Smith ratio wj/pj .
This generalizes to the weighted sum of α-points objective.

I Lemma 4. For every α ∈ [0, 1] and every instance I of P ||
∑
wjCj(α) there is an instance

I ′ of P ||
∑
pjCj(α) with the same number of machines and λα(I ′) ≥ λα(I).

The proof proceeds in the same way as the proof of Schwiegelshohn [20]. For unit Smith
ratio instances the WSPT rule is nothing but list scheduling according to an arbitrary given
order. Restricting to them has the benefit that the objective value of a schedule S can be
computed easily from its machine loads, namely

n∑
j=1

pjC
S
j ( 1

2 ) = 1
2

m∑
i=1

(MS
i )2. (2)

This classical observation can for example be found in the paper of Eastman et al. [4].
For the sum of the squares of the machine loads as objective function Avidor, Azar, and

Sgall [1] showed that WSPT has performance ratio 4/3. So this also holds for the weighted
sum of 1

2 -points. By plugging it in into Theorem 3, we get the following corollary.

I Corollary 5. The WSEPT rule has performance ratio 1+ 1
6 max{2, 1+∆} for the scheduling

problem P |pj ∼ stoch|E[
∑
wjCj ].

Now we generalize the bound of Eastman, Even, and Isaacs [4].

I Theorem 6 (Generalized Eastman-Even-Isaacs bound). For every α ∈ (0, 1] the WSPT rule
has performance ratio

1 + m− 1
2αm ≤ 1 + 1

2α

for the problem P ||
∑
wjCj(α).

I Remark. The generalized Eastman-Even-Isaacs bound does not lead to better performance
ratios for the WSEPT rule for P |pj ∼ stoch|E[

∑
wjCj ] than the bound of Möhring et

al. [17], as plugging in β = m−1
2αm into Theorem 3 leads to a performance ratio of

1 + m− 1
2αm ·max{1, α(1 + ∆)} ≥ 1 + 1

2(1 + ∆)
(

1− 1
m

)
.

So far, by choosing α = 1 and α = 1
2 we have derived the two performance ratios for the

WSEPT rule labeled by [Cor. 2] and [Cor. 5] in Figure 1. The proofs of Schwiegelshohn [20]
and of Avidor et al. [1] of the underlying bounds for WSPT are quite similar. Both consist of
a sequence of steps that reduce the set of instances to be examined. In every such reduction
step it is shown that for any instance I of the currently considered set there is an instance
I ′ in a smaller set for which the approximation ratio of WSPT is not better. This can be
generalized to arbitrary α ∈ [ 1

2 , 1]. The resulting performance ratios for WSPT lead by
means of Theorem 3 to a family of different performance ratios for the WSEPT rule. Note
that the performance ratio of WSEPT following from the result of Avidor et al. for α = 1

2 has
better behavior for large values of ∆, while the performance ratio following from Kawaguchi
and Kyan’s result for α = 1 is better for small ∆. This behavior generalizes to α ∈ [ 1

2 , 1]: the
smaller the underlying α, the better the ratio for large ∆ but the worse the ratio for small ∆.
Finally, we take for every ∆ > 0 the minimum of all the derived bounds.
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I Theorem 7 (Generalized Kawaguchi-Kyan bound). For every α ∈ [ 1
2 , 1] the WSPT rule has

performance ratio

1 + 1
2α+

√
8α

for P ||
∑
wjCj(α), and this bound is tight.

Combining this bound with Theorem 3 yields for every α ∈ [ 1
2 , 1] the performance ratio

1 + 1
2 max{1/(α+

√
2α), (1 + ∆)/(1 +

√
2/α)} of WSEPT for P |pj ∼ stoch|E[

∑
wjCj ]. This

is minimized at α := 1/min{2, 1+∆}, yielding the following performance ratio (see Figure 1).

I Corollary 8. For P |pj ∼ stoch|E[
∑
wjCj ] the WSEPT rule has performance ratio

1 + 1
2 ·

1
1 + min{2,

√
2(1 + ∆)}

· (1 + ∆).

Proof sketch of Theorem 7

The proof of Theorem 7 is analogous to the proof of Schwiegelshohn [20], consisting of
a sequence of reduction lemmas. Let α ∈ [ 1

2 , 1], assume that p1 ≥ · · · ≥ pn, and let
` := max{j ∈ {1, . . . ,m} | pj ≥ 1

m−j+1
∑n
j′=j pj′}. Then we call the ` jobs with largest

processing times long jobs and denote the set of long jobs by L.

I Lemma 9. For every instance I of P ||
∑
pjCj(α) and every ε > 0 there is an instance

I ′ = I ′(ε) of P ||
∑
pjCj(α) with the same number of machines such that λα(I ′) ≥ λα(I) and

1. MWSPT
min (I ′) = 1,

2. every job j with SWSPT
j (I ′) < MWSPT

min (I ′) fulfills CWSPT
j (I ′) ≤MWSPT

min (I ′) and p′j < ε,
3. in the optimal schedule for I ′ every machine is used only by a single long job or has load

M∗min(I ′).
Like in Schwiegelshohn’s paper, the lemma is proven by scaling the instance and splitting all
jobs with SWSPT

j < MWSPT
min until they satisfy the conditions. Note that the restriction to

α ≥ 1
2 is needed for this lemma because for smaller α splitting jobs increases the objective

value and can thence reduce the performance ratio.
From now on, we focus on instances I that fulfill the requirements of Lemma 9 for some

0 < ε < MWSPT
min (I). For a subset J ⊆ N of jobs we write p(J ) :=

∑
j∈J pj . We call the

jobs in S := {j ∈ {1, . . . , n} | SWSPT
j (I) < MWSPT

min } short jobs. This set is disjoint from L
because all jobs in S have processing time pj < ε, and all jobs in L have processing time
pj ≥ p` ≥ 1

m−`+1
∑n
j′=` pj′ ≥MWSPT

min > ε. Finally, we call the jobs inM := N (I) \ (S ∪ L)
medium jobs. For an instance I of the type of Lemma 9, in the optimal schedule every
machine that does not process a long job has load M∗min(I) = p(M∪S)/(m− |L|). We may
assume that every machine processes at most one non-short job (see Figure 3).

I Lemma 10. For every instance I of P ||
∑
pjCj(α) satisfying the conditions of Lemma 9

there is an instance I ′ with λα(I ′) ≥ λα(I) that still satisfies the conditions of Lemma 9 and
has the additional property that the processing times of all non-short jobs are equal.

The proof is an adapted version of the proof of Corollary 5 in the paper of Schwiegelshohn.
Since by Lemma 9 reducing ε can only increase the approximation ratio, the worst-case

approximation ratio is approached in the limit ε → 0, which we will subsequently further
investigate. In the limit the sum of the squared processing times of the short jobs is negligible,
wherefore the limits for ε→ 0 of the objective values of the WSPT schedule and the optimal

STACS 2018
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t = 1

Figure 3 Optimal schedule and WSPT schedule for instance satisfying the conditions of Lemma 9.

schedule for an instance I(ε) of the type of Lemma 10 only depend on two variables: the
ratio s between the numbers of non-short jobs and machines and the duration x of the
non-short jobs. The limit of the objective value of the WSPT schedule is given by

lim
ε→0

WSPTα(I(ε)) = m

2 + smx(1 + αx).

For the optimal schedule the formula depends on whether the non-short jobs are medium or
long. In the first case it is given by

lim
ε→0

OPTα(I(ε)) = m

2 (sx+ 1)2 +
(
α− 1

2

)
smx2.

and in the second case by

lim
ε→0

OPTα(I(ε)) = αsmx2 + m

2(1− s) .

So we have to determine the maximum of the function

λM(s, x) :=
m
2 + smx(1 + αx)

m
2 (sx+ 1)2 + (α− 1

2 )smx2 = 2sx(αx+ 1) + 1
s2x2 + sx((2α− 1)x+ 2) + 1

on {(s, x) | 0 ≤ s < 1, 0 ≤ x ≤ 1/(1− s)} and the maximum of

λL(s, x) :=
m
2 + smx(1 + αx)
αsmx2 + m

2(1−s)
= (1− s)(2sx(αx+ 1) + 1)

2αs(1− s)x2 + 1

on the region {(s, x) | 0 ≤ s < 1, 1/(1− s) ≤ x}.
The partial derivative ∂

∂xλM is positive on the feasible region, so for every fixed s the
maximum of λM(s, ·) is attained at x = 1

1−s , corresponding to the case that the non-short
jobs are long. This case is also captured by the function λL.

For x→∞ the function λL converges to one. Hence, for every s the maximum of λL(s, ·)
must be attained at a finite point x. The partial derivative ∂

∂xλL has only one positive root,
namely xs := (αs+

√
(2(1− s) + αs)αs)/(2αs(1− s)) > 1/(1− s). By plugging this in, we

obtain λL(s, xs) = 1 + 1
2 (
√

(2(1− s) + αs)αs/α− s). The only root of the derivative of the
function s 7→ λL(s, xs) that is less than 1 is s := 1/(2 +

√
2α). Plugging this in yields the

worst-case performance ratio

1 + 1
2α+

√
8α
.

Like the proofs of Kawaguchi and Kyan [14] and of Avidor et al. [1], this proof shows
how the worst-case instances look like: They consist of short jobs of total length m and
1/(2 +

√
2α)m long jobs of length 1 +

√
2/α. For α ∈ {1/2, 1} we recover the worst case

instances of Avidor et al. and of Kawaguchi and Kyan.
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t = 1

Figure 4 Optimal schedule and WSPT schedule for instance after the transformation of Lemma 12.

4 Performance ratio of the WSPT rule for a fixed number of
machines

In this section we analyse the WSPT rule for the problem P ||
∑
wjCj with a fixed number m

of machines. The problem instances of Kawaguchi and Kyan [14] whose approximation ratios
converge to (1 +

√
2)/2 consist of a set of infinitesimally short jobs with total processing

time m, and a set of k jobs of length 1 +
√

2, where k/m → 1 −
√

2/2. Since 1 −
√

2/2 is
irrational, the worst case ratio can only be approached if the number of machines goes to
infinity. Rounding these instances for a fixed m by choosing k as the nearest integer to(
1−

√
2

2
)
m (in the following denoted by

⌊(
1−

√
2

2
)
m
⌉
) yields at least a lower bound on the

worst-case approximation ratio for P ||
∑
wjCj . As we will see, the worst-case instances for

any fixed m look almost like that except that the length of the long jobs depends on m.

I Theorem 11. For P ||
∑
wjCj the WSPT rule has performance ratio

1 + 1
2

√
(2m− km)km − km

m
, where km :=

⌊(
1−
√

2
2

)
m

⌉
.

Moreover, this bound is tight for every fixed m ∈ N.

In the remainder we summarize the proof of this theorem. Lemmas 4 and 9 hold in
particular for the weighted sum of completion times. Since the described transformations do
not change the number of machines, also for a fixed number m of machines the worst case
occurs in an instance of the form described in Lemma 9. However, we cannot apply Lemma 10
when m is fixed because the transformation in this lemma possibly changes the number of
machines. As this is not allowed in our setting, we have to find different reductions. We
first reduce to instances with at most one medium job and then reduce further to instances
where all long jobs have equal length. Similar reductions are also carried out by Kalaitzis,
Svensson, and Tarnawski [13].

I Lemma 12. For every instance I of P ||
∑
pjCj satisfying the conditions of Lemma 9 there

is an instance I ′ with the same number of machines and λ(I ′) ≥ λ(I) that still satisfies the
conditions of Lemma 9 and has the additional property that there is at most one medium job.

For the instance I shown in Figure 3 the optimal and the WSPT schedule of the reduced
instance I ′ are shown in Figure 4.

I Lemma 13. For every instance I of P ||
∑
pjCj satisfying the conditions of Lemma 12

there is an instance I ′ with the same number of machines and λ(I ′) ≥ λ(I) that still satisfies
the conditions of Lemma 12 and additionally all long jobs have equal processing time.
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t = 1

Figure 5 Optimal schedule and WSPT schedule for instance after the transformation of Lemma 13.

The reduction used in the proof of this lemma is illustrated in Figure 5.
As in Section 3 we will analyse the limit for ε→ 0. The limits of the objective values of

the WSPT schedule and the optimal schedule for an instance I(ε) of the type of Lemma 13
depend only on three variables: two real variables, namely the length x of the long jobs and
the length y of the medium job (y = 0 if no medium job exists), and one integer variable:
the number k of long jobs. They are given by

lim
ε→0

WSPT(I(ε)) = m

2 + kx(1 + x) + y(1 + y),

lim
ε→0

OPT(I(ε)) = k · x2 + (m+ y)2

2(m− k) + y2

2 .

In Figure 6 of the full version [11] these formulas are illustrated via two-dimensional Gantt
charts for the three different types of single-machine schedules used by the WSPT schedule
and the optimal schedule, respectively. In order to describe a valid scheduling instance of
the prescribed type, the values x, y, and k must lie in the domains

k ∈ {0, . . . ,m− 1}, y

∈
[
0, m

m−k−1

]
if k < m− 1,

= 0 if k = m− 1,
x ∈

[
y +m

m− k
,∞
)
.

I Lemma 14. The maximum of the ratio

λm(x, y, k) :=
m
2 + kx(1 + x) + y(1 + y)
k · x2 + (m+y)2

2(m−k) + y2

2

= (m− k)(2kx2 + 2kx+ 2y2 + 2y +m)
(m− k)(2kx2 + y2) + (y +m)2

on the feasible domains is 1 + 1
2 (
√

(2m− km)km − km)/m, and it is attained at

km :=
⌊(

1− 1
2
√

2
)
m

⌉
, ym := 0, xm := m√

(2m− km)km − km
.

The calculations leading to these values are similar to those in Section 3. This concludes the
proof of Theorem 11.

In Figure 2 the function m 7→ λm(xm, 0, km), whose values at integral m are exactly the
worst case approximation ratios for instances with m machines, is depicted. The jumps
and kinks occur when the number km of long jobs in the worst-case instance changes. By
taking the limit for m→∞, we obtain alternative proof of the performance ratio 1

2 (1 +
√

2)
by Kawaguchi and Kyan [14], avoiding the somewhat complicated transformation and case
distinction in the proof of Lemma 10 and Schwiegelshohn’s proof [20]. For increasing m the
tight performance ratio converges quite quickly to 1

2 (1 +
√

2): the difference lies in O(1/m2).
By plugging in the machine-dependent performance ratio into Theorem 1, we obtain the
following performance ratio for the WSEPT rule.
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I Corollary 15. For instances with m machines of the problem P |pj ∼ stoch|E[
∑
wjCj ] the

WSEPT rule has performance ratio

1 + 1
2 ·
√

(2m− km)km − km
m

· (1 + ∆).

This bound is better than the bound of Corollary 8 only if m and ∆ both are small. Even
for two machines, it is outdone for large ∆.
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