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Abstract
As online storage services become increasingly common, it is important that users’ private in-
formation is protected from database access pattern analyses. Oblivious RAM (ORAM) is a
cryptographic primitive that enables users to perform arbitrary database accesses without re-
vealing any information about the access pattern to the server. Previous ORAM studies focused
mostly on reducing the access overhead. Consequently, the access overhead of the state-of-the-art
ORAM constructions are almost at practical levels in certain application scenarios such as secure
processors. However, we assume that the server space usage could become a new important issue
in the coming big-data era. To enable large-scale computation in security-aware settings, it is
necessary to rethink the ORAM server space cost using big-data standards.

In this paper, we introduce “succinctness” as a theoretically tractable and practically relevant
criterion of the ORAM server space efficiency in the big-data era. We, then, propose two succinct
ORAM constructions that also exhibit state-of-the-art performance in terms of the bandwidth
blowup and the user space. We also give non-asymptotic analyses and simulation results which
indicate that the proposed ORAM constructions are practically effective.
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1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive that enables users to access a database
on a server without revealing the access pattern to the server. Though originally introduced
for software protection [14], ORAM is directly relevant to the present cloud computing.

In the previous studies on ORAM, researchers focused mainly on reducing the access
bandwidth cost, a performance measure used as a proxy of the access time. This is because
even the current most state-of-the-art ORAM constructions have two or three orders of
magnitude larger bandwidth cost than the ordinary (non-secure) accesses. However, in certain
settings, the ORAM access is already rather efficient. For example, Maas et al. proposed
PHANTOM [23], an ORAM-based secure processor, and reported that if PHANTOM is
deployed on the server, SQLite queries can be performed without revealing the access pattern
at the cost of 1.2–6× slowdown compared to non-secure SQLite queries. In such cases, it is
reasonable to pay more attention to performance measures other than the access speed.
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52:2 Succinct Oblivious RAM

In particular, the server space usage is a very important performance measure for big-data
applications. First, there are applications where the amount of data is virtually unbounded,
and thus the limit of the available space defines the limit of the analyses. Second, due to
the cache effect, small memory usage often leads to faster computation. Third, space costs
money, especially in a cloud computing server. The second and the third points are especially
relevant if the data is meant to be stored in the main memory (by default), which is exactly
the case in ORAM application scenarios such as PHANTOM.

In most modern ORAM constructions, if the size of the original database is n bits, the
amount of the space required by the server is n+ Θ(n) bits. In this paper, we investigate
the possibility of ORAM constructions that need only n+ o(n) bits of server space. We call
such ORAM constructions succinct. This space efficiency formalization is widely used in the
field of succinct data structures and has proved to be useful to design practically relevant
space-efficient data structures in theoretically clean ways.

The main difficulty to achieve succinctness is that most existing ORAM construction
approaches rely on the use of linear amount of “dummy” data. The situation is similar to
conventional hash tables, which need extra space linear to the stored keys size. Although it
seems possible to reduce the constant factor of the extra space to some extent, it is not at all
trivial if one can achieve sublinear extra space maintaining the state-of-the-art performance
in other aspects such as access bandwidth and user space usage.

Results. Table 1 shows the performance of the proposed methods and the existing methods.
Our first construction takes n(1 + Θ( log n

B + g(n)
f1(n)/ log n ))-bit server space where n is the

database size, f1(·) is a function such that f1(n) = ω(logn) and O(log2 n), g(·) is a function
such that g(n) = ω(1) and o(

√
f1(n)/ logn), and B is the size of a block, the unit of

communication between the user and the server. The bandwidth blowup is O(log2 n) and the
user space is O(f1(n)) blocks. Our second construction has n(1+Θ( log n

B + log log n
f2(n) ))-bit server

space, O(log2 n)-bandwidth blowup and O(f2(n) +R(n))-user space where f2(·) is a function
such that f2(n) = ω(log logn) and O(log2 n), R(·) is a function with R(n) = ω(logn).

For example, if B = log2 n, R = logn log logn, f1(n) = f2(n) = logn log logn and
g(n) = log log logn, the user space is O(logn log logn) in both constructions and the server
space is n(1+Θ( log log log n

log log n )) (resp. n(1+Θ( 1
log n ))) bits in the first (resp. second) construction.

The second construction has better theoretical performance than the first one. However,
in practice, with some parameter settings, the first construction also works comparably
well as the second construction depending on which performance measure one cares (See
Section 5). The first construction is also the basis of the second construction.

If B = ω(logn), Goldreich’s construction [14] and our constructions are succinct. (Each
of these methods works as long as B ≥ c lgn for c around 3.) The assumption B = ω(logn)
is justified as follows. Stefanov et al. [38] mentioned that the typical block size is 64–256 KB
(resp. from 128B to 4KB) in cloud computing scenario (resp. software protection scenario).
Even B ≥ lg1.5 n holds if n ≤ 26501 (resp. n ≤ 297) in cloud computing (resp. software
protection) scenario with moderate block size of 64KB (resp. 128B).

We achieved exponentially smaller bandwidth blowup compared to Goldreich’s construc-
tion [14], which is the only preceding non-trivial succinct ORAM construction.

The bandwidth blowup of our constructions are smaller or equal to other non-succinct
constructions except [22], [7] and [37]. [22] is based on a very expensive procedure called
oblivious sorting and the constant factor of the bandwidth blowup is prohibitively large.
[7] has O(1)-bandwidth blowup but it requires several assumptions. First, the server needs
to perform some computation, e.g., homomorphic encryption evaluation. (In every other



T. Onodera and T. Shibuya 52:3

Table 1 Comparison of theoretical performance. Bandwidth blowup is the number of blocks
required to be communicated for accessing one block of data. User space includes the temporary
space needed during access procedures. n is the database size in bits and B is the block size in
bits. B must satisfy B ≥ c1 lg n and B = O(nc2) for constants c1 > 1, 0 < c2 < 1. Typically, c1

is around 3. f1(·) is an arbitrary function such that f1(n) = ω(log n) and O(log2 n). f2(·) is an
arbitrary function such that f2(n) = ω(log log n) and O(log2 n). R(·) is an arbitrary function such
that R(n) = ω(log n). g(·) is an arbitrary function such that g(n) = ω(1) and o(

√
f1(n)/ log n).

Bounds with † are amortized. The method in [7] requires additional assumptions.

Server space (#bits) Bandwidth
blowup

User space
(#block)

Goldreich [14] n(1 + Θ( log n
B

+ 1√
n

)) O(
√

n log n)† O(1)
Kushilevitz, et al. [22] n(1 + Θ(1)) O( log2 n

log log n
) O(1)

Stefanov, Shi, Song [37] n(1 + Θ(1)) O(log n) O(n)
Stefanov et al. [38] n(1 + Θ(1)) O(log2 n) O(R(n))
Devadas et al. [7] n(1 + Θ(1)) O(1) O(1)

Our result (Theorem 3) n(1 + Θ( log n
B

+ g(n)
f1(n)/ log n

)) O(log2 n) O(f1(n))
Our result (Theorem 5) n(1 + Θ( log n

B
+ log log n

f2(n) )) O(log2 n) O(f2(n) + R(n))

construction in Table 1, the server suffices to respond to read/write requests.) [7] also
requires a computational assumption (decisional composite residuosity or learning with errors
assumption), and larger block size (B = ω̃(log2 n) to ω̃(log6 n) depending on the case, where
ω̃(·) hides a polyloglog factor). [37] takes cn-bit user space where c � 1. This method is
effective for ordinary cloud computing setting but the user space is too large for secure
processor setting — the PHANTOM-like applications where server space efficiency is more
important.

Possible applications. There are several ORAM application scenarios with different require-
ments. Our methods are particularly relevant to secure processor scenario. In this scenario, it
is assumed that a special processor under the control of the user is available in a remote server
and the adversary cannot observe the activities inside the processor. The cloud service user
sends a piece of code to the trusted processor, which, in turn, executes the code on the server.
The communication between the cloud service user and the secure processor is protected by
private key encryption. ORAM is implemented inside of the trusted processor using FPGA
and it hides the processor’s access pattern to the main memory on the server. After executing
the code, the secure processor may return the (encrypted) output to the cloud service user.
One of the main advantages of this approach over the conventional ORAM application, in
which the cloud service user locally executes ORAM, is that ORAM bandwidth blowup
applies to the relatively cheap processor–memory communication rather than the costly
over-network communication. Note that, with the ORAM user-server terminology, the secure
processor (resp. the main memory) is the user (resp. the server).

In secure processor scenario,
the user space is very limited, e.g., 6MB;
The server usually does not perform complex computation;
Simple ORAM algorithms are desirable for hardware implementation;
The server space is much larger than the user space but there is some noticeable limit.
The server can use disks if needed but it greatly slows down accesses.

In most existing secure processor systems, the Path ORAM [38] or its close variants are
used [11, 23, 33, 12]. Indeed, the Path ORAM satisfies the first three requirements above.

STACS 2018



52:4 Succinct Oblivious RAM

However, it does not capture the last one. For example, suppose 128GB database is stored
in the Path ORAM. If the block size is 128B, it takes about 10G blocks, i.e., 1.28TB (to
ensure rigorous security). Then, each ORAM access procedure takes about 31µs assuming
each memory access takes 100ns. If half of the 10G blocks are stored in the main memory
and the other half is stored in the disk, due to the randomized access pattern of the Path
ORAM, almost every ORAM access procedure ends up a disk seek, which takes milliseconds
order time. In such cases, it is reasonable to use another ORAM construction that takes, say,
half the space of the Path ORAM even though it requires twice as many memory accesses.

Tree-based ORAM. Our ORAM constructions are tree-based. In a typical tree-based
ORAM construction, N blocks are stored in a complete binary tree with N leaves on the
server. Each node of the tree can store up to Z blocks where Z is a constant. Each block is
assigned a position label, a uniformly random integer in [N ]. A block with position label i
must be stored at some node on the path from the root to the i-th leaf. This framework was
introduced by Shi et al. [36] and used in many subsequent studies [38, 13, 33, 5, 7].

Consider a particular block b. As the user continuously issues access requests, b moves
around the tree in roughly the following manner. First, when the user issues an access request
to b, b is picked out of the tree and given a new uniformly random position label. Then, b is
inserted into the tree from the root. If the user issues an access request to another block,
then, with some probability, b will move down the path to the leaf indicated by its position
label. If the next node on the path is full, b must wait for the blocks “ahead” to move down.
If the pace at which the blocks move down the tree cannot keep up with the pace at which
blocks are picked out and reinserted from the root, then, some blocks will not be able to
reenter the tree. If such “congestion” occurs, the user must maintain the overflown blocks
locally.

Note that most space in the tree is wasted: there are 2N − 1 nodes in the tree, each
with capacity Z, whereas there are only N blocks. Thus, to save server space, it is desirable
to make the tree more compact, for example, by reducing Z. However, to maintain a low
probability of “congestion”, it is desirable to make the tree larger, for example, by increasing
Z. To construct a succinct tree-based ORAM, we need to satisfy these conflicting demands.

Our ideas. One of our key ideas is the following two-stage tree layout. We first change
the tree to a complete binary tree with N/ lg1.4 N leaves (assume this is a power of 2). In
addition, we set the capacity of each leaf node to lg1.4 N + lg1.3 N while keeping the capacity
of each internal node at Z. The total size of the leaf nodes is then N +N/ lg0.1 N , and the
total size of all tree nodes except the leaves is Θ(N/ lg1.4 N). Thus, the total size of the
entire tree is N + o(N). We choose each position label from [N/ lg1.4 N ].

To see why blocks can flow around in this tree without much congestion, suppose that
the user inserts each block directly into the leaf node pointed to by the block’s position label.
Clearly, the loads of leaves in this hypothetical setting dominates the loads of leaves in the
real setting. Then, the situation would exactly be the same as the “balls-into-bins” game [24]
with N balls and N/ lg1.4 N bins. In particular, the number of blocks stored in each leaf
node is log1.4 N + Θ(log1.2 N) with high probability. Thus, every leaf node has sufficient
capacity to store all of its assigned blocks. Furthermore, the blocks in the internal nodes
flow as smoothly as in the original non-succinct ORAM construction since we did not modify
that part. Thus, the blocks flow without much congestion in the tree.

Another key idea follows naturally from the above argument, specifically from the
connection to the balls-into-bins game. A remarkable phenomenon known as “the power
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of two choices” states that, in the balls-into-bins game, if one chooses two bins uniformly
and independently for each ball, and throws the ball into the least loaded bin, the bin loads
will be distributed much more tightly around the mean than they are in the one-choice
game [1, 3, 24]. The maximum bin load corresponds to the leaf node size in tree-based ORAM
constructions. Thus, the size of the tree can be further decreased by using the two-choice
strategy to assign the position labels. This is the idea behind the construction in Section 4.

We note that the current paper is the first to apply the power of two choices to tree-based
ORAM. (Some non-tree-based constructions [30, 16, 22] use the two choices idea in the form
of cuckoo hashing [29].) Moreover, the resulting algorithms keep the simplicity of the Path
ORAM [38], which is a highly valuable asset in the relevant application scenario as mentioned
above. As for the analysis, the existing stash size analyses [38, 33] do not seem to work with
parameter regimes required for succinctness. We will give a different proof route (though it
still heavily borrows from [38, 33]) in the full version of the paper.

Our contributions. Our contributions in the current paper are as follows:
We introduce the notion of succinct oblivious RAM. This is a promising first step to
systematically design ORAM constructions with small server space usage;
We propose two succinct ORAM constructions. Not only being succinct, these con-
structions exhibit state-of-the-art performance in terms of the bandwidth blowup. The
methods are simple and easy to implement.
We also give non-asymptotic bounds and simulation results which indicate that the
proposed methods are practically effective.

Related work. In the field of succinct data structures [20, 19], the goal is to represent an
object such as a string [26, 34, 17, 9, 15, 35, 21, 10, 18, 27] or a tree [6, 25, 31, 2, 8, 28] in
such a way that a) only OPT + o(OPT ) bits are required, and b) relevant queries such as
random access or substring search are efficiently supported. Here, OPT is the information
theoretic optimum, i.e., the minimum number of bits needed to represent the object.

The current study is related to succinct data structures in the following way. Suppose a
remote server hosts a database that is implemented by a succinct data structure, and a user
wishes to access the database without revealing the access pattern to the server. The user,
of course, can apply any existing ORAM constructions. However, if ORAM increases the
database size by some constant factor, it destroys the OPT + o(OPT ) bound guaranteed by
the succinct data structure. One can apply the succinct ORAM constructions proposed in
this paper to hide succinct data structure access pattern on a remote storage device without
harming the theoretical guarantee on the data structure size.

Notations. We denote the set {0, 1, . . . n− 1} as [n] for a non-negative integer n. We write
lg x to denote the base-2 logarithm of x and ln x to denote the natural logarithm of x. We
write log x to denote the logarithm of x in the context where the base can be any positive
constant. We write poly(n) to denote nc for some constant c > 0. A negligible function of n
is defined to be a function that is asymptotically smaller than 1/nc for any constant c > 0.

2 ORAM: Preliminaries

Definition. Suppose there are three parties the user, the server and the oblivious RAM
(ORAM) simulator. Let each of B and n be a positive integer and N := n/B. (We assume
n is a multiple of B for brevity.) The value B models the unit of communication and n
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models the database size. We call a chunk of B bits a block. A logical (resp. physical) access
request is a triplet (op, addr, val), where op ∈ {read,write}, addr ∈ [N ] (resp. addr ∈ N),
val ∈ {0, 1}B . The user sends logical access requests to the ORAM simulator and receives a
block for each request. The server receives physical access requests from the ORAM simulator
and returns a block for each request in the following way: for (read, i, v), the server returns
v of the most recent request (write, i, v). The ORAM simulator takes a sequence of logical
access requests from the user and for each logical access request, it makes a sequence of
physical access requests to the server receiving a returned block for each of them, and returns
a block to the user. The ORAM simulator is possibly stateful and probabilistic. It must
respond to logical access requests online and must satisfy the following conditions:
Correctness The ORAM simulator is correct iff, for a logical access request with addr = i,

it returns v of the previous and most recent logical access request (write, i, v);1
Security The ORAM simulator is computationally (resp. information theoretically) secure iff,

for any logical access request sequences of the same length, the distributions of the addr
values of the resulting physical access requests are computationally (resp. information
theoretically) indistinguishable.

An ORAM construction is an ORAM simulator implementation. We have distinguished
the user from the ORAM simulator for exposition but in practice, an ORAM simulator is a
program run by the user. Thus, we do not distinguish them in the rest of the paper.

Encryption. In the ORAM constructions considered in this paper, the user holds a symmetric
cipher key and every block is encrypted when it is stored on the server. Though encryption
increases the database size, the increase is minor2and we ignore the space blowup due to
encryption in the rest of the paper.

Performance measures. The most popular ORAM performance measures include the space
required by the user/server and time required for each logical access.

In most ORAM constructions, the user needs to maintain a small amount of information
locally. In addition to this, in some constructions, the user temporarily need to store
more information during the access procedure. We refer the amount of the space the user
temporarily needs during access procedure as temporary space usage and the amount of the
space the user needs even if no access is made as permanent space usage.

In this paper, we pay special attention to the server space usage. In particular, we use
the following notion of succinctness as a criterion for ORAM server-space efficiency:

I Definition 1. If the server space usage of an ORAM construction representing an n-bit
database is n+ o(n) bits, the ORAM construction is said to be succinct.

As for the access efficiency, following the previous studies, we use the amount of communi-
cation between the user and the server as a proxy for the access time. We define the bandwidth
blowup of an ORAM construction to be the number of blocks that needs to be communicated
between the user and the server per logical access. In other words, the bandwidth blowup
is the ratio of communication amount needed for secure access to communication amount
needed for ordinary (insecure) access.

1 We use the convention that not only read but also write requests have return values.
2 In theory, we can guarantee the semantic security and succinctness at the same time with extra bits

of amount ω(log n) and o(B) per each block. In practice, assuming that we use “counter mode” block
cipher with 128 bits counters and the typical block sizes mentioned in Section 1, the space blowup is
1/4096–1/16384 (resp. 1/8–1/256) factor in cloud computing (resp. software protection) scenario.
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Asymptotic behavior of parameters. Among the ORAM-related parameters, the original
database size n and block size B are outside of the user’s control. Other parameters, e.g.,
the metadata size, can be chosen by the user. We assume that B is a function of n satisfying
B = ω(logn). (See Section 1 for the justification.) Thus, after all, n is the only free parameter
on which the other parameters depend. In all asymptotic statements in this paper, the limit
is taken as n→∞.

Sub-ORAM. We use an ORAM construction encapsulated into the following proposition
as a blackbox. Concretely, the Path ORAM [38] suffices.

I Proposition 2. Let n be the database size and B be the block size, in bits. If B ≥ 3 lgn
and B = O(nc) for some 0 < c < 1, there exists an information theoretically secure ORAM
construction such that i) the server’s space usage is n(10 + Θ( log n

B )) bits; ii) the worst-case
bandwidth blowup is O(log2 n); iii) the user’s temporary space usage is O(logn) blocks; and
iv) for any R = ω(logn), the probability that the user’s permanent space usage becomes larger
than R blocks during poly(n) logical accesses is negligible.

3 Succinct ORAM Construction

In this section, we prove the following theorem.

I Theorem 3. Let n be the database size and B be the block size, both in bits. If B ≥ 3 lgn
and B = O(nc) for some constant 0 < c < 1, then for any f : N→ R such that f(n) = ω(logn)
and f(n) = O(log2 n) and any g : N→ R such that g(n) = ω(1) and g(n) = o(

√
f(n)/ logn),

there exists an information theoretically secure ORAM construction such that i) the server’s
space usage is bounded by n(1 + Θ( log n

B + g(n)√
f(n)/ log n

)) bits; ii) the worst case bandwidth

blowup is O(log2 n); iii) the user’s temporary space usage is O(f(n)) blocks; and iv) for any
R = ω(logn), the probability that the user’s permanent space usage becomes larger than R

blocks during poly(n) logical accesses is negligible.

I Corollary 4. If B = ω(logn), then, the ORAM construction of Theorem 3 is succinct.

3.1 Description
For the clarity of explanation, we first describe a simplified ORAM construction where the
user needs to maintain a large amount of information locally. Then, we obtain an ORAM
construction with the claimed bounds by slightly modifying the simplified construction.

As we mentioned in Section 1, in a tree-based ORAM construction, blocks on the server
are stored in the nodes of a complete binary tree. The key point of the method in this section
is the choice of the tree height L and the leaf node capacity M . Specifically, in the rest of
this section, let L := dlg N

f(n)e and M := d N
2L + g(n)

√
NL
2L e where N := n/B. We assume,

for brevity, that each of lg N
f(n) and N

2L + g(n)
√

NL
2L is an integer.

Block usage. The ORAM is supposed to provide the user with an interface to access the
database as if it is stored in array A of B-bit blocks (Section 2). We use blocks as follows :

Each block is either a data block or a metadata block;
Each data block is either a real block or a dummy block. A real block contains an entry of
A. A dummy block does not contain any information on the database contents and is
used only to hide the access pattern;
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52:8 Succinct Oblivious RAM

Each real block is given a position label, a value in [2L];
A metadata block contains the metadata of several data blocks. For each data block, its
metadata consists of
type: A flag indicating whether the block is real or dummy;
addr: If the block is real and represents A[i], the value of addr is i. If the block is a

dummy, the value is arbitrary;
pos: If the block is real with position label i, the value of pos is i. If the block is a

dummy, the value is arbitrary.

Data layout. The server maintains a tree containing data blocks, which we call data tree,
and another tree containing metadata blocks, which we call metadata tree. The data tree
is used in such a way that at each point of time, it contains most real blocks with high
probability. The user maintains stash, which contains the real blocks that are not in the data
tree, and position table, which contains the position labels of all real blocks.

The data tree is a complete binary tree with 2L leaves. Each node of the tree is a bucket,
which is a container that can accommodate a certain number of blocks. We call the buckets
corresponding to the internal nodes as internal buckets and the buckets corresponding to the
leaf nodes as leaf buckets. The size of each internal bucket is Z (blocks) while the size of
each leaf bucket is M (blocks). We will determine Z to be 3 in the full version of the paper
but for now, we consider it as an arbitrary constant. The data tree is represented as the
bitstring derived by concatenating all buckets in breadth first order. As is well-known, with
this representation, given an index of a node, the index of the parent or left/right child can
be derived by simple arithmetic. The total space usage of the data tree is equal to the sum
of the bucket sizes.

The metadata tree is also a complete binary tree with 2L leaves. Each node of the tree is
the metadata of the data blocks in the corresponding bucket of the data tree. The metadata
tree is represented similarly to the data tree but there is a subtlety. If the metadata of the
blocks in a bucket has a size smaller than B, it is wasteful to allocate one full block for them.
To avoid this waste, we represent metadata tree as the bitstring derived by concatenating
the metadata of all data blocks in the data tree in breadth first order. The space usage of
the metadata tree is equal to the sum of all metadata of all data blocks.

Each real block in the stash is maintained with its addr and pos. The stash can be any
linear-space data structure that efficiently supports insertion, deletion and range query by
pos, e.g., a self balancing binary search tree.

The position table stores the position label of real block storing A[i] in the i-th entry.

Access procedure. Access requests are processed in such a way that the following invariant
conditions are always satisfied:

Each real block is stored either in the data tree or in the stash;
If a real block with position label ` is stored in the data tree, it is in the bucket on the
path from the root to the `-th leaf.

Below, we give a high-level description of the main routine and we will provide the
pseudocode in the full version of the paper. To read the explanation here, it should suffice to
know that P (`) means the path from the root to the `-th leaf of the data tree.

Let ba be the accessed block. We first read the position label ` of ba from the position
table and update the position table entry to a number chosen uniformly at random from [L],
which will become the new position label of ba after the access operation is finished. By the
invariant conditions above, ba is either in the stash or P (`). We scan P (`) and retrieve ba
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if it is in P (`). If ba was not in P (`), we retrieve it from the stash. If the current request
is a write request, we update the block contents to the new value. Then, we insert ba with
the updated position label and the possibly updated value into the stash. After that, we
perform EvictPath operation. The purpose of this operation is a) to move back the blocks
in the stash into the tree and b) to move the real blocks in the tree downwards (far from the
root). To do this, EvictPath retrieves all real blocks in the path P (BitReversal(G)) (to
be explained shortly) into the stash and then, going up P (BitReversal(G)) from leaf to
the root, tries to move as many blocks in the stash into the buckets on the path. If some
blocks are left in the stash after EvictPath, the user keeps them charging the permanent
space usage. Lastly, the value stored at ba is returned.

The function BitReversal(·) takes an L-bit integer x and returns the bit reversed
version of x while G is the number of Access operations called so far (modulo 2L). This
BitReversal-based scheduling of EvictPath was first proposed by Gentry et al. [13] and is
advantageous to keep the stash size small. It also enables to simplify stash size analysis, which
we will provide in the full version. Here, it suffices to note that G (and BitReversal(G))
is independent of the accessed database locations.

Outsourcing position table. In the construction described so far, the user space usage is
much larger than the bound claimed in Theorem 3 since the user needs to maintain the
position table locally. To obtain Theorem 3, we modify the construction so that the position
table is stored on the server using the Path ORAM [38]. Accesses to position tables are
replaced by a Path ORAM write.

3.2 Analysis
Security. Fix t > 0. Let a be a length t > 0 sequence of logical addresses to be accessed
and a′ be the corresponding sequence of physical addresses (indices of the server memory) to
be accessed. The sequence a′ is determined by a and the randomness used by the ORAM
simulator. To prove the information theoretic security, it suffices to show that a′ really
does not depend on a. The sequence a′ consists of a′1, the physical addresses accessed in
the recursive access call to the Path ORAM and a′2, those accessed in the rest parts. The
addresses a′1 is determined by the Path ORAM access procedure and is independent of a
due to the information theoretic security of the Path ORAM. The addresses a′2 consists
of addresses accessed by ReadPath(`, a) and EvictPath(). ReadPath(`, a) accesses the
path P (`), which is determined by `, the position label of the accessed block. Since the
position labels are chosen independently and uniformly at random, the ReadPath accesses
are independent of a. EvictPath accesses P (BitReversal(G)), which is determined by
G, the number of times Access was called (modulo 2L). Thus, the accesses of EvictPath
is also independent of a. Therefore, a′ is independent of a.

Server space. First, it is helpful to observe that logN = Θ(logn), L = Θ(logn) and
M = Θ(f(n)). Remember that the server holds the data tree, the metadata tree and
the position table. The total size of the internal (resp. leaf) buckets is Z(2L − 1) (resp.
M2L) blocks. Since Z(2L − 1) < Z2L = ZN/f(n) and M2L = N + g(n)

√
NL2L =

N(1 + Θ( g(n)√
f(n)/ log n

)) = N(1 + Θ(h(n))) where h(n) := g(n)√
f(n)/ log n

, the number of the

blocks in the data tree is bounded by ZN/f(n) +N(1 + Θ(h(n))) = N(1 + Θ( 1
f(n) + h(n))).

The metadata for each data block takes 1 bit for type, dlgNe bits for addr and L bits for pos.
The total is Θ(logn) bits = Θ( log n

B ) blocks. Thus, the number of bits in the data tree and the
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metadata tree combined is BN(1+Θ( 1
f(n) +h(n)))(1+Θ( log n

B )) = n(1+Θ( log n
B +h(n))). The

position labels take NL = n L
B ≤ n

lg n
B bits. By Proposition 2, the Path ORAM containing

the position table takes Θ(n log n
B ) bits. Thus, the server space is n(1 + Θ( log n

B + h(n))) bits.

Bandwidth blowup. The bandwidth cost of each of ReadPath and EvictPath is propor-
tional to the sum of the numbers of the blocks in a root–leaf path in the data tree and the
metadata tree. The number for the data tree is ZL+M = O(logn) +O(f(n)) = O(f(n)).
The number for the metadata tree is around 2 lg N+1

B = o(1) factor of that for the data tree.
The bandwidth cost for accessing the position table is O(log2 n) by Proposition 2. Therefore,
the bandwidth blowup of Access is O(log2 n).

User space. The temporary user space usage is proportional to the sum of the numbers of
the blocks in a root–leaf path in the data tree and the metadata tree. As is shown in the
bandwidth analysis, the latter is bounded by O(f(n)). We prove the bound on the permanent
user space usage, i.e., the stash size in the full version of the paper.

4 Succincter ORAM Construction

In this section, we prove the following theorem.

I Theorem 5. Let n be the database size and B be the block size, both in bits. If B ≥ 3 lgn
and B = O(nc) for some 0 < c < 1, then for any f : N → R such that f(n) = ω(log logn)
and f(n) = O(log2 n), there exists an information theoretically secure ORAM construction
for which i) the server’s space usage is bounded by n(1 + Θ( log n

B + log log n
f(n) )) bits; ii) the worst

case bandwidth blowup is O(log2 n); iii) the user’s temporary space usage is O(logn+ f(n))
blocks; and iv) for any R = ω(logn), the probability that the user’s permanent space usage
becomes larger than R blocks during poly(n) logical accesses is n−ω(1).

I Corollary 6. If B = ω(logn), then, the ORAM construction of Theorem 5 is succinct.

4.1 Description
As in Section 3, we first explain a simplified version with a large user space usage, and
construct the full version that achieves the claimed bounds from the simplified version.

Let L := dlg(N/f(n))e and M :=
⌈
N/2L + (1 + ε) lgL

⌉
where N := n/B and ε > 0 is a

constant. We assume, for brevity, that lg(N/f(n)) and N/2L + (1 + ε) lgL are integers.

Block usage. The block usage is the same as the ORAM construction described in Section 3
except that each real block is given two position labels instead of one. We call them the
primary position label and the secondary position label. Only the primary position labels are
stored in the metadata blocks (as in Section 3).

Data layout. The data layout is basically the same as in Section 3. We only explain the
differences from Section 3. First, the position table stores both the primary position labels
and the secondary position labels. Second, the user maintains an additional table called
counter table. It is a size 2L array whose i-th entry is the number of real blocks with primary
position label i. Last, since the value of each of L and M is different from that in Section 3,
the tree/bucket size is changed accordingly.
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Access procedure. The same invariant conditions as Section 3 are maintained except that
the “position label” in the second condition is replaced by “primary position label”.

We provide the pseudocode in the full paper. To read the high-level description below, it
suffices to know that P (`) is the path from the root to the `-th leaf in the data tree.

Let ba be the accessed block. We first retrieve the two position labels `1 and `2 of ba

from the position table and update each of the two position table values to a number chosen
independently and uniformly at random from [L], which will become the new position labels
of ba. One of `1 and `2 is the primary position label and the other is the secondary position
label but we do not know (and do not need to know) which is which. By the invariant
conditions, ba is either in the stash or in P (`1) or P (`2). We scan P (`1) and P (`2) and
retrieve ba from P (`i) if the primary position label is `i and ba is in P (`i). If ba is not found
in the paths, it must be in the stash and we retrieve it from the stash. At this point, we
know the primary position label ` of ba (since it is written in the pos entry of the block)
and we decrement the `-th entry of the counter table, determine the new primary position
label `′i and increment the `′i-th entry of the counter table. After, that, we update the block
contents if it is a write request, call EvictPath and returns the block contents (before update)
in the same way as the algorithm in Section 3.

Outsourcing the position/counter table. In the full version of the construction, the position
table and the counter table are stored on the server using the Path ORAM. Every read from
(resp. write to) each of these tables is done using the Path ORAM access procedure.

4.2 Analysis

Security. The security proof of the current ORAM construction is almost the same as
in Section 3. The only difference in the situation is that now, the sequence of accessed
addresses a′2 depends on two position labels instead of one. Anyway, these position labels
are distributed independently and uniformly at random and thus, are independent of a.

Server space. The bounds logN = Θ(logn), L = Θ(logn) and M = Θ(f(n)) still hold.
The number of blocks in the leaf buckets is M2L = N(1 + (1+ε) lg L

f(n) ) = N(1 + Θ( log log n
f(n) )).

The number of blocks in the internal buckets is Z(2L − 1) < ZN/f(n), which is O( log log n
f(n) ).

Thus, the data tree size is bounded by N(1+Θ( log log n
f(n) )) blocks. As in Section 3, the metadata

size of each data block is Θ( log n
B ) blocks. Thus, the number of blocks in the data tree and

the metadata tree combined is at most 1 + Θ( log n
B ) times larger than N(1 + Θ( log log n

f(n) )),
which is n(1 + Θ( log n

B + log log n
f(n) )) bits.

Position labels take 2NL = 2nL/B ≤ 2n log n
B bits while counter table values take

2LdlgNe = NdlgNe/f(n) ≤ N = n/B bits. By Proposition 2, the Path ORAM containing
the position table (resp. counter table) takes Θ(n log n

B ) (resp. Θ(n/B)) bits.
Therefore, the server space usage is bounded by n(1 + Θ( log n

B + log log n
f(n) )) bits.

Bandwidth blowup. By the same argument as in the bandwidth analysis, the bandwidth
cost of each of ReadPath and EvictPath is proportional to ZL+M = O(logn+ f(n))
(in blocks). By Proposition 2, the bandwidth cost of access to each of the position table and
the counter table is O(log2 n). Thus, the bandwidth blowup is O(log2 n).
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Table 2 Performance comparison with concrete parameters. The symbol † means the integration
of Ring ORAM techniques. N = 220, B = 210. A and S are parameters for the Ring ORAM. (A
specifies the infrequency of EvictPath and S is the space in each bucket reserved for dummy blocks.)
The cost for recursive calls and metadata handling are relatively minor and not included. The
stash overflow probability is < 2−80 for rigorous settings. Aggressive settings do not have security
guarantees (stash size bounds) and, in particular, are not suitable for fair comparison.

Parameters
Z, L, M, A, S

Extra server
space Bandwidth Stash size

R
ig
or
ou

s [38] 5,20,–,–,– 9N 210 114
[32] 5,19,–,4,6 10N 109 63
Th. 3 3,15,112,–,– 2.59N 471 32
Th. 3† 5,15,112,4,7 2.91N 253 64

A
gg
re
ss
iv
e

[38] 4,19,–,–,– 3N 160
[32] 5,19,–,4,6 7N 145
Th. 3 4,15,36,–,– .25N 288
Th. 3† 5,15,36,4,6 .46875N 163
Th. 5 3,16,14,–,– .0625N 248
Th. 5† 5,15,28,4,7 .25N 194

User space. By the same argument as in the user space analysis in Section 3, the temporary
user space is proportional to ZL + M = O(logn + f(n)). We prove the bound on the
permanent user space usage, i.e., the

5 Practicality of the Proposed Methods

Table 2 shows the performance of the proposed methods, the Path ORAM [38] and the
Ring ORAM [32] with concrete parameters. The Ring ORAM has asymptotically the same
performance as the Path ORAM but it achieves constant factor smaller bandwidth at the
cost of larger server space. It is easy to integrate the main technique of the Ring ORAM
to the internal nodes of the proposed methods and we also show the performance of these
variants. We show the integration itself in the full paper.

The table contains “rigorous” and “aggressive” parameter settings. Rigorous parameters
were derived from theoretical analysis with additional care for constant factors. The aggressive
parameters for existing methods were taken from the experiments in the original papers.
We chose the aggressive parameters for the proposed methods by simulation: we simulated
database scan (accessing addresses 1, 2, . . . , N) for 100 times and found some parameters for
which the stash size after every scan was zero. (Such usage of scan is standard in literature
since scan maximizes the stash size.) We emphasize that constructions with aggressive
parameters lack rigorous security and they are not suitable for fair comparison.

Unfortunately, we could not derive rigorous bounds for the second construction (The-
orem 5) for reasonable size of N since the balls-into-bins analysis of Berenbrink et al. [3],
used in the stash size analysis, requires a very large number of bins. However, the simulation
results indicate that the second construction works for reasonable size of N .

6 Conclusion

ORAM is a multifaceted problem and recently, researchers have been recognizing the impor-
tance of rethinking the relevancy of multiple aspects of ORAM using modern standards [37, 4].
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In this paper, we provided another point of view and insight for this exploration by introduc-
ing the notion of succinctness to ORAM and proposing succinct ORAM constructions. We
think our methods are particularly suitable for secure processor setting. It is interesting to
consider succinct constructions optimized for other settings.
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