
Sums of Palindromes: an Approach via Automata
Aayush Rajasekaran
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
arajasekaran@uwaterloo.ca

Jeffrey Shallit
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
shallit@uwaterloo.ca

Tim Smith
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
timsmith@uwaterloo.ca

Abstract
Recently, Cilleruelo, Luca, and Baxter proved, for all bases b ≥ 5, that every natural number is
the sum of at most 3 natural numbers whose base-b representation is a palindrome. However, the
cases b = 2, 3, 4 were left unresolved. We prove, using a decision procedure based on automata,
that every natural number is the sum of at most 4 natural numbers whose base-2 representation
is a palindrome. Here the constant 4 is optimal. We obtain similar results for bases 3 and 4, thus
completely resolving the problem.
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1 Introduction

In this paper we develop a new method, based on automata theory, for solving problems in
additive number theory. As an example of the power of our method, we are able to prove
the new result that every natural number is the sum of at most 4 numbers whose base-2
representation is a palindrome.

Additive number theory is the study of the additive properties of integers; it has a very
long and celebrated history. For example, Lagrange proved (1770) that every natural number
is the sum of four squares (see, e.g., [12]). In additive number theory, a subset S ⊆ N is
called an additive basis of order h if every element of N can be written as a sum of at most h
members of S, not necessarily distinct.

Waring’s problem asks for the smallest value g(k) such that the k’th powers form a basis of
order g(k). Lagrange’s theorem then shows that g(2) = 4. In a variation on Waring’s problem,
one can ask for the smallest value G(k) such that every sufficiently large natural number is
the sum of G(k) k’th powers [26]. This kind of representation is called an asymptotic additive
basis of order G(k).
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54:2 Sums of Palindromes

Quoting Nathanson [19, p. 7], “The central problem in additive number theory is to
determine if a given set of integers is a basis of finite order.”

In this paper we show how to solve this central problem for certain sets of natural numbers,
using automata theory and almost no number theory at all.

We are concerned with numbers with particular representations in base k. For example,
numbers of the form 11 · · · 1 in base k are sometimes called repunits [28], and special effort
has been devoted to factoring such numbers, with the Mersenne numbers 2n − 1 being the
most famous examples. The Nagell-Ljunggren problem asks for a characterization of those
repunits that are integer powers (see, e.g., [24]).

Another interesting class, and the one that principally concerns us in this article, consists
of those numbers whose base-k representation forms a palindrome: a string that reads the
same forwards and backwards, like the English word redder, the French word ressasser,
and the German word reliefpfeiler. Palindromic numbers have been studied for some
time in number theory; see, for example, [7, 6], just to name two recent references.

Recently Banks initiated the study of the additive properties of palindromes, proving
that every natural number is the sum of at most 49 numbers whose decimal representation is
a palindrome [5]. Banks’ result was then improved by Cilleruelo, Luca, and Baxter [8, 9],
who proved that for all bases b ≥ 5, every natural number is the sum of at most 3 numbers
whose base-b representation is a palindrome. The proofs of Banks and Cilleruelo, Luca, and
Baxter are both rather lengthy and case-based. Up to now, there have been no results proved
for bases b = 2, 3, 4.

The long case-based solutions to the problem of representation by sums of palindromes
suggests that perhaps a more automated approach might be useful. We turn to formal
languages and automata theory as a suitable framework for expressing the palindrome
representation problem. Since we want to make assertions about the representations of
all natural numbers, this requires finding (a) a machine model or logical theory in which
universality is decidable and (b) a variant of the additive problem of palindromes suitable for
this machine model or logical theory. The first model we use is the nested-word automaton,
a variant of the more familiar pushdown automaton. This is used to handle the case for base
b = 2. The second model we use is the ordinary finite automaton, which we use to resolve
the cases b = 3, 4.

Our paper is organized as follows: In Section 2 we introduce some notation and terminology,
and state more precisely the problem we want to solve. In Section 3 we recall the pushdown
automaton model and give an example, and we motivate our use of nested-word automata.
In Section 4 we restate our problem in the framework of nested-word automata, and the
proof of a bound of 4 palindromes is given in Section 5. In Section 6 we make use of finite
automata to prove a bound of 3 palindromes for bases 3 and 4. The novelty of our approach
involves replacing the long case-based reasoning of previous proofs with an automaton-based
approach using a decision procedure. In Section 7 we discuss possible objections to our
approach. Finally, in Section 8 we discuss future work.

2 The sum-of-palindromes problem

We first introduce some notation and terminology.
The natural numbers are N = {0, 1, 2, . . .}. If n is a natural number, then by (n)k we

mean the string (or word) representing n in base k, with no leading zeroes, starting with the
most significant digit. Thus, for example, (43)2 = 101011. The alphabet Σk is defined to
be {0, 1, . . . , k − 1}; by Σ∗k we mean the set of all finite strings over Σk. If x ∈ Σ∗` for some



A. Rajasekaran, J. Shallit, and T. Smith 54:3

`, then by [x]k we mean the integer represented by the string x, considered as if it were a
number in base k, with the most significant digit at the left. That is, if x = a1a2 · · · an, then
[x]k =

∑
1≤i≤n aik

n−i. For example, [135]2 = 15.

If x is a string, then xi denotes the string
i︷ ︸︸ ︷

xx · · ·x, and xR denotes the reverse of x. Thus,
for example, (ma)2 = mama, and (drawer)R = reward. If x = xR, then x is said to be a
palindrome.

We are interested in integers whose base-k representations are palindromes. In this
article, we routinely abuse terminology by calling such an integer a base-k palindrome. In
the case where k = 2, we also call such an integer a binary palindrome. The first few binary
palindromes are

0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, . . . ;

these form sequence A006995 in the On-Line Encyclopedia of Integer Sequences (OEIS).
If kn−1 ≤ r < kn for n ≥ 1, we say that r is an n-bit integer in base k. If k is unspecified,

we assume that k = 2. Note that the first bit of an n-bit integer is always nonzero. The
length of an integer r satisfying kn−1 ≤ r < kn is defined to be n; alternatively, the length of
r is 1 + blogk rc.

Our goal is to find a constant c such that every natural number is the sum of at most
c binary palindromes. To the best of our knowledge, no such bound has been proved up
to now. In Sections 4 and 5 we describe how we used a decision procedure for nested-word
automata to prove the following result:

I Theorem 1. For all n ≥ 8, every n-bit odd integer is either a binary palindrome itself, or
the sum of three binary palindromes
(a) of lengths n, n− 2, and n− 3; or
(b) of lengths n− 1, n− 2, and n− 3.

As a corollary, we get our main result:

I Corollary 2. Every natural number N is the sum of at most 4 binary palindromes.

Proof. It is a routine computation to verify the result for N < 128.
Now suppose N ≥ 128. Let N be an n-bit integer; then n ≥ 8. If N is odd, then

Theorem 1 states that N is the sum of at most 3 binary palindromes. Otherwise, N is even.
If N = 2n−1, then it is the sum of 2n−1 − 1 and 1, both of which are palindromes.
Otherwise, N − 1 is also an n-bit odd integer. Use Theorem 1 to find a representation for

N − 1 as the sum of at most 3 binary palindromes, and then add the palindrome 1 to get a
representation for N . J

I Remark. We note that the bound 4 is optimal since, for example, the number 176 is not
the sum of three or fewer binary palindromes.

Sequence A261678 in the OEIS lists those even numbers that are not the sum of two
binary palindromes. Sequence A261680 gives the number of distinct representations as the
sum of four binary palindromes.

3 Finding an appropriate computational model

To find a suitable model for proving Theorem 1, we turn to formal languages and automata.
We seek some class of automata with the following property: for each k, there is an automaton
which, given a natural number n as input, accepts the input if and only if n can be expressed
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as the sum of k palindromes. Furthermore, we would like the problem of universality (“Does
the automaton accept every possible input?”) to be decidable in our chosen model. By
constructing the appropriate automaton and checking whether it is universal, we could then
determine whether every number n can be expressed as the sum of k palindromes.

Palindromes suggest considering the model of pushdown automaton (PDA), since it is
well-known that this class of machines, equipped with a stack, can accept the palindrome
language PAL = {x ∈ Σ∗ : x = xR} over any fixed alphabet Σ. A tentative approach is
as follows: create a PDA M that, on input n expressed in base 2, uses nondeterminism to
“guess” the k summands and verify that (a) every summand is a palindrome, and (2) they
sum to the input n. We would then use a decision procedure for universality to determine
whether M accepts all of its inputs. However, two problems immediately arise.

The first problem is that universality is recursively unsolvable for nondeterministic PDAs
(see, e.g.,[15, Thm. 8.11, p. 203]), so even if the automaton M existed, there would be no
algorithm guaranteed to check universality.

The second problem involves checking that the guessed summands are palindromes. One
can imagine guessing the summands in parallel, or in series. If we try to check them in
parallel, this seems to correspond to the recognition of a language which is not a CFL
(i.e., a context-free language, the class of languages recognized by nondeterministic PDAs).
Specifically, we encounter the following obstacle:

I Theorem 3. The set of strings L over the alphabet Σ× (Σ ∪ {#}), where the first “track”
is a palindrome and the second “track” is another, possibly shorter, palindrome, padded on
the right with # signs, is not a CFL.

Proof. Assume that it is. Consider L intersected with the regular language

[1, 1]+[1, 0][1, 1]+[0, 1][1,#]+,

and call the result L′. We use Ogden’s lemma [20] to show L′ is not a CFL.
Let n be the constant in Ogden’s lemma, and choose z to be the string where the first

track is (12n012n) and the second track is (1n01n#2n). Mark the compound symbols [1,#].
Then every factorization z = uvwxy with vx nonempty must have at least one [1,#] in v or
x. If it is in v, then the only choice for x is also [1,#], so pumping gives a non-palindrome
on the first track. If it is in x then v can be [1, 1]i or contain [1, 0] or [0, 1] . If the latter,
pumping twice gives a string not in L′ because there is more than one 0 on one of the two
tracks. If the former, pumping twice gives a string with the second track not a palindrome.
This contradiction shows that L′, and hence L, is not a context-free language. J

So, using a pushdown automaton, we cannot check whether two arbitrary strings of wildly
unequal lengths, presented in parallel, are both palindromes.

If the summands were presented serially, we could check whether each summand indi-
vidually is a palindrome, using the stack, but doing so destroys our copy of the summand,
and so we cannot add them all up and compare them to the input. In fact, we cannot add
serial summands in any case, because we have

I Theorem 4. The language

L = {(m)2#(n)2#(m+ n)2 : m,n ≥ 0}

is not a CFL.



A. Rajasekaran, J. Shallit, and T. Smith 54:5

Proof. Assume L is a CFL and intersect with the regular language 1+01+#1+#1+0, obtain-
ing L′. We claim that

L′ = {1a01b#1c#1d0 : b = c and a+ b = d}.

This amounts to the claim, easily verified, that the only solutions to the equation 2a+b+1 −
2b − 1 + 2c − 1 = 2d+1 − 2 are b = c and a+ b = d. Then, if n is the constant in Ogden’s
lemma, starting with the string z = 1n01n#1n#12n0, an easy argument proves that L′ is
not a CFL, and hence neither is L. J

So, using a pushdown automaton, we cannot handle summands presented in series, either.

These issues lead us to restrict our attention to representations as sums of palindromes of
the same (or similar) lengths. More precisely, we consider the following variant of the additive
problem of palindromes: for a length l and number of summands k, given a natural number
n as input, is n the sum of k palindromes all of length exactly l? Since the palindromes are
all of the same length, a stack would allow us to guess and verify them in parallel. To tackle
this problem, we need a model which is both (1) powerful enough to handle our new variant,
and (2) restricted enough that universality is decidable. We find such a model in the class of
nested-word automata, described in the next section.

4 Restating the problem in the language of nested-word automata

Nested-word automata (NWAs) were popularized by Alur and Madhusudan [1, 2], although
essentially the same model was discussed previously by Mehlhorn [18], von Braunmühl
and Verbeek [27], and Dymond [10]. They are closely related to a restricted variant of
pushdown automata called visibly-pushdown automata (VPAs). Under linear encodings,
NWAs recognize the same class of languages as VPAs, namely the visibly-pushdown languages
[1, 2]. We only briefly describe their functionality here. For other theoretical aspects of
nested-word and visibly-pushdown automata, see [16, 22, 11, 23, 21]. The definition of NWAs
provided here modifies the standard definition by borrowing some aspects of VPAs. We use
this definition because that is what is used by the ULTIMATE program analysis framework
[14, 13], which is the software tool we use to prove our results.

The input alphabet of an NWA is partitioned into three sets: a call alphabet, an internal
alphabet, and a return alphabet. An NWA has a stack, but has more restricted access to
it than PDAs do. If the input symbol read is from the call alphabet, the NWA pushes its
current state onto the stack, and then performs a transition, based only on the current state
and input symbol read. If an input symbol is from the internal alphabet, the NWA cannot
access the stack in any way. If the input symbol read is from the return alphabet, the NWA
pops the state at the top of the stack, and then performs a transition based on three pieces of
information: the current state, the popped state, and the input state read. An NWA accepts
if the state it terminates in is an accepting state.

As an example, Figure 1 illustrates a nested-word automaton accepting the language
{0n12n : n ≥ 1}. Here the call alphabet is {0}, the internal alphabet is {1}, and the return
alphabet is {2}.

The first 0 pushes q0 onto the stack. Each of the n− 1 subsequent 0s push q1 onto the
stack. When the machine reads the 1, it goes to state q2 without accessing the stack. So
long as the machine reads 2s and q1 is on the stack, we stay in the non-accepting state q2.
Reading a 2 with q0 on the top of the stack takes us to the only accepting state, q3.

STACS 2018
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Figure 1 A nested-word automaton for the language {0n12n : n ≥ 1}.

Nondeterministic NWAs are a good machine model for our problem, because nondetermin-
ism allows “guessing” the palindromes that might sum to the input, and the stack allows
us to “verify” that they are indeed palindromes. Deterministic NWAs are as expressive as
nondeterministic NWAs, and the class of languages they accept is closed under the operations
of union, complement and intersection. Finally, testing emptiness, universality, and language
inclusion are all decidable problems for NWAs [1, 2].

For a nondeterministic NWA of n states, the corresponding determinized machine has at
most 2Θ(n2) states, and there are examples for which this bound is attained. This very rapid
explosion in state complexity potentially could make decision problems, such as language
inclusion, infeasible in practice. Fortunately, we did not run into determinized machines with
more than 40000 states in proving our results. Most of the algorithms invoked to prove our
results run in under a minute.

We now discuss the general construction of the NWAs that check whether inputs are sums
of binary palindromes. We partition the input alphabet into the call alphabet {a, b}, the
internal alphabet {c, d}, and the return alphabet {e, f}. The symbols a, c, and e correspond
to 0, while b, d, and f correspond to 1. The input string is fed to the machine starting with
the least significant digit. We provide the NWA with input strings whose first half is entirely
made of call symbols, and second half is entirely made of return symbols. Internal symbols
are used to create a divider between the halves (for the case of odd-length inputs).

The idea behind the NWA is to nondeterministically guess all possible summands when
reading the first half of the input string. The guessed summands are characterized by the
states pushed onto the stack. The machine then checks if the guessed summands can produce
the input bits in the second half of the string. The machine keeps track of any carries in the
current state.

Following the above construction, we implemented our NWAs in the ULTIMATE program
analysis framework. As an experimental spot check on the correctness of our implementations,
we also built an NWA-simulator, and ran simulations of the machines on various types of
inputs, which we then checked against experimental results.

For instance, we built the machine that accepts representations of integers that can
be expressed as the sum of 2 binary palindromes. We then simulated this machine on
every integer from 513 to 1024, and checked that it only accepts those integers that we
experimentally confirmed as being the sums of 2 binary palindromes. This did not prove our
results, but served as a sanity check.

The general procedure to prove our results is to build an NWA PalSum accepting only
those inputs that it verifies as being appropriate sums of palindromes, as well as an NWA
SyntaxChecker accepting all valid representations. We then run the decision algorithms
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for language inclusion, language emptiness, etc. on PalSum and SyntaxChecker as needed.
To do this, we used the Automata Library toolchain of the ULTIMATE program analysis
framework.

We have provided links to the proof scripts used to establish all of our results. To run these
proof scripts, simply copy the contents of the script into https://monteverdi.informatik.
uni-freiburg.de/tomcat/Website/?ui=int&tool=automata_library and click “execute”.
Some of the larger proof scripts might time out on the web client, but can be run to completion
by downloading the ULTIMATE Automata Library toolchain and executing them on a local
machine.

5 Proving Theorem 1

In this section, we discuss construction of the appropriate nested-word automaton in more
detail.

Proof of Theorem 1. We build three separate automata. The first, palChecker, has 9
states, and simply checks whether the input number is a binary palindrome. The second,
palChecker2, has 771 states, and checks whether an input number of length n can be
expressed as the sum of three binary palindromes of lengths n, n− 2, and n− 3. The third
machine, palChecker3, has 1539 states, and checks whether an input number of length
n can be expressed as the sum of three binary palindromes of lengths n − 1, n − 2, and
n − 3. We then determinize these three machines, and take their union, to get a single
deterministic NWA, FinalAut, with 36194 states. We then run the command FinalAut =
shrinkNwa(FinalAut); to reduce this to a deterministic NWA of only 106 states.

The language of valid inputs to our automata is given by

L = {{a, b}n{c, d}m{e, f}n : 0 ≤ m ≤ 1, n ≥ 4}.

We only detail the mechanism of palChecker3 here. Let p, q and r be the binary
palindromes representing the guessed (n− 1)-length summand, (n− 2)-length summand and
(n− 3)-length summand respectively. The states of palChecker3 include 1536 t-states that
are 10-tuples. We label these states (g, x, y, z, k, l1, l2,m1,m2,m3), where 0 ≤ g ≤ 2, while
all other coordinates are either 0 or 1. The g-coordinate indicates the current carry, and can
be as large as 2. The x, y and z coordinates indicate whether we are going to guess 0 or 1
for the next guesses of p, q and r respectively. The remaining coordinates serve as “memory”
to help us manage the differences in lengths of the guessed summands. The k-coordinate
records the most recent guess for p. We have l1 and l2 record the two most recent q guesses,
with l1 being the most recent one, and we have m1,m2 and m3 record the three most recent
r-guesses, with m1 being the most recent one, then m2, and m3 being the guess we made
three steps ago. We also have three s-states labeled s0, s1 and s2, representing carries of 0, 1
and 2 respectively. These states process the second half of the input string.

The initial state of the machine is (0, 1, 1, 1, 0, 0, 0, 0, 0, 0) since we start with no carry,
must guess 1 for our first guess of a valid binary palindrome, and all “previous” guesses
are 0. A t-state has an outgoing transition on either a or b, but not both. If g + x+ y + z

produces an output bit of 0, it takes a transition on a, else it takes a transition on b. The
destination states are all six states of the form (g′, x′, y′, z′, x, y, l1, z,m1,m2), where g′ is the
carry resulting from g + x+ y + z, and x′, y′, z′ can be either 0 or 1. Note that we “update”
the remembered states by forgetting k, l2 and m3, and saving x, y and z.

The s-states only have transitions on the return symbols e and f . When we read these
symbols, we pop a t-state off the stack. If state si pops the state (g, x, y, z, k, l1, l2,m1,m2,m3)
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off the stack, its transition depends on the addition of i + k + l2 + m3. If this addition
produces a carry of j, then si can take a transition to sj on e if the output bit produced is
0, and on f otherwise. By reading the k, l2 and m3 values, we correctly realign p, q and r,
correcting for their different lengths. This also ensures that we supply 0s for the last three
guesses of r, the last two guesses of q and the last guess of p. The only accepting state is s0.

It remains to describe how we transition from t-states to s-states. This transition happens
when we are halfway done reading the input. If the length of the input is odd, we read a c or
a d at the halfway point. We only allow certain t-states to have outgoing transitions on c
and d. Specifically, we require the state’s coordinates to satisfy k = x, l2 = y, m1 = m2 and
m3 = z. These conditions are required for p, q and r to be palindromes. We transition to
state si if the carry produced by adding g + x+ y + z is i, and we label the transition c if
the output bit is 0, and d otherwise.

If the length of the input is even, then our t-states take a return transition on e or f .
Once again, we restrict the t-states that can take return transitions. We require the state’s
coordinates to satisfy l1 = l2 and m1 = m3 to ensure our guessed summands are palindromes.
Let the current state be (g, x, y, z, k, l1, l1,m1,m2,m1), and the state at the top of the stack
be (g′, x′, y′, z′, k′, l′1, l′2,m′1,m′2,m′3). We can take a transition to si if the sum g+k′+ l′2 +m′3
produces a carry of i, and we label the transition e if the output bit is 0, and f otherwise.

The structure and behavior of palChecker2 is very similar. One difference is that there
is no need for a k-coordinate in the t-states since the longest summand guessed is of the
same length as the input.

The complete script executing this proof is over 750000 lines long. Since these automata
are very large, we wrote two C++ programs to generate them. Both the proof script, and the
programs generating them can be found at https://cs.uwaterloo.ca/~shallit/papers.
html. It is worth noting that a t-state labeled as (g, x, y, z, k, l1, l2,m1,m2,m3) in this
report is labeled q_g_xyz_k_l1l2_m1m2m3 in the proof script. Also, ULTIMATE does not
currently have a union operation for NWAs, so we work around this by using De Morgan’s
laws for complement and intersection. J

6 Bases 3 and 4

In this section we prove analogous results for bases 3 and 4. We show that every natural
number is the sum of at most three base-3 palindromes, and at most three base-4 palindromes.
Because the NWAs needed became too large for us to manipulate effectively, we use a modified
approach using nondeterministic finite automata to prove these results. This approach was
suggested to us by Dirk Nowotka and Parthasarathy Madhusudan, independently.

Our result for base 3 is as follows:

I Theorem 5. For all n ≥ 9, every integer whose base-3 representation is of length n is the
sum of
(a) three base-3 palindromes of lengths n, n− 1, and n− 2; or
(b) three base-3 palindromes of lengths n, n− 2, and n− 3; or
(c) three base-3 palindromes of lengths n− 1, n− 2, and n− 3; or
(d) two base-3 palindromes of lengths n− 1 and n− 2.

Proof. We represent the input in a “folded” manner over the input alphabet Σ3 ∪ (Σ3 ×Σ3),
where Σk = {0, 1, . . . , k− 1}, giving the machine 2 letters at a time from opposite ends. This
way we can directly guess our summands without having need of a stack at all. We align the
input along the length-n− 2 summand by providing the first 2 letters of the input separately.

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html
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If (N)3 = a2i+1a2i · · · a0, we represent N as the word

a2i+1a2i[a2i−1, a0][a2i−2, a1] · · · [ai, ai−1].

Odd-length inputs leave a trailing unfolded letter at the end of their input. If (N)3 =
a2i+2a2i+1 · · · a0, we represent N as the word

a2i+2a2i+1[a2i, a0][a2i−1, a1] · · · [ai+1, ai−1]ai.

We need to simultaneously carry out addition on both ends. In order to do this we need
to keep track of two carries. On the lower end, we track the “incoming” carry at the start of
an addition, as we did in the proofs using NWAs. On the higher end, however, we track the
expected “outgoing” carry.

To illustrate how our machines work, we consider an NFA accepting length-n inputs that
are the sum of 4 base-3 palindromes, one each of lengths n, n− 1, n− 2 and n− 3. Although
this is not a case in our theorem, each of the four cases in our theorem can be obtained from
this machine by striking out one or more of the guessed summands.

Recall that we aligned our input along the length-(n− 2) summand by providing the 2
most significant letters in an unfolded manner. This means that our guesses for the length-n
summand will be “off-by-two”: when we make a guess at the higher end of the length-n
palindromic summand, its appearance at the lower end is 2 steps away. We hence need to
record the last 2 guesses at the higher end of the length-n summand in our state. Similarly,
we need to record the most recent higher guess of the length-(n− 1) summand, since it is off
by one. The length-(n− 2) summand is perfectly aligned, and hence nothing needs to be
recorded. The length-(n− 3) summand has the opposite problem of the length-(n− 1) input.
Its lower guess only appears at the higher end one step later, and so we save the most recent
guess at the lower end.

Thus, in this machine, we keep track of 6 pieces of information:
c1, the carry we are expected to produce on the higher end,
c2, the carry we have entering the lower end,
x1 and x2, the most recent higher guesses of the length-n summand,
y, the most recent higher guess of the length-(n− 1) summand, and
z, the most recent lower guess of the length-(n− 3) summand,

Consider a state (c1, c2, x1, x2, y, z). Let i, j, k, l ∈ [0, 2] be our next guesses for the four
summands of lengths n, n − 1, n − 2 and n − 3 respectively. Also, let α be our guess for
the next incoming carry on the higher end. Let the result of adding i+ j + k + z + α be a
value 0 ≤ p1 < 3 and a carry of q1. Let the result of adding x+ y + k + l + x2 be a value
0 ≤ p2 < 3 and a carry of q2. We must have q1 = c1. If this condition is met, we add a
transition from this state to (α, q2, x2, i, j, l), and label the transition [p1, p2].

The initial state is (0, 0, 0, 0, 0, 0). We expand the alphabet to include special variables
for the first 3 symbols of the input string. This is to ensure that we always guess a 1 or a 2
for the first (and last) positions of our summands.

The acceptance conditions depend on whether (N)3 is of even or odd length. If a state
(c1, c2, x1, x2, y, z) satisfies c1 = c2 and x1 = x2, we set it as an accepting states. A run
can only terminate in one of these states if (N)3 is of even length. We accept since we are
confident that our guessed summands are palindromes (the condition x1 = x2 ensures our
length-n summand is palindromic), and since the last outgoing carry on the lower end is the
expected first incoming carry on the higher end (enforced by c1 = c2).

We also have a special symbol to indicate the trailing symbol of an input for which (N)3
is of odd length. We add transitions from our states to a special accepting state, qacc, if
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we read this special symbol. Consider a state (c1, c2, x1, x2, y, z), and let 0 ≤ k < 3 be our
middle guess for the n− 2 summand. Let the result of adding x1 + y + k + z + c2 be a value
0 ≤ p < 3 and a carry of q. If q = c1, we add a transition on p from our state to qacc.

We wrote a C++ program generating a single NFA with 4 parts, one for each case of the
theorem. After minimizing, the machine has 378 states. We then built a second NFA that
accepts folded representations of (N)3 such that the unfolded length of (N)3 is greater than
8. We then use ULTIMATE to assert that the language accepted by the second NFA is
included in that accepted by the first. All these operations run in under a minute.

We tested this machine by experimentally calculating which values of 243 ≤ N ≤ 1000
could be written as the sum of palindromes satisfying one of our 4 conditions. We then
asserted that for all the folded representations of 243 ≤ N ≤ 1000, our machine accepts these
values which we experimentally calculated, and rejects all others. J

We also have the following result for base 4:

I Theorem 6. For all n ≥ 7, every integer whose base-4 representation is of length n is the
sum of
(a) exactly one palindrome each of lengths n− 1, n− 2, and n− 3; or
(b) exactly one palindrome each of lengths n, n− 2, and n− 3.

Proof. The NFA we build is very similar to the machine described for the base-3 proof.
Indeed, the generator used is the same as the one for the base-3 proof, except that its input
base is 4, and the only machines it generates are for the two cases of this theorem. The
minimized machine has 478 states. J

This, together with the results previously obtained by Cilleruelo, Luca, and Baxter,
completes the additive theory of palindromes for all integer bases b ≥ 2.

7 Objections to this kind of proof

A proof based on computer calculations, like the one we have presented here, is occasionally
criticized because it cannot easily be verified by hand, and because it relies on software that
has not been formally proved. These kinds of criticisms are not new; they date at least to
the 1970’s, in response to the celebrated proof of the four-color theorem by Appel and Haken
[3, 4]. See, for example, Tymoczko [25].

We answer this criticism in several ways. First, it is not reasonable to expect that every
result of interest to mathematicians will have short and simple proofs. There may well be,
for example, easily-stated results for which the shortest proof possible in a given axiom
system is longer than any human mathematician could verify in their lifetime, even if every
waking hour were devoted to checking it. For these kinds of results, an automated checker
may be our only hope. There are many results for which the only proof currently known is
computational.

Second, while short proofs can easily be checked by hand, what guarantee is there that any
very long case-based proof — whether constructed by humans or computers — can always be
certified by human checkers with a high degree of confidence? There is always the potential
that some case has been overlooked. Indeed, the original proof of the four-color theorem
by Appel and Haken apparently overlooked some cases. Similarly, the original proof by
Cilleruelo and Luca on sums of palindromes [8] had some minor flaws that became apparent
once their method was implemented as a python program; these were later corrected in [9].
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Third, confidence in the correctness of the results can be improved by providing code
that others may check. Transparency is essential. To this end, we have provided our code
for the nested-word automata, and the reader can easily run this code on the software we
referenced.

8 Future work

We can use the same sorts of ideas to attack other problems in additive number theory. For
example, we can obtain results about “generalized palindromes” (allowing an arbitrary number
of leading zeroes), “anti-palindromes” (of the form xxR), “generalized anti-palindromes”,
and so forth.

In a recent paper [17], we use the same kinds of techniques to prove an analogue of
Lagrange’s theorem for binary “squares” (those numbers whose representation in base 2
consists of two consecutive identical blocks).
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