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Abstract
We study the computational power of shallow quantum circuits with O(logn) initialized and
nO(1) uninitialized ancillary qubits, where n is the input length and the initial state of the
uninitialized ancillary qubits is arbitrary. First, we show that such a circuit can compute any
symmetric function on n bits that is classically computable in polynomial time. Then, we regard
such a circuit as an oracle and show that a polynomial-time classical algorithm with the oracle
can estimate the elements of any unitary matrix corresponding to a constant-depth quantum
circuit on n qubits. Since it seems unlikely that these tasks can be done with only O(logn)
initialized ancillary qubits, our results give evidences that adding uninitialized ancillary qubits
increases the computational power of shallow quantum circuits with only O(logn) initialized
ancillary qubits. Lastly, to understand the limitations of uninitialized ancillary qubits, we focus
on near-logarithmic-depth quantum circuits with them and show the impossibility of computing
the parity function on n bits.
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1 Introduction

1.1 Background and Main Results
Much attention has been paid to the computational power of shallow (i.e., polylogarithmic-
depth) quantum circuits [6, 16, 10, 9, 11, 8, 3, 22, 20, 4]. A major purpose of this line of
research is to understand the differences between shallow quantum and classical circuits. In
addition, it is strongly motivated by one of the most difficult problems concerning quantum
circuit implementation: in current and near-future technologies, it would be very difficult to
keep quantum coherence for a period of time long enough to apply many gates.

In discussing the computational power of shallow quantum circuits, polynomially many
ancillary qubits initialized to, say, |0〉 are assumed to be available. The initialized ancillary
qubits are particularly important for quantum circuits since many quantum operations require
ancillary qubits to preserve their unitary property and store intermediate results. Another
implementation problem arises here: it is difficult to prepare a large number of qubits that are
simultaneously initialized to a certain state. Indeed, this problem has often been addressed
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in the literature [7, 14]. However, most papers concerning the problem assume a sufficiently
long coherence time. In this paper, we address these two problems simultaneously.

A straightforward quantum computation model reflecting a short coherence time and a
limited number of initialized ancillary qubits would be shallow quantum circuits with O(logn)
initialized ancillary qubits, where n is the input length. However, their computational power
seems quite low since each step of them can utilize only a small number of intermediate results.
In fact, it is not even known whether such a circuit can compute the OR function on n bits,
and it seems unlikely that it can. Therefore, it is highly desirable to find additional ancillary
qubits satisfying the following conditions: they should be easier to prepare than initialized
ancillary qubits and increase the computational power of shallow quantum circuits with
only O(logn) initialized ancillary qubits. An interesting direction is to study qubits in the
completely mixed state [13], but it would be better not to assume any particular initial state.

We consider polynomially many uninitialized qubits as additional ancillary qubits. More
concretely, we study shallow quantum circuits with O(logn) initialized and nO(1) uninitialized
ancillary qubits, where we assume that no intermediate measurements are allowed. The initial
state of the uninitialized ancillary qubits is arbitrary and thus they are easier to prepare than
initialized ancillary qubits, i.e., they satisfy the above first condition on additional ancillary
qubits. But do they satisfy the second condition? Specifically, are shallow quantum circuits
with O(logn) initialized and nO(1) uninitialized ancillary qubits more powerful than those
without uninitialized ancillary qubits? Although uninitialized ancillary qubits are known
to be useful for constructing a few efficient quantum circuits [1, 19], a complexity-theoretic
analysis of quantum circuits with such ancillary qubits has not yet been done.

First, to give evidence of an affirmative answer to the question, we consider symmetric
functions, which are Boolean functions whose output depends only on the number of ones in
the input bits [12]. Let Sn be the class of symmetric functions on n bits that are classically
computable in polynomial time. For example, Sn includes the OR function, for which it is
not known whether there exists a shallow quantum circuit (consisting of one-qubit gates and
CNOT gates) with only O(logn) initialized ancillary qubits, and it seems unlikely that it
does. However, any function in Sn can be computed by adding uninitialized ancillary qubits:

I Theorem 1. Any fn ∈ Sn can be computed by an O((logn)2)-depth quantum circuit with n
input qubits, one output qubit, and O(logn) initialized and O(n(logn)2) uninitialized ancillary
qubits such that it consists of the gates in the gate set G, where G consists of a Hadamard
gate, a phase-shift gate with angle 2πc/2t for any integers t ≥ 1 and c, and a CNOT gate.

Theorem 1 gives evidence that shallow quantum circuits with O(logn) initialized and nO(1)

uninitialized ancillary qubits are more powerful than those without uninitialized ancillary
qubits in terms of computing symmetric functions. The proof of Theorem 1 immediately
implies that the depth of the circuit can be decreased to O(logn) when the circuit is allowed
to further include unbounded fan-out gates and unbounded Toffoli gates.

Then, to give further evidence of the computational advantage of using uninitialized
ancillary qubits, we consider a classical algorithm with an oracle that can perform a shallow
quantum circuit with them. When the oracle receives a bit string w, it performs the circuit
with input qubits initialized to |w〉 and sends back the classical outcome of the measurement
on the output qubit. Let p(n) be a polynomial and Cn be a constant-depth quantum circuit
on n qubits consisting of the gates in G. The problem, denoted by MAT(p(n), Cn), is to
compute a real number αx such that |αx − |〈0n|Cn|x〉|2| ≤ 1/p(n) for any input x ∈ {0, 1}n,
where Cn also denotes its matrix representation. It is not known whether the problem has a
polynomial-time classical algorithm, and it seems unlikely that it does [17], even when we use
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an oracle that can perform a shallow quantum circuit with only O(logn) initialized ancillary
qubits. However, the problem can be solved by adding uninitialized ancillary qubits:

I Theorem 2. For any polynomial p(n) and a constant-depth quantum circuit Cn on n

qubits consisting of the gates in G, MAT(p(n), Cn) can be solved with probability exponentially
(in n) close to 1 by a polynomial-time probabilistic classical algorithm with an oracle that
can perform an O(logn)-depth quantum circuit with 2n input qubits, one output qubit, and
(no initialized and) n uninitialized ancillary qubits such that it consists of the gates in G.

As with Theorem 1, Theorem 2 gives evidence that shallow quantum circuits with O(logn)
initialized and nO(1) uninitialized ancillary qubits are more powerful than those without
uninitialized ancillary qubits. More concretely, by the proof of Theorem 2, this is evidence
that there exists a probability distribution on {0, 1} that can be generated with uninitialized
ancillary qubits but cannot without them. This is because, otherwise, MAT(p(n), Cn) would
be solved by using an oracle with only O(logn) initialized ancillary qubits. We give a brief
comment on the number of input qubits in the circuit performed by the oracle. If the number
is large, a classical algorithm can send 0k for large k (besides another bit string) to the oracle
and the circuit can use a part of the input qubits as a large number of initialized ancillary
qubits. To avoid this, we restrict the number of input qubits to 2n.

Lastly, to understand the limitations of uninitialized ancillary qubits, for an arbitrary
constant 0 ≤ δ < 1, we focus on O((logn)δ)-depth quantum circuits with them and consider
the computability of the parity function on n bits. Since the depth is o(logn), it is easy to
show that the parity function cannot be computed by any such circuit consisting of the gates
in G. This is also the case even when the circuit includes additional gates on a non-constant
number of qubits:

I Theorem 3. Let 0 ≤ δ < 1 be an arbitrary constant. Then, the parity function on n bits
cannot be computed by any O((logn)δ)-depth quantum circuit with n input qubits, one output
qubit, and O(logn) initialized and nO(1) uninitialized ancillary qubits such that it consists of
the gates in G, unbounded fan-out gates on (logn)O(1) qubits, and unbounded Toffoli gates.

Theorem 3 means that O((logn)δ)-depth quantum circuits with O(logn) initialized and
nO(1) uninitialized ancillary qubits are not more powerful than those without uninitialized
ancillary qubits in terms of computing the parity function, even when they include the two
types of gates on a non-constant number of qubits. Moreover, Theorem 3 implies that the
circuit in Theorem 1 is optimal in the following sense. As described in the paragraph following
Theorem 1, the depth of the circuit becomes O(logn) when the circuit uses the gates in G,
unbounded fan-out gates, and unbounded Toffoli gates. As described in Section 1.3, the
circuit is based on the computation of the number of ones in the input bits and thus can be
regarded as a parity circuit. Thus, the circuit cannot be significantly improved simultaneously
in terms of both the depth and the number of qubits on which unbounded fan-out gates act.
This is because, otherwise, we would obtain a parity circuit that contradicts Theorem 3.

We comment on the states of uninitialized ancillary qubits in the above theorems. In
the proofs of Theorems 1 and 2, we assume that the state of uninitialized ancillary qubits is
an arbitrary computational basis (pure) state. These proofs can be simply extended for an
arbitrary pure/mixed state by the linearity of quantum operations and the fact that a mixed
state is a probabilistic mixture of pure states. Thus, Theorems 1 and 2 hold for an arbitrary
pure/mixed state. We show Theorem 3 under the same assumption. Thus, Theorem 3 means
that there does not exist an O((logn)δ)-depth quantum circuit (with the property described
in the theorem) that computes the parity function on n bits regardless of the initial state
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of uninitialized ancillary qubits, where we assume that the initial state is restricted to an
arbitrary computational basis (pure) state. In this statement, we can remove the restriction,
i.e., we can assume that the initial state is an arbitrary pure/mixed state. This is because
the resulting statement is weaker than the original one. In this sense, Theorem 3 holds for
an arbitrary pure/mixed state.

1.2 Imposing the Quantum Catalytic Requirement
Buhrman et al. [5] defined a classical computation with a logarithmic-size clean space and a
polynomial-size additional space, which they call a catalytic log-space computation. The
initial state of the additional space is arbitrary, and they impose the catalytic requirement
that its state has to be returned to the initial one at the end of the computation. They showed
a surprising result: it appears that such a computation is more powerful than that without
the additional space. The additional space seems like a catalyst in a chemical reaction.

The corresponding catalytic requirement in our quantum setting is that the state of unini-
tialized ancillary qubits has to be returned to the initial one at the end of computation. Since
the circuit in Theorem 1 has no error, by the standard technique of uncomputation, it is easy
to transform the circuit into the one that meets the quantum catalytic requirement without
increasing the original asymptotic complexity. Thus, Theorem 1 means that uninitialized
ancillary qubits seem like a catalyst as in the classical setting [5]. When shallow quantum
circuits have an error, it is not easy to transform them into the ones that meet the quantum
catalytic requirement and the analysis of such circuits is left for future work.

From a practical point of view, it is even better to decrease the number of uninitialized
ancillary qubits we need to specially prepare in addition to decreasing the number of initialized
ones. The quantum catalytic requirement allows us to do this in some cases. An example
is when we use a shallow quantum circuit with uninitialized ancillary qubits in a quantum
circuit for Shor’s factoring algorithm [19]. The factoring circuit uses two registers and, during
some operation, all qubits in one register are idle. Thus, when we use a shallow quantum
circuit for the operation that meets the above requirement, we can regard the idle qubits as
uninitialized ancillary qubits since the circuit returns their state to the initial one. The use of
the circuit in this way requires that the computation has to be done with only qubits, which
matches our quantum computation model. From a complexity-theoretic standpoint, it is also
interesting to study a quantum computation model with an additional classical space [23].

1.3 Overview of Techniques
We construct two quantum circuits to obtain the circuit for fn ∈ Sn in Theorem 1. The first
one is an O((logn)2)-depth OR reduction circuit with O(n(logn)2) uninitialized ancillary
qubits, which reduces the computation of the OR function on n bits to that on m = O(logn)
bits. Its first part is a modification of the original OR reduction circuit [11] and yields a
state whose phase depends on the uninitialized ancillary qubits but has a convenient form
to eliminate the dependency. We apply similar circuits repeatedly to add an appropriate
phase to that of the state, which eliminates any dependency on the uninitialized ancillary
qubits. The second circuit is an O(m2)-depth one for gm with O(m2m) uninitialized ancillary
qubits. Here, gm is a Boolean function on m bits satisfying that gm(s) = fn(x) for any
x ∈ {0, 1}n, where s ∈ {0, 1}m is the binary representation of the number of ones in x. The
circuit is based on the Fourier expansion of gm [12] and the above method for eliminating any
dependency on the uninitialized ancillary qubits. For any input x ∈ {0, 1}n, we first compute
s using the OR reduction circuit and then compute gm(s) = fn(x) using the circuit for gm.
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The algorithm in Theorem 2 is based on a polynomial-time probabilistic classical algorithm
for MAT(p(n), Cn) with an oracle [17], where the oracle can perform a commuting quantum
circuit for the Hadamard test [15]. Although initialized ancillary qubits can be used to
parallelize the Hadamard test [22], it has not been known whether uninitialized ancillary
qubits are useful for this purpose. We show that they can be used like initialized ancillary
qubits in parallelizing the Hadamard test. We replace the commuting quantum circuit with
a new circuit with our parallelizing techniques using uninitialized ancillary qubits in the
algorithm for MAT(p(n), Cn), which yields the desired algorithm.

We show Theorem 3 by extending the proof of Bera [3]. Our proof is different from the
previous one in that it deals with ancillary qubits and unbounded fan-out gates. The key to
Theorem 3 is to show that, for any quantum circuit Cn with O(logn) initialized and nO(1)

uninitialized ancillary qubits such that it may include unbounded Toffoli gates, there exists
an initial state of the uninitialized ancillary qubits such that Cn with the initial state is well
approximated by C̃n with the same initial state. Here, C̃n is the circuit obtained from Cn by
removing unbounded Toffoli gates on a large number of qubits. Thus, if Cn is a small-depth
quantum circuit for the parity function, then C̃n computes the same function with high
probability. This is impossible since C̃n does not have any gate on a large number of qubits
and thus its output does not depend on all input qubits.

2 Preliminaries

A quantum circuit consists of elementary gates, each of which is in the gate set G, where
G consists of a Hadamard gate H, a phase-shift gate Z(θ) with angle θ, and a CNOT
gate. Here, H = |+〉〈0|+ |−〉〈1| and Z(θ) = |0〉〈0|+ eiθ|1〉〈1|, where |±〉 = (|0〉 ± |1〉)/

√
2

and θ = 2πc/2t for any integers t ≥ 1 and c. We write Z(π) and HZ(π)H as Z and X,
respectively. In some cases, we use a fan-out gate and a Toffoli gate as elementary gates. Let
k ≥ 1 be an integer. A fan-out gate on k + 1 qubits implements the operation defined as
|y〉
⊗k

j=1 |xj〉 7→ |y〉
⊗k

j=1 |xj ⊕ y〉 for any y, xj ∈ {0, 1}, where ⊕ denotes addition modulo 2.
The first input qubit is called the control qubit. A k-controlled Toffoli gate implements the
operation on k + 1 qubits defined as

(⊗k
j=1 |xj〉

)
|y〉 7→

(⊗k
j=1 |xj〉

)
|y ⊕

∧k
j=1 xj〉, where∧

denotes the logical AND. The first k input qubits are called the control qubits and the
last input qubit is called the target qubit. These gates with k = 1 are CNOT gates. When it
is permitted to apply a fan-out gate and a Toffoli gate on a non-constant number of qubits,
they are called an unbounded fan-out gate and an unbounded Toffoli gate, respectively.

To simplify the descriptions of quantum circuits, we use a k-controlled Z(θ) gate for any θ
described above, which will be decomposed into elementary gates. The gate implements the
operation on k + 1 qubits defined as

⊗k+1
j=1 |xj〉 7→ e

iθ
∧k+1
j=1

xj⊗k+1
j=1 |xj〉 for any xj ∈ {0, 1}.

We can choose an arbitrary qubit as the target qubit and the other qubits are called the
control qubits. The inverse of the gate is the k-controlled Z(−θ) gate. When it is permitted
to apply the gate on a non-constant number of qubits, it is called an unbounded Z(θ) gate.

The complexity measures of a quantum circuit are its size and depth. The size of a
quantum circuit is the total size of all elementary gates in the circuit, where the size of an
elementary gate is the number of qubits on which the gate acts. To define the depth, we
regard the circuit as a set of layers 1, . . . , d consisting of elementary gates, where gates in
the same layer act on pairwise disjoint sets of qubits and any gate in layer j is applied before
any gate in layer j + 1. The depth of the circuit is the smallest possible value of d [9].

We deal with a uniform family of polynomial-size quantum circuits {Cn}n≥1, where no
intermediate measurements are allowed. The uniformity means that the function 1n 7→ Cn is
classically computable in polynomial time, where Cn is the classical description of Cn. Each
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Cn has n input qubits and can have one output qubit and nO(1) ancillary qubits that are
divided into two groups: p = O(logn) qubits and the remaining q qubits. We assume that,
for any x ∈ {0, 1}n and y ∈ {0, 1}, we can initialize the input qubits and output qubit to
|x〉 and |y〉, respectively. We can also initialize the p ancillary qubits to |0〉, which we call
initialized ancillary qubits, but we cannot initialize the q ancillary qubits and do not know
their initial state. They are called uninitialized ancillary qubits. When Cn has the output
qubit, a measurement in the Z basis is performed on it at the end of the computation. The
classical outcome of the measurement, which is 0 or 1, is called the output of Cn. A symbol
denoting a quantum circuit also denotes its matrix representation in the computational basis.

A Boolean function fn on n bits is a mapping fn : {0, 1}n → {0, 1}. We define its
computability by a quantum circuit with uninitialized ancillary qubits as follows:

I Definition 4. Let fn be a Boolean function on n bits and Cn be a quantum circuit with n
input qubits, one output qubit, and p initialized and q uninitialized ancillary qubits. The
circuit Cn computes fn if, for any x ∈ {0, 1}n and y ∈ {0, 1}, when the input qubits and
output qubit are initialized to |x〉 and |y〉, respectively, the output of Cn is y ⊕ fn(x) with
probability 1, regardless of the initial state of the q uninitialized ancillary qubits.

A Boolean function is called symmetric if its output depends only on the number of
ones in the input bits [12]. Let Sn be the class of symmetric functions on n bits that are
classically computable in polynomial time. For example, Sn includes the parity function PAn
and the OR function ORn. Here, for any x = x1 · · ·xn ∈ {0, 1}n, PAn(x) = 1 if |x| is odd
and 0 otherwise, where |x| =

∑n
j=1 xj . Moreover, ORn(x) = 1 if |x| ≥ 1 and 0 otherwise.

We define the function associated with fn ∈ Sn as follows:

I Definition 5. Let fn ∈ Sn. The function associated with fn is the Boolean function gm on
m = dlog(n+ 1)e bits defined as follows: For any s = s1 · · · sm ∈ {0, 1}m, gm(s) = fn(1l0n−l)
if l ≤ n and 0 otherwise, where l =

∑m
k=1 sk2k−1.

The function gm is classically computable in time nO(1) and, for any x ∈ {0, 1}n, if s =
s1 · · · sm is the binary representation of |x|, i.e., |x| =

∑m
k=1 sk2k−1, then gm(s) = fn(x).

We explain the idea of the original OR reduction quantum circuit [11]. The circuit has
n input qubits and O(n logn) initialized ancillary qubits. Let |x〉 be an input state for any
x ∈ {0, 1}n. The circuit transforms the state of m initialized ancillary qubits into the state⊗m

k=1 |ϕk〉, where m = dlog(n+ 1)e and |ϕk〉 = (|+〉+ e
2πi
2k
|x||−〉)/

√
2 for any 1 ≤ k ≤ m. If

|x| = 0, then |ϕk〉 = |0〉 for any 1 ≤ k ≤ m and thus the output state is |0m〉. If |x| ≥ 1, then
|ϕk〉 = |1〉 for some 1 ≤ k ≤ m and thus the output state is orthogonal to |0m〉. This means
that the circuit reduces the computation of ORn to that of ORm. The output state can be
used to compute the binary representation s1 · · · sm of |x|. In fact, it is easy to show that
the state

⊗m
k=1 |sk〉 can be obtained by applying QFT†2m to the state

⊗m
k=1 H|ϕk〉, where

QFT†2m is the inverse of the quantum Fourier transform modulo 2m.

3 Shallow Quantum Circuits for Symmetric Functions

Let fn ∈ Sn. We compute fn on input x ∈ {0, 1}n using the following algorithm:
1. Compute the binary representation s ∈ {0, 1}m of |x|, where m = dlog(n+ 1)e.
2. Compute gm(s) = fn(x), where gm is the function associated with fn.
To implement Step 1, we construct an OR reduction circuit Qn with uninitialized ancillary
qubits. As described above, we can obtain s using Qn (with a layer of H gates) and the
standard O(m)-depth quantum circuit for QFT†2m with no ancillary qubits [18]. To implement
Step 2, we construct a quantum circuit Rm for gm with uninitialized ancillary qubits.
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Figure 1 The first stage of our OR reduction circuit with input x = x1x2x3 ∈ {0, 1}3. The gate
next to the H gate is a fan-out gate on four qubits, where the top qubit is the control qubit. For
any integer t ≥ 1, the gates t and t† represent a Z(2π/2t) gate and its inverse, i.e., a Z(−2π/2t)
gate, respectively. The dashed box represents the gates added to the original OR reduction circuit.

3.1 OR Reduction Circuit with Uninitialized Ancillary Qubits
The circuit Qn is an O((logn)2)-depth OR reduction circuit with n input qubits and O(logn)
initialized and O(n(logn)2) uninitialized ancillary qubits. To explain our idea for constructing
Qn, we consider the case where n = 3 (and thus m = 2). The first stage of Qn is depicted
in Fig. 1, where the initial state of the uninitialized ancillary qubits is represented by the
(unknown) values aj(k), bj(k, l) ∈ {0, 1}. This circuit is obtained by adding the gates in the
dashed box to the original OR reduction circuit. We want to transform the initial states of
the initialized ancillary qubits I(1) and I(2) into the states |ϕ1〉 and |ϕ2〉, respectively. If we
do not apply the added gates, the output state of I(k) is (|+〉+ e

2πi
2k
α(k,1)|−〉)/

√
2, where

α(k, 1) =
∑3
j=1(−1)bj(k,1)(xj ⊕ aj(k)) and k = 1, 2. The phase of this state depends on the

initial state of the uninitialized ancillary qubits and we eliminate the dependency.
The point is that the added gates allow us to obtain an output state of I(k) whose phase has

a convenient form to eliminate the dependency. More concretely, by applying them, the output
state of I(k) is (|+〉+ e

2πi
2k
γ(k,1)|−〉)/

√
2, where γ(k, 1) = |x| − 2

∑3
j=1 xj(aj(k) ⊕ bj(k, 1)).

Since e 2πi
2 γ(1,1) = e

2πi
2 |x|, the output state of I(1) is equal to |ϕ1〉 as desired. The dependency

is eliminated since the terms in γ(1, 1) other than |x| yield only an angle of a multiple of 2π.
Unfortunately, the output state of I(2), which is represented as |ϕ′2〉 in Fig. 1, is not

equal to |ϕ2〉 in general since the phase e
2πi
22 γ(2,1) depends on the initial states of the

uninitialized ancillary qubits, where γ(2, 1) = |x| − 2
∑3
j=1 xj(aj(2)⊕ bj(2, 1)). To eliminate

the dependency, we consider the second stage where we add an angle 2π
22 δ(2, 2) to the

original angle 2π
22 γ(2, 1) using three new uninitialized ancillary qubits (not depicted in Fig. 1).

Here, their initial state is |b1(2, 2)〉|b2(2, 2)〉|b3(2, 2)〉 for any (unknown) bj(2, 2) ∈ {0, 1} and
δ(2, 2) = |x| − γ(2, 1)− 22∑3

j=1 xj(aj(2)⊕ bj(2, 1))(aj(2)⊕ bj(2, 2)). The value δ(2, 2) has a
form similar to γ(2, 1) and thus we can implement the second stage using a quantum circuit
similar to the one in Fig. 1. Since e

2πi
22 (γ(2,1)+δ(2,2)) = e

2πi
22 |x|, we obtain |ϕ2〉 as desired.
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We generalize the idea. Let x = x1 · · ·xn ∈ {0, 1}n be an input. We prepare n input qubits
X1, . . . , Xn and m initialized ancillary qubits I(1), . . . , I(m), where Xj is initialized to |xj〉.
We also prepare nm(m+3)/2 uninitialized ancillary qubits, which are divided into two groups,
A and B. Group A consists of mn qubits, which are divided into m groups A(1), . . . , A(m).
Each A(k) consists of n qubits A1(k), . . . , An(k), where the initial state of Aj(k) is |aj(k)〉 for
any (unknown) aj(k) ∈ {0, 1}. Group B consists of nm(m+ 1)/2 qubits, which are divided
into m groups B(1), . . . , B(m). Each B(k) consists of kn qubits, which are divided into k
groups B(k, 1), . . . , B(k, k). Each B(k, l) consists of n qubits B1(k, l), . . . , Bn(k, l), where
the initial state of Bj(k, l) is |bj(k, l)〉 for any (unknown) bj(k, l) ∈ {0, 1}. The circuit Qn
consists of m stages. For any 1 ≤ s ≤ m, Stage s is defined as follows:
1. Apply a H gate to I(k) for every s ≤ k ≤ m in parallel.
2. Apply a fan-out gate on n+1 qubits to B1(k, s), . . . , Bn(k, s), and I(k) for every s ≤ k ≤ m

in parallel, where I(k) is the control qubit.
3. If s ≥ 2, then apply a fan-out gate on s qubits to Bj(k, 1), . . . , Bj(k, s− 1), and Aj(k)

for every s ≤ k ≤ m and 1 ≤ j ≤ n in parallel, where Aj(k) is the control qubit.
4. Apply a fan-out gate on m − s + 2 qubits to Aj(s), Aj(s + 1), . . . , Aj(m), and Xj for

every 1 ≤ j ≤ n in parallel, where Xj is the control qubit.
5. Apply an s-controlled Z(2π/2k−s+1) gate to Bj(k, s) and the following qubits for every

s ≤ k ≤ m and 1 ≤ j ≤ n in parallel: Aj(k) if s = 1 and Bj(k, 1), . . . , Bj(k, s− 1), and
Aj(k) otherwise.

6. Apply the gates in Step 4.
7. Apply the inverse of the gates in Step 5.
8. Apply the gates in Step 3, Step 2, and Step 1 (in this order).

The circuit Qn outputs the desired state and has the desired complexity as follows. The
proofs can be found in the full version of the paper [21].

I Lemma 6. Let x = x1 · · ·xn ∈ {0, 1}n be an input. For any 1 ≤ k ≤ m and 1 ≤ s ≤ k,
the state of I(k) after Stage s is the state (|+〉 + e

2πi
2k
γ(k,s)|−〉)/

√
2, where γ(k, s) = |x| −

2s
∑n
j=1 xj

∧s
l=1(aj(k)⊕ bj(k, l)). Moreover, the state of any qubit other than the initialized

ancillary qubits is the same as its initial one. The state of I(k) after Stage k is the state |ϕk〉.

I Lemma 7. The circuit Qn uses O(logn) initialized and O(n(logn)2) uninitialized ancillary
qubits, and its depth is O((logn)2), when the elementary gate set is G.

3.2 Circuit for the Function Associated with a Symmetric Function

We construct an O(m2)-depth quantum circuit Rm for gm with m = dlog(n + 1)e input
qubits, one output qubit, and O(m2m) uninitialized ancillary qubits, where gm is the function
associated with fn ∈ Sn. The circuit uses (a slight modification of) the Fourier expansion
of gm [12]: For any s = s1 · · · sm ∈ {0, 1}m, gm(s) = gm(0m) + 2

2m
∑
t ct
⊕m

k=1 tksk, where
ct =

∑
u gm(u)(2

⊕m
k=1 uktk − 1), t = t1 · · · tm ranges over {0, 1}m \ {0m}, and u = u1 · · ·um

ranges over {0, 1}m. Since m = O(logn) and gm is classically computable in time nO(1), the
number of ct’s with t ∈ {0, 1}m \ {0m} is nO(1) and the function t 7→ ct is also classically
computable in time nO(1). This implies the uniformity of our circuit family for fn.

The circuit Rm with input s = s1 · · · sm ∈ {0, 1}m is based on the following algorithm:
1. Compute the parity value

⊕m
k=1 tksk for every t ∈ {0, 1}m \ {0m} in parallel.

2. Prepare (|+〉+ eπigm(s)|−〉)/
√

2 = |gm(s)〉 using the above representation of gm.
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Since we do not have any initialized ancillary qubit, in Step 1, we can only have the parity
values on uninitialized ancillary qubits, i.e., at⊕

⊕m
k=1 tksk for every t ∈ {0, 1}m\{0m}, where

the initial state of the uninitialized ancillary qubits is represented by the (unknown) values
at ∈ {0, 1}. Thus, in Step 2, we have to use such values to prepare (|+〉+ eπigm(s)|−〉)/

√
2 =

Xgm(0m)(|+〉+ e
2πi
2m
∑

t
ct
⊕m

k=1
tksk |−〉)/

√
2, which does not depend on at. The point is that

this situation is essentially the same as the one where |ϕm〉 is prepared by Qn as described
in Section 3.1, i.e., where we can only have the values aj(m)⊕ xj for every 1 ≤ j ≤ n and
we have to use them to prepare |ϕm〉 = (|+〉+ e

2πi
2m |x||−〉)/

√
2, which does not depend on

aj(m). Thus, roughly speaking, we can construct Rm in a similar way to a part of Qn.
A slight difference between these situations is that, in Qn, it is very easy to prepare the

values aj(m)⊕ xj from the input bits xj , but, in Rm, we need to consider a quantum circuit
for computing the parity values at ⊕

⊕m
k=1 tksk from the input bits sk, i.e., for the operation

on 2m +m− 1 qubits defined as |s〉
⊗

t |at〉 7→ |s〉
⊗

t |at ⊕
⊕m

k=1 tksk〉 for any s ∈ {0, 1}m
and at ∈ {0, 1}. If we have m2m−1 initialized ancillary qubits, it is easy to construct an
O(m)-depth quantum circuit for the operation using the following algorithm:
1. Prepare 2m−1 copies of sk on the ancillary qubits for every 1 ≤ k ≤ m in parallel.
2. Compute the parity value at ⊕

⊕m
k=1 tksk for every t ∈ {0, 1}m \ {0m} in parallel.

To implement Step 1, we apply fan-out gates on 2m−1 + 1 qubits, each of which can be
decomposed into an O(m)-depth quantum circuit. Since it is easy to construct an O(logm)-
depth quantum circuit for PAm using a binary tree structure, we can implement Step 2
using a parallel application of such circuits. If we replace the initialized ancillary qubits with
uninitialized ones, the circuit does not work. However, applying the circuit again yields the
desired values. In fact, the first circuit outputs at⊕

⊕m
k=1 tksk⊕d for some d ∈ {0, 1} that is

computed from the (unknown) values in {0, 1} representing the initial state of the uninitialized
ancillary qubits, and the second one outputs at ⊕

⊕m
k=1 tksk ⊕ d⊕ d = at ⊕

⊕m
k=1 tksk as

desired. Using this circuit, we construct Rm and show the following lemma. The details can
be found in the full version of the paper [21].

I Lemma 8. The circuit Rm computes gm. It uses no initialized ancillary qubit and O(m2m)
uninitialized ancillary qubits, and its depth is O(m2), when the elementary gate set is G.

Combining Rm with Qn immediately implies Theorem 1:

Proof of Theorem 1. By Lemmas 6, 7, and 8, we can use Qn and Rm to implement the
algorithm for fn ∈ Sn described at the beginning of Section 3 and the whole circuit has the
desired complexity. J

4 Classical Algorithms with Access to Shallow Quantum Circuits

Let p(n) be a polynomial and Cn be a constant-depth quantum circuit on n qubits consisting
of the gates in G. The problem MAT(p(n), Cn) is to compute a real number αx such that
|αx − |〈0n|Cn|x〉|2| ≤ 1/p(n) for any input x ∈ {0, 1}n. For any x,w ∈ {0, 1}n, we define
Fn(x,w) = 〈x|C†n(

⊗n
j=1 Z

wj
j )Cn|x〉, where w = w1 · · ·wn and Zj is Z applied to the j-th

qubit of Cn. As shown in [17], MAT(p(n), Cn) can be solved with probability exponentially
(in n) close to 1 if there exists a probabilistic algorithm AFn such that, for any x,w ∈ {0, 1}n,
the probability that |AFn(x,w)− Fn(x,w)| ≤ 0.5/p(n) is exponentially close to 1. In fact,
due to the Chernoff-Hoeffding bound, the algorithm for MAT(p(n), Cn) on input x ∈ {0, 1}n
is described with some K = nO(1) as follows: Choose w(j) ∈ {0, 1}n uniformly at random
and compute AFn(x,w(j)) for every 1 ≤ j ≤ K, and output (1/K)

∑K
j=1 AFn(x,w(j)).
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The probabilistic algorithm AFn in [17] can be considered as a repetition of a commuting
quantum circuit D2n for the Hadamard test with 2n input qubits and one output qubit. For
any x,w ∈ {0, 1}n, the output of D2n with the input qubits initialized to |x〉|w〉 and output
qubit initialized to |0〉 is 0 with probability (1 + Fn(x,w))/2. Thus, when the outputs 0
and 1 are regarded as 1 and −1, respectively, due to the Chernoff-Hoeffding bound, AFn is
described with some L = nO(1) as follows, where the input is the pair of x and w: Perform
D2n with the input qubits initialized to |x〉|w〉 and output qubit initialized to |0〉, and obtain
its output zj(x,w) ∈ {1,−1} for every 1 ≤ j ≤ L. After that, output (1/L)

∑L
j=1 zj(x,w).

We construct a parallelized version of the Hadamard test, denoted by E2n, by using unini-
tialized ancillary qubits. Although the standard Hadamard test is a sequential application of
controlled gates with the same control qubit, roughly speaking, E2n first prepares the copies
of the state of the control qubit on uninitialized ancillary qubits and then applies the gates
in parallel by using the copies. To be precise, let x = x1 · · ·xn, w = w1 · · ·wn ∈ {0, 1}n. We
prepare 2n input qubits X1, . . . , Xn,W1, . . . ,Wn, one output qubit Y , and n uninitialized
ancillary qubits G(1), . . . , G(n), where Xj , Wj , and Y are initialized to |xj〉, |wj〉, and |0〉,
respectively. The initial state of the uninitialized ancillary qubits is arbitrary. The circuit
E2n is defined as follows:
1. Apply a H gate to Y .
2. Apply a fan-out gate on n+1 qubits to G(1), . . . , G(n), and Y , where Y is the control qubit.
3. Apply Cn to X1, . . . , Xn−1, and Xn.
4. Apply a 2-controlled Z gate to G(j), Xj , and Wj for every 1 ≤ j ≤ n in parallel.
5. Apply C†n to X1, . . . , Xn−1, and Xn.
6. Apply the gates in Step 2 and Step 1 (in this order).
Each fan-out gate can be decomposed into an O(logn)-depth quantum circuit. Moreover,
a 2-controlled Z gate can be decomposed into a constant number of the gates in G [1, 18].
Thus, E2n is an O(logn)-depth circuit consisting of the gates in G. It has the desired output
probability distribution. The proof can be found in the full version of the paper [21].

I Lemma 9. For any x,w ∈ {0, 1}n, the output of E2n with the input qubits initialized to
|x〉|w〉 and output qubit initialized to |0〉 is 0 with probability (1 + Fn(x,w))/2.

This lemma immediately implies Theorem 2:

Proof of Theorem 2. We replace D2n in the above-mentioned algorithm for MAT(p(n), Cn)
with E2n. By Lemma 9, the output probability distribution of E2n is the same as that of D2n.
Thus, as with the original algorithm, the resulting algorithm solves MAT(p(n), Cn). J

5 Limitations of Uninitialized Ancillary Qubits

5.1 Our Idea for Proving Theorem 3
For any integer s ≥ 1, an s-controlled Toffoli gate is decomposed into an s-controlled Z gate
sandwiched between two H gates [8]. Thus, to prove Theorem 3, it suffices to consider an
unbounded Z gate in place of an unbounded Toffoli gate. We assume on the contrary that
there exists a depth-d quantum circuit Cn for PAn with n input qubits, one output qubit,
p = O(logn) initialized ancillary qubits, and q = nO(1) uninitialized ancillary qubits such that
it consists of the gates in G, unbounded fan-out gates on (logn)O(1) qubits, and unbounded
Z gates, where d = O((logn)δ) for some constant 0 ≤ δ < 1. When all unbounded Z gates
in Cn act on a small number of qubits, such as O(logn) qubits, since d is sufficiently small,
the proof of Bera [3] implies that there exists an input qubit of Cn such that the output of
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Figure 2 Circuit Cn for fn and its decomposition. The initial states of the input qubits, output
qubit, and uninitialized ancillary qubits are |x1〉 · · · |xn〉, |y〉, and |a1〉 · · · |aq〉, respectively, for any
x = x1 · · ·xn ∈ {0, 1}n, y ∈ {0, 1}, and a1 · · · aq ∈ {0, 1}q. Gates T1, . . . , Tk are unbounded Z gates.

Cn does not depend on the input qubit. Thus, Cn cannot compute PAn since the output of
PAn changes if any one of the n input bits changes. This contradicts the assumption.

The remaining case is when there exists an unbounded Z gate on a large number of qubits.
Let C̃n be the circuit obtained from Cn by removing all such gates. Bera [3] showed that,
when Cn does not have any ancillary qubit, it is well approximated by C̃n in the sense that,
when the state of the input qubits is a computational basis state chosen uniformly at random,
the output of Cn coincides with that of C̃n with high probability. Since Cn computes PAn,
C̃n computes PAn with high probability. Thus, we obtain a contradiction as in the above
case since all gates in C̃n act on a small number of qubits. To apply this idea to our setting,
we show that Cn with p initialized ancillary qubits and q uninitialized ancillary qubits in
state |a〉 for some a ∈ {0, 1}q is well approximated (in the sense described above) by C̃n with
the same state. The former circuit computes PAn since Cn with an arbitrary initial state of
the uninitialized ancillary qubits computes PAn. Thus, the latter circuit computes PAn with
high probability, and we obtain a contradiction as in the above simple case.

5.2 Analysis of a General Circuit and Its Application
We analyze a general depth-d quantum circuit Cn with n input qubits, one output qubit,
and p initialized and q uninitialized ancillary qubits such that it consists of the gates in G,
unbounded fan-out gates, and unbounded Z gates. Its key property is described as follows:

I Lemma 10 ([3, 2]). Let Cn be a depth-d quantum circuit with n input qubits and one
output qubit (possibly with ancillary qubits). If all gates in Cn act on at most w qubits, then
the output of Cn can depend only on the states of at most wd input qubits.

Let t ≥ 2 be an integer and Gt be the set of all unbounded Z gates in Cn that act
on more than or equal to t qubits. We consider the case where Gt 6= ∅ and assume that
Gt = {T1, . . . , Tk} for some k ≥ 1, where, for any 1 ≤ l ≤ k, if Tl is in layer L of Cn, then Tl+1
is in layer L′ ≥ L. We decompose Cn into the gates in Gt and the other parts as depicted
in Fig. 2, where Cn computes a Boolean function fn on n bits and Cjn is a quantum circuit
consisting of gates that are not in Gt for any 1 ≤ j ≤ k + 1. Such a decomposition is not
unique in general, but the point is to fix a decomposition. For any 1 ≤ l ≤ k, we define a
quantum circuit Vl as follows: V1 = C1

n and Vl = ClnTl−1Vl−1 for any 2 ≤ l ≤ k. We also
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define ∆l(x, y, b) = ||TlVl|x◦y◦b〉−Vl|x◦y◦b〉|| and ∆(x, y, b) = ||Cn|x◦y◦b〉− C̃n|x◦y◦b〉||
for any x ∈ {0, 1}n, y ∈ {0, 1}, and b ∈ {0, 1}p+q. Here, the symbol “◦” represents the
concatenation of bit strings, |||v〉|| =

√
〈v|v〉 for any vector |v〉, and C̃n = Ck+1

n Ckn · · ·C2
nC

1
n.

Let Un be a random variable uniformly distributed over {0, 1}n. We evaluate the probability
Pr[∆(Un, y, b) < ε] as follows. The proof can be found in the full version of the paper [21].

I Lemma 11. Pr[∆(Un, y, b) < ε] ≥ 1 − (k2/ε2)
∑k
l=1 E[∆l(Un, y, b)2] for any ε > 0, y ∈

{0, 1}, and b ∈ {0, 1}p+q.

To evaluate the value
∑k
l=1 E[∆l(Un, y, b)2], let tl be the number of qubits on which

Tl acts, ul = n + p + q + 1 − tl, and tmin = min{tl|1 ≤ l ≤ k}. We define Vl|x ◦ y ◦ b〉 =∑
i∈{0,1}tl

∑
j∈{0,1}ul g

(l)
x◦y◦b(i ◦ j)|i ◦ j〉 for any x ∈ {0, 1}n, y ∈ {0, 1}, and b ∈ {0, 1}p+q,

where g(l)
x◦y◦b(i ◦ j) is a complex number. The qubits represented by i ∈ {0, 1}tl correspond to

the qubits on which Tl acts. Of course, for any 1 ≤ l ≤ k, Tl does not always act on the first
tl qubits in Cn. We therefore need to apply some permutation of all qubits; however, since
such a permutation does not affect Lemma 13, which is the key to Theorem 3, we omit it.

We evaluate the above value as follows. The proof can be found in the full version [21].

I Lemma 12.
∑k
l=1 E[∆l(Un, y, b)2] ≤ k2p+q+3/2tmin for any y ∈ {0, 1} and b ∈ {0, 1}p+q.

Moreover, there exists some a ∈ {0, 1}q such that
∑k
l=1 E[∆l(Un, 0, 0p ◦ a)2] ≤ k2p+3/2tmin .

Lemmas 11 and 12 immediately imply the following evaluation:

I Lemma 13. There exists some a ∈ {0, 1}q such that Pr[∆(Un, 0, 0p ◦ a) < ε] ≥ 1 −
k32p+3/(ε22tmin) for any ε > 0.

Lemmas 10 and 13 imply Theorem 3 as follows:

Proof of Theorem 3. We assume on the contrary that there exists a quantum circuit Cn
for PAn described in Section 5.1. Since p = O(logn), there exists a constant c > 0 such that
p ≤ c logn when n is sufficiently large. We define t = (c+ 4) log(n+ p+ q + 1) and consider
Gt described above. When Gt = ∅, all gates in Cn act on at most w = (logn)O(1) qubits.
By Lemma 10, the output of Cn can depend only on the states of at most wd = o(n) input
qubits. Thus, there exists an input qubit of Cn such that the output of Cn does not depend
on the input qubit. This yields a contradiction as described in Section 5.1.

We consider the remaining case where Gt 6= ∅. In this case, we apply the above analysis
of a general circuit. It holds that p ≤ c logn, k ≤ (n + p + q + 1)d/tmin, and tmin ≥
(c+ 4) log(n+ p+ q + 1). Thus, by Lemma 13 with ε = 0.1,

Pr[∆(Un, 0, 0p ◦ a) < 0.1] ≥ 1−
(

d

(c+ 4) log(n+ p+ q + 1)

)3 800nc

(n+ p+ q + 1)c+1

for some a ∈ {0, 1}q. Let us express this value on the right-hand side by 1 − γ. Thus,
there exists a set S ⊆ {0, 1}n such that S has at least 2n(1 − γ) elements and, for any
x ∈ S, ∆(x, 0, 0p ◦ a) < 0.1. Since γ goes to 0 as n goes to infinity, 2n(1 − γ) > 2n−1

when n is sufficiently large. A simple calculation shows that, for any x ∈ {0, 1}n satisfying
∆(x, 0, 0p ◦ a) < 0.1, the output of C̃n|x ◦ 0 ◦ 0p ◦ a〉 coincides with that of Cn|x ◦ 0 ◦ 0p ◦ a〉
with probability of at least 1− 0.12 = 0.99 [3, 2]. When the initial state of the uninitialized
ancillary qubits is |a〉, Cn computes PAn. Thus, for any x ∈ S, the output of C̃n|x◦0◦0p ◦a〉
is PAn(x) with probability of at least 0.99. This contradicts the fact obtained by the following
argument. Since all gates in C̃n act on at most (logn)O(1) qubits, as described for the case
where Gt = ∅, by Lemma 10, there exists an input qubit of C̃n such that the output of C̃n
does not depend on the input qubit. This implies that, for at most 2n−1 elements x ∈ {0, 1}n,
the output of C̃n|x ◦ 0 ◦ 0p ◦ a〉 is PAn(x) with probability greater than 0.5. J
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