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Abstract
Singleton arc consistency is an important type of local consistency which has been recently shown
to solve all constraint satisfaction problems (CSPs) over constraint languages of bounded width.
We aim to characterise all classes of CSPs defined by a forbidden pattern that are solved by
singleton arc consistency and closed under removing constraints. We identify five new patterns
whose absence ensures solvability by singleton arc consistency, four of which are provably maximal
and three of which generalise 2-SAT. Combined with simple counter-examples for other patterns,
we make significant progress towards a complete classification.
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19:2 On SAC for Monotone Patterns

1 Introduction

The constraint satisfaction problem (CSP) is a declarative paradigm for expressing computa-
tional problems. An instance of the CSP consists of a number of variables to which we need
to assign values from some domain. Some subsets of the variables are constrained in that
they are not permitted to take all values in the product of their domains. The scope of a
constraint is the set of variables whose values are limited by the constraint, and the constraint
relation is the set of permitted assignments to the variables of the scope. A solution to a
CSP instance is an assignment of values to variables in such a way that every constraint is
satisfied, i.e. every scope is assigned to an element of the constraint relation.

The CSP has proved to be a useful technique for modelling in many important application
areas from manufacturing to process optimisation, for example planning and scheduling
optimisation [31], resource allocation [29], job shop problems [14] and workflow manage-
ment [32]. Hence much work has been done on describing useful classes of constraints [3] and
implementing efficient algorithms for processing constraints [7]. Many constraint solvers use a
form of backtracking where successive variables are assigned values that satisfy all constraints.
In order to mitigate the exponential complexity of backtracking some form of pre-processing
is always performed. These pre-processing techniques identify values that cannot be part
of any solution in an effective way and then propagate the effects of removing these values
throughout the problem instance. Of key importance amongst these pre-processing algorithms
are the relatives of arc consistency propagation including generalised arc consistency (GAC)
and singleton arc consistency (SAC). Surprisingly there are large classes [17, 23, 13, 28] of
the CSP for which GAC or SAC are decision procedures: after establishing consistency if
every variable still has a non-empty domain then the instance has a solution.

More generally, these results fit into the wider area of research aiming to identify sub-
problems of the CSP for which certain polynomial-time algorithms are decision procedures.
Perhaps the most natural ways to restrict the CSP is to limit the constraint relations that
we allow or to limit the structure of (the hypergraph of) interactions of the constraint scopes.
A set of allowed constraint relations is called a constraint language. A subset of the CSP
defined by limiting the scope interactions is called a structural class.

There has been considerable success in identifying tractable constraint languages, recently
yielding a full classification of the complexity of finite constraint languages [9, 33]. Techniques
from universal algebra have been essential in this work as the complexity of a constraint
language is characterised by a particular algebraic structure [11]. The two most important
algorithms for solving the CSP over tractable constraint languages are local consistency and
the few subpowers algorithm [10, 27], which generalises ideas from group theory. A necessary
and sufficient condition for solvability by the few subpowers algorithm was identified in [27, 4].
The set of all constraint languages decided by local consistency was later described by Barto
and Kozik [2] and independently by Bulatov [8]. Surprisingly, all such languages are in fact
decided by establishing singleton arc consistency [28].

A necessary condition for the tractability of a structural class with bounded arity is that
it has bounded treewidth modulo homomorphic equivalence [26]. In all such cases we decide
an instance by establishing k-consistency, where k is the treewidth of the core. It was later
shown that the converse holds: if a class of structures does not have treewidth k modulo
homomorphic equivalence then it is not solved by k-consistency [1], thus fully characterising
the strength of consistency algorithms for structural restrictions. Both language-restricted
CSPs and CSPs of bounded treewidth are monotone in the sense that we can relax (remove
constraints from) any CSP instance without affecting its membership in such a class.
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Since our understanding of consistency algorithms for language and structural classes is
so well advanced there is now much interest in so called hybrid classes, which are neither
definable by restricting the language nor by limiting the structure. For the binary CSP, one
popular mechanism for defining hybrid classes follows the considerable success of mapping
the complexity landscape for graph problems in the absence of certain induced subgraphs or
graph minors. Here, hybrid (binary) CSP problems are defined by forbidding a fixed set of
substructures (patterns) from occurring in the instance [15]. This framework is particularly
useful in algorithm analysis, since it allows us to identify precisely the local properties of a
CSP instance that make it impossible to solve via a given polynomial-time algorithm. This
approach has recently been used to obtain a pattern-based characterisation of solvability by
arc consistency [23], a detailed analysis of variable elimination rules [16] and various novel
tractable classes of CSP [20, 19].

Singleton arc consistency is a prime candidate to study in this framework since it is one of
the most prominent incomplete polynomial-time algorithms for CSP and the highest level of
consistency (among commonly studied consistencies) that operates only by removing values
from domains. This property ensures that enforcing SAC cannot introduce new patterns,
which greatly facilitates the analysis. It is therefore natural to ask for which patterns,
forbidding their occurrence ensures that SAC is a sound decision procedure. In this paper
we make a significant contribution towards this objective by identifying five patterns which
define classes of CSPs decidable by SAC. All five classes are monotone, and we show that only
a handful of open cases separates us from an essentially full characterisation of monotone
CSP classes decidable by SAC and definable by a forbidden pattern. Some of our results rely
on a novel proof technique which follows the trace of a successful run of the SAC algorithm
to dynamically identify redundant substructures in the instance and construct a solution.

The structure of the paper is as follows. In Section 2 we provide essential definitions and
background theory. In Section 3 we state the main results. The rest of the paper includes
some of the proofs. All remaining proofs are provided in the long version [12].

2 Preliminaries

CSP. A binary CSP instance is a triple I = (X,D,C), where X is a finite set of variables, D
is a finite domain, each variable x ∈ X has its own domain of possible values D(x) ⊆ D, and
C = {R(x, y) | x, y ∈ X,x 6= y}, where R(x, y) ⊆ D2, is the set of constraints. We assume,
without loss of generality, that each pair of variables x, y ∈ X is constrained by a constraint
R(x, y). (Otherwise we set R(x, y) = D(x) ×D(y).) We also assume that (a, b) ∈ R(x, y)
if and only if (b, a) ∈ R(y, x). A constraint is trivial if it contains the Cartesian product
of the domains of the two variables. By deleting a constraint we mean replacing it with a
trivial constraint. The projection I[X ′] of a binary CSP instance I on X ′ ⊆ X is obtained
by removing all variables in X\X ′ and all constraints R(x, y) with {x, y} 6⊆ X ′. A partial
solution to a binary CSP instance on X ′ ⊆ X is an assignment s of values to variables in
X ′ such that s(x) ∈ D(x) for all x ∈ X ′ and (s(x), s(y)) ∈ R(x, y) for all constraints R(x, y)
with x, y ∈ X ′. A solution to a binary CSP instance is a partial solution on X.

An assignment (x, a) is called a point. If (a, b) ∈ R(x, y), we say that the assignments
(x, a), (y, b) (or more simply a, b) are compatible and that ab is a positive edge, otherwise a, b
are incompatible and ab is a negative edge. For simplicity of notation we can assume that
variable domains are disjoint, so that using a as a shorthand for (x, a) is unambiguous. We
say that a ∈ D(x) has a support at variable y if ∃b ∈ D(y) such that ab is a positive edge.

STACS 2018
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The constraint graph of a CSP instance with variables X is the graph G = (X,E) such
that (x, y) ∈ E if R(x, y) is non-trivial. The degree of a variable x in a CSP instance is the
degree of x in the constraint graph of the instance.

Arc Consistency. A domain value a ∈ D(x) is arc consistent if it has a support at every
other variable. A CSP instance is arc consistent (AC) if every domain value is arc consistent.

Singleton Arc Consistency. Singleton arc consistency is stronger than arc consistency (but
weaker than strong path consistency [30]). A domain value a ∈ D(x) in a CSP instance I
is singleton arc consistent if the instance obtained from I by removing all domain values
b ∈ D(x) with a 6= b can be made arc consistent without emptying any domain. A CSP
instance is singleton arc consistent (SAC) if every domain value is singleton arc consistent.

Establishing Consistency. Domain values that are not arc consistent or not singleton arc
consistent cannot be part of a solution so can safely be removed. For a binary CSP instance
with domain size d, n variables and e non-trivial constraints there are O(ed2) algorithms
for establishing arc consistency [6] and O(ned3) algorithms for establishing singleton arc
consistency [5]. These algorithms repeatedly remove inconsistent values from domains.

SAC decides a CSP instance if, after establishing singleton arc consistency, non-empty
domains for all variables guarantee the existence of a solution. SAC decides a class of CSP
instances if SAC decides every instance from the class.

Neighbourhood Substitutability. If a, b ∈ D(x), then a is neighbourhood substitutable by b
if there is no c such that ac is a positive edge and bc a negative edge: such values a can be
deleted from D(x) without changing the satisfiability of the instance since a can be replaced
by b in any solution [25]. Similarly, removing neighbourhood substitutable values cannot
destroy (singleton) arc consistency.

Patterns. In a binary CSP instance each constraint decides, for each pair of values in D,
whether it is allowed. Hence a binary CSP can also be defined as a set of points X × D
together with a compatibility function that maps each edge, ((x, a), (y, b)) with x 6= y, into
the set {negative, positive}. A pattern extends the notion of a binary CSP instance by
allowing the compatibility function to be partial. A pattern P occurs (as a subpattern) in an
instance I if there is mapping from the points of P to the points of I which respects variables
(two points are mapped to points of the same variable in I if and only if they belong to the
same variable in P ) and maps negative edges to negative edges, and positive edges to positive
edges. A set of patterns occurs in an instance I if at least one pattern in the set occurs in I.

We use the notation CSP(P ) for the set of binary instances in which P does not occur
as a subpattern. A pattern P is SAC-solvable if SAC decides CSP(P ). It is worth observing
that CSP(P ) is closed under the operation of establishing (singleton) arc consistency. A
pattern P is tractable if CSP(P ) can be solved in polynomial time.

Points (x, a) and (x, b) in a pattern are mergeable if there is no point (y, c) such that ac
is positive and bc is negative or vice versa. For each set of patterns there is an equivalent set
of patterns without mergeable points which occur in the same set of instances.

A point (x, a) in a pattern is called dangling if there is at most one b such that ab is a
positive edge and no c such that ac is a negative edge. Dangling points are redundant when
considering the occurrence of a pattern in an arc consistent CSP instance.
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Figure 1 All degree-3 irreducible monotone patterns solved by SAC must occur in at least one of
these patterns.

A pattern is called irreducible if it has no dangling points and no mergeable points [20].
When studying algorithms that are at least as strong as arc consistency, a classification with
respect to forbidden sets of irreducible patterns is equivalent to a classification with respect
to all forbidden sets of patterns. For this reason classifications are often established with
respect to irreducible patterns even if only classes definable by forbidding a single pattern
are considered [20, 23], as we do in the present paper.

3 Results

Call a class C of CSP instances monotone if deleting any constraint from an instance I ∈ C
produces another instance in C. For example, language classes and bounded treewidth classes
are monotone. An interesting research direction is to study those monotone classes defined by
a forbidden pattern which are solved by singleton arc consistency, both in order to uncover
new tractable classes and to better understand the strength of SAC.

We call a pattern monotone if when forbidden it defines a monotone class. Monotone
patterns can easily be seen to correspond to exactly those patterns in which positive edges
only occur in constraints which have at least one negative edge.

Consider the monotone patterns Q1 and Q2 shown in Figure 1, patterns R5, R8 shown
in Figure 2, and pattern R7- shown in Figure 3.

I Theorem (Main). The patterns Q1, Q2, R5, R8, and R7- are SAC-solvable.

In order to prove the SAC-solvability of Q1, R8 and R7- we use the same idea of following
the trace of arc consistency and argue that the resulting instance is not too complicated.
While the same idea is behind the proofs of all three patterns, the technical details differ.

In the remaining two cases we identify an operation that preserves SAC and satisfiability,
does not introduce the pattern and after repeated application necessarily produces an
equivalent instance which is solved by SAC. In the case of R5, the operation is simply
removing any constraint. In the case of Q2, the operation is BTP-merging [19].
I Remark. The full version of this paper [12] tells us that any monotone and irreducible
pattern solvable by SAC must occur in at least one of the patterns shown in Figures 1 and 2.
By this analysis, we have managed to reduce the number of remaining cases to a handful.
Our main result shows that some of these are SAC-solvable. In particular, the patterns Q1,
Q2, R5, and R8 are maximal in the sense that adding anything to them would give a pattern
that is either non-monotone or not solved by SAC.
I Remark. We point out that certain interesting forbidden patterns, such as BTP [21],
NegTrans [22], and EMC [23] are not monotone. On the other hand, the patterns T1, . . . ,T5
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Figure 2 All degree-2 irreducible monotone patterns solved by SAC must occur in at least one of

these patterns.
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Figure 4 The set of tractable 2-constraint irreducible patterns.

shown in Figure 4 are monotone. Patterns T1, . . . ,T5 were identified in [20] as the maximal
irreducible tractable patterns on two connected constraints. We show in [12] that T1 is not
solved by SAC. Our main result implies (since R8 contains T4 and T5) that both T4 and T5
are solved by SAC. It can easily be shown, from Lemma 12 and [20, Lemma 25], that T2
is solved by SAC, and we provide in [12] a simple proof that T3 is solved by SAC as well.
Hence, we have characterised all 2-constraint irreducible patterns solvable by SAC.

I Remark. Observe that Q1 does not occur in any binary CSP instance in which all degree
3 or more variables are Boolean. This shows that 2-SAT is a strict subset of CSP(Q1).
This class is incomparable with language-based generalisations of 2-SAT, such as the class
ZOA [18], since in CSP(Q1) degree-2 variables can be constrained by arbitrary constraints.
Indeed, instances in CSP(Q1) can have an arbitrary constraint on the pair of variables x, y,
where x is of arbitrary degree and of arbitrary domain size if for all variables z /∈ {x, y}, the
constraint on the pair of variables x, z is of the form (x ∈ S) ∨ (z ∈ Tz) where S is fixed (i.e.
independent of z) but Tz is arbitrary. R8 and R7- generalise T4 and CSP(T4) generalises
ZOA [20], so CSP(R8) and CSP(R7-) are strict generalisations of ZOA.

4 Notation for the Trace Technique

Given a singleton arc consistent instance I, a variable x and a value v ∈ D(x), we denote by
Ixv the instance obtained by assigning x to v (that is, setting D(x) = {v}) and enforcing
arc consistency. To avoid confusion with the original domains, we will use Dxv(y) to denote
the domain of the variable y in Ixv. For our proofs we will assume that arc consistency has
been enforced using a straightforward algorithm that examines the constraints one at a time
and removes the points that do not have a support until a fixed point is reached. We will be
interested in the trace of this algorithm, given as a chain of propagations:

(Pxv) : (x→ y0), (x1 → y1), (x2 → y2), . . . , (xp → yp)

where xi → yi means that the algorithm has inferred a change in the domain of yi when
examining the constraint R(xi, yi). We define a map ρ : (Pxv) 7→ 2D that maps each
(xi → yi) ∈ (Pxv) to the set of values that were removed from Dxv(yi) at this step. Without
loss of generality, we assume that the steps (xi → yi) such that the pruning of ρ(xi → yi)
from Dxv(yi) does not incur further propagation are performed last.

We denote by S(Pxv) the set of variables that appear in (Pxv). Because I was (singleton)
arc consistent before x was assigned, we have S(Pxv) = {x} ∪ {yi | i ≥ 0}. We rename the
elements of S(Pxv) as {pi | i ≥ 0} where the index i denotes the order of first appearance
in (Pxv). Finally, we use SI

(Pxv) to denote the set of inner variables, that is, the set of all
variables pj ∈ S(Pxv) for which there exists pr ∈ S(Pxv) such that (pj → pr) ∈ (Pxv).

STACS 2018
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Figure 5 The occurence of Q1 in the proof of Lemma 1.

5 Tractability of Q1

Consider the pattern Q1 shown in Figure 1. Let I ∈ CSP(Q1) be a singleton arc consistent
instance, x be any variable and v be any value in the domain of x. Our proof of the SAC-
decidability of CSP(Q1) uses the trace of the arc consistency algorithm to determine a subset
of variables in the vicinity of x such that (i) the projection of Ixv to this particular subset is
satisfiable, (ii) those variables do not interact too much with the rest of the instance and (iii)
the projections of Ixv and I on the other variables are almost the same. We then use these
three properties to show that the satisfiability of I is equivalent to that of an instance with
fewer variables, and we repeat the operation until the smaller instance is trivially satisfiable.

The following lemma describes the particular structure of Ixv around the variables whose
domain has been reduced by arc consistency. Note that a non-trivial constraint in I can be
trivial in Ixv because of domain changes.

I Lemma 1. Consider the instance Ixv. Every variable pi ∈ SI
(Pxv) is in the scope of at most

two non-trivial constraints, which must be of the form R(pj , pi) and R(pi, pr) with j < i,
(pj → pi) ∈ (Pxv) and (pi → pr) ∈ (Pxv).

Proof. The claim is true for p0 = x as every constraint incident to x is trivial. Otherwise,
let pi ∈ SI

(Pxv) be such that pi 6= x. Let pj , j < i be such that (pj → pi) occurs first in
(Pxv). Because pi ∈ SI

(Pxv) and we assumed that the arc consistency algorithm performs the
pruning that do not incur further propagation last, we know that there exists ci ∈ ρ(pj → pi)
and pr ∈ S(Pxv) with (pi → pr) ∈ (Pxv) such that the pruning of ci from Dxv(pi) allows the
pruning of some ar ∈ ρ(pi → pr) from the domain of pr. It follows that (ci, ar) ∈ R(pi, pr),
(vi, ar) /∈ R(pi, pr) for any vi ∈ Dxv(pi) and (vj , ci) /∈ R(pj , pi) for any vj ∈ Dxv(pj).
Moreover, ar was a support for ci at pr when ci was pruned so we know that pj 6= pr.

For the sake of contradiction, let us assume that there exists a constraint R(pi, l) with
l /∈ {pj , pr} that is not trivial. In particular, there exist ai, bi ∈ Dxv(pi) and al ∈ Dxv(l) such
that (ai, al) ∈ R(pi, l) but (bi, al) /∈ R(pi, l). Furthermore, ar was removed by arc consistency
when inspecting the constraint R(pi, pr) so (ai, ar) /∈ R(pi, pr). Ixv is arc consistent so there
exists some aj ∈ Dxv(pj) such that (aj , bi) ∈ R(pj , pi), and since ci ∈ ρ(pj → pi) we have
(aj , ci) /∈ R(pj , pi). At this point we have reached the desired contradiction as Q1 occurs on
(pi, pj , pr, l) with pi being the middle variable (see Figure 5). J

Given a subset S of variables, an S-path between two variables y1 and y2 is a path
R(y1, x2), R(x2, x3), . . . , R(xk, y2) of non-trivial constraints with k ≥ 2 and x2, . . . , xk ∈ S.
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I Lemma 2. Consider the instance Ixv. There is no (SI
(Pxv))-path between two variables in

X\SI
(Pxv) and there is no cycle of non-trivial constraints in Ixv[SI

(Pxv)].

Proof. Let y1, y2 ∈ X\SI
(Pxv) and assume for the sake of contradiction that a (SI

(Pxv))-
path R(y1, x2), R(x2, x3), . . . , R(xk−1, y2) exists. Let pi ∈ {x2, . . . , xk−1} be such that i is
minimum. Since pi is in the scope of two non-trivial constraints in this path, it follows from
Lemma 1 that pi is in the scope of exactly two non-trivial constraints, one of which is of
the form R(pj , pi) with j < i and (pj → pi) ∈ (Pxv). It follows from (pj → pi) ∈ (Pxv) that
pj ∈ SI

(Pxv) and hence pj is not an endpoint of the path, and then j < i contradicts the
minimality of i. The second part of the claim follows from the same argument, by considering a
cycle as a (SI

(Pxv))-path R(x1, x2), R(x2, x3), . . . , R(xk−1, x1) with x1 ∈ (SI
(Pxv)) and defining

pi as the variable among {x1, . . . , xk−1} with minimum index. J

I Lemma 3. Ixv has a solution if and only if Ixv[X\SI
(Pxv)] has a solution.

Proof. The “only if” implication is trivial, so we focus on the other direction. Suppose that
there exists a solution φ to Ixv[X\SI

(Pxv)]. Let Y be a set of variables initialized to X\SI
(Pxv).

We will grow Y with the invariants that (i) we know a solution φ to Ixv[Y ], and (ii) there is
no (X\Y )-path between two variables in Y (which is true at the initial state by Lemma 2).

If there is no non-trivial constraint between X\Y and Y then Ixv is satisfiable if and only
if Ixv[X\Y ] is. By construction X\Y ⊆ SI

(Pxv) and by Lemma 2 we know that Ixv[X\Y ] has
no cycle of non-trivial constraints. Because Ixv[X\Y ] is arc consistent and acyclic it has a
solution [24], and we can conclude that in this case Ixv has a solution.

Otherwise, let pi ∈ X\Y be such that there exists a non-trivial constraint between pi and
some variable pr ∈ Y . By (ii), this non-trivial constraint must be unique (with respect to pi)
as otherwise we would have a (X\Y )-path between two variables in Y . By arc consistency,
there exists ai ∈ Dxv(pi) such that (ai, φ(pr)) ∈ R(pi, pr); because this non-trivial constraint
is unique, setting φ(pi) = ai yields a solution to Ixv[Y ∪ {pi}]. Because any (X\(Y ∪ {pi}))-
path between two variables in Y ∪ {pi} would extend to a (X\Y )-path between Y variables
by going through pi, we know that no such path exists. Then Y ← Y ∪ {pi} satisfies both
invariants, so we can repeat the operation until we have a solution to the whole instance or
all constraints between Y and X\Y are trivial. In both cases Ixv has a solution. J

I Lemma 4. I has a solution if and only if I[X\SI
(Pxv)] has a solution.

Proof. Again the “only if” implication is trivial so we focus on the other direction. Let
us assume for the sake of contradiction that I[X\SI

(Pxv)] has a solution but I does not. In
particular this implies that Ixv does not have a solution, and then by Lemma 3 we know that
Ixv[X\SI

(Pxv)] has no solution either. We define Z as a subset of X\SI
(Pxv) of minimum size

such that Ixv[Z] has no solution. Observe that Ixv[Z] can only differ from I[Z] by having
fewer values in the domain of the variables in S(Pxv). Let φ be a solution to I[Z] such that
φ(y) ∈ Dxv(y) for as many variables y as possible. Because φ is not a solution to Ixv[Z], there
exists pr ∈ Z ∩ S(Pxv) and pj ∈ SI

(Pxv) such that (pj → pr) ∈ (Pxv) and φ(pr) ∈ ρ(pj → pr)
(recall that ρ(pj → pr) is the set of points removed by the AC algorithm in the domain of pr

at step (pj → pr)). By construction, pj /∈ Z.
First, let us assume that there exists a variable y ∈ Z, y 6= pr such that there is no

ar ∈ Dxv(pr) with (φ(y), ar) ∈ R(y, pr). This implies, in particular, that φ(y) /∈ Dxv(y). We
first prove that R(y, pr) and R(pj , pr) are the only possible non-trivial constraints involving
pr in Ixv. If there exists a fourth variable z such that R(pr, z) is non-trivial in Ixv, then there
exist ar, br ∈ Dxv(pr) and az ∈ Dxv(z) such that (ar, az) ∈ R(pr, z) but (br, az) /∈ R(pr, z).
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Figure 6 Some positive and negative edges between y, z, pj and pr. The positive edges (φ(y), ar)
and (φ(z), φ(pr)) are omitted for clarity; br is any value in Dxv(pr) that is not compatible with φ(y).

By assumption we have (φ(y), ar) /∈ R(y, pr) and (φ(y), φ(pr)) ∈ R(y, pr). Finally, br

has a support aj ∈ Dxv(pj) and φ(pr) ∈ ρ(pj → pr) so we have (aj , ar) ∈ R(pj , pr) but
(aj , φ(pr)) /∈ R(pj , pr). This produces Q1 on (pr, y, pj , z) with pr being the middle variable.
Therefore, we know that R(y, pr) and R(pj , pr) are the only possible non-trivial constraints
involving pr in Ixv. However, in this case the variable pr has only one incident non-trivial
constraint in Ixv[Z], and hence Ixv[Z] has a solution if and only if Ixv[Z\pr] has one. This
contradicts the minimality of Z, and for the rest of the proof we can assume that for every
y ∈ Z there exists some ar 6= φ(pr) such that ar ∈ Dxv(pr) and (φ(y), ar) ∈ R(y, pr).

Now, let y ∈ Z be such that y 6= pr and |{b ∈ Dxv(pr) | (φ(y), b) ∈ R(y, pr)}| is minimum.
By the argument above, there exists ar ∈ Dxv(pr) such that (φ(y), ar) ∈ R(y, pr) and
ar 6= φ(pr). By hypothesis setting φ(pr) = ar would violate at least one constraint in I[Z], so
there exists some variable z ∈ Z, z 6= y such that (φ(z), ar) /∈ R(z, pr). Furthermore, by arc
consistency of Ixv there exists aj ∈ Dxv(pj) such that (aj , ar) ∈ R(pj , pr). Recall that we
picked pj in such a way that φ(pr) ∈ ρ(pj → pr), and so we have (aj , φ(pr)) /∈ R(pj , pr). We
summarize what we have in Figure 6. Observe that unless Q1 occurs, for every br ∈ Dxv(pr)
such that (φ(y), br) /∈ R(y, pr) we also have (φ(z), br) /∈ R(z, pr). However, recall that
(φ(y), ar) ∈ R(y, pr) so φ(z) is compatible with strictly fewer values in Dxv(pr) than φ(y).
This contradicts the choice of y. It follows that setting φ(pr) = ar cannot violate any
constraint in I[Z], which is impossible by our choice of φ - a final contradiction. J

I Theorem 5. CSP(Q1) is solved by singleton arc consistency.

Proof. Let I ∈ CSP(Q1) be singleton arc consistent. Pick any variable x and value v ∈ D(x).
By singleton arc consistency the instance Ixv does not have any empty domains. By Lemma 4,
I has a solution if and only if I[X\SI

(Pxv)] has one. Because I[X\SI
(Pxv)] is singleton arc

consistent as well and SI
(Pxv) 6= ∅ we can repeat the procedure until X\SI

(Pxv) is empty, at
which point we may conclude that I has a solution. J

6 Tractability of R8 and R7-

Q1 and R8 (Figure 2) are structurally dissimilar, but the idea of using Ixv and the trace of
the arc consistency algorithm to extract variables from I without altering satisfiability works
in the case of R8 as well. We define a star to be a non-empty set of constraints whose scopes
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Figure 7 The patterns M̂ (left) and V2 (right).

all intersect. The centers of a star are its variables of highest degree (every star with three or
more variables has a unique center). The following lemma is the R8 analog of Lemma 1; the
main differences are a slightly stronger prerequisite (no neighbourhood substitutable values)
and that arc consistency leaves stars of non-trivial constraints instead of paths.

I Lemma 6. Let I = (X,D,C) ∈ CSP(R8) be singleton arc consistent. Let x ∈ X, v ∈ D(x)
and consider the instance Ixv. After the removal of every neighbourhood substitutable value,
every connected component of non-trivial constraints that intersect with S(Pxv) is a star with
a center in S(Pxv).

In the proof of SAC-solvability of Q1, only inner variables are extracted from the instance.
The above lemma suggests that in the case of R8 it is more convenient to extract all variables
in S(Pxv), plus any variable that can be reached from those via a non-trivial constraint.

I Lemma 7. Let I = (X,D,C) ∈ CSP(R8) be singleton arc consistent. Let x ∈ X, v ∈ D(x)
and consider the instance Ixv. There exists a partition (X1, X2) of X such that

S(Pxv) ⊆ X1;
∀(x, y) ∈ X1 ×X2, R(x, y) is trivial;
Every connected component of non-trivial constraints with scopes subsets of X1 is a star.

I Theorem 8. CSP(R8) is solved by singleton arc consistency.

Our proof of the SAC-solvability of R7- (Figure 3) follows a similar reasoning, with two
main differences. First, branching on just any variable-value pair (as we did for Q1 and R8)
may lead to a subproblem that is not solved by arc consistency. However, once the right
assignment is made the reward is much greater as all constraints involving a variable whose
domain has been reduced by arc consistency must become trivial except at most one.

Finding out which variable we should branch on is tricky. Our proof works by induction,
and the ideal starting point is a substructure corresponding to a particular pattern M̂
(Figure 7). However, M̂ is an NP-hard pattern [15] so it may not occur at all in the instance.
To handle this problem we define a weaker pattern V2 (Figure 7), whose absence implies
SAC-solvability (because it is a sub-pattern of T4), and we show that if the induction started
from V2 breaks then M̂ must occur somewhere - a win-win situation.

I Lemma 9. Let I = (X,D,C) ∈ CSP(R7-) be singleton arc consistent. Let x ∈ X be such
that M̂ occurs on (y, x, z) with x the middle variable and v be the value in D(x) that is the
meet point of the two positive edges. Then every constraint whose scope contains a variable
in S(Pxv) is trivial in Ixv, except possibly R(y, z).

I Lemma 10. Let I = (X,D,C) ∈ CSP(M̂) ∩ CSP(R7-) be singleton arc consistent. Let
x ∈ X be such that V2 occurs on (y, x, z) with x the middle variable and v be the value in
D(x) that is the meet point of the two positive edges. Then every constraint whose scope
contains a variable in S(Pxv) is trivial in Ixv, except possibly R(y, z).
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Figure 8 (a) The pattern V− and (b) the associated broken-triangle pattern (BTP).

I Theorem 11. CSP(R7-) is solved by singleton arc consistency.

7 Tractability of Q2 and R5

For our last two proofs of SAC-decidability, we depart from the trace technique. Our
fundamental goal, however, remains the same: find an operation which shrinks the instance
without altering satisfiability, introducing the pattern or losing singleton arc consistency. For
Q2 this operation is BTP-merging [19] and for R5 it is removing constraints.

Consider the pattern V− shown in Figure 8(a). We say that V− occurs at point a or at
variable x if a ∈ D(x) is the central point of the pattern in the instance. The pattern V− is
known to be tractable since all instances in CSP(V−) satisfy the joint-winner property [22].
However, we show a slightly different result, namely that singleton arc consistency is sufficient
to solve instances in which V− only occurs at degree-2 variables.

I Lemma 12. Instances in which V− only occurs at degree-2 variables are solved by singleton
arc consistency.

Two values a, b ∈ D(x) are BTP-mergeable [19] if there are not two other distinct variables
y, z 6= x such that ∃c ∈ D(y), ∃d ∈ D(z) with ad, bc, cd positive edges and ac, bd negative
edges as shown in Figure 8(b). The BTP-merging operation consists in merging two BTP-
mergeable points a, b ∈ D(x): the points a, b are replaced by a new point c in D(x) such that
for all other variables w 6= x and for all d ∈ D(w), cd is a positive edge if at least one of ad, bd
was a positive edge (a negative edge otherwise). BTP-merging preserves satisfiability [19].

I Lemma 13. Let P be a pattern in which no point occurs in more than one positive edge.
Then the BTP-merging operation cannot introduce the pattern P in an instance I ∈ CSP(P).

Since Q2 has no point which occurs in more than one positive edge, we can deduce from
Lemma 13 that Q2 cannot be introduced by BTP-merging. We then combine this property
with Lemma 12 by proving that V− can only occur at degree-2 variables in any instance of
CSP(Q2) with no BTP-mergeable values.

I Theorem 14. CSP(Q2) is solved by singleton arc consistency.

That only leaves R5. Removing constraints cannot introduce R5 because it is a monotone
pattern, so we can apply repeatedly the following lemma to obtain our last result.

I Lemma 15. If the pattern R5 does not occur in a singleton arc consistent binary CSP
instance I, then removing any constraint leaves the satisfiability of I invariant.
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I Theorem 16. CSP(R5) is solved by singleton arc consistency.

Note that Lemma 15 is technically true for all SAC-solvable patterns (not only R5); this
is simply the only case where we are able to prove it directly.

8 Conclusion

We have established SAC-solvability of five novel classes of binary CSPs defined by a forbidden
pattern, three of which are generalisations of 2SAT. For monotone patterns (defining classes
of CSPs closed under removing constraints), there remains only a relatively small number of
irreducible patterns whose SAC-solvability is still open. In addition to settling the remaining
patterns, a possible line of future work is to study sets of patterns or partially-ordered
patterns [23] that give rise to SAC-solvable (monotone) classes of CSPs.
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