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Abstract
We advance in the study of the semantics of Janus, a C-like reversible programming language.
Our study makes utterly explicit some backward and forward evaluation symmetries. We want
to deepen mathematical knowledge about the foundations and design principles of reversible
computing and programming languages. We formalize a big-step operational semantics and a
denotational semantics of Janus. We show a full abstraction result between the operational and
denotational semantics. Last, we certify our results by means of the proof assistant Matita.
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1 Introduction

Reversible computing is an alternative form of computing: the isentropic core of classical
computing [14] and quantum computing [21]. A classic computation is (forward-)deterministic,
i.e. each state is followed by a unique state. The reversible computation is a classic
computation which is also backward-deterministic: every state has a unique predecessor
state. Research issues on this subject have emerged in a plethora of situations: isentropic
digital circuits, conservative logic, computability and computational complexity, program
transformation and software verification, view-update problem, unconventional computing
models (bio, quantum, etc.), parallel computing and synchronization, processor architecture,
debugging systems and other general backtrack-based settings. Perumalla [15] has recently
surveyed many reversible computing facets.

Our focus is on the semantics of reversible programming languages.
These languages fully preserve information inherent in the input of their programs and

they allow some form of built-in program inversion for free. Program inversion is the
concrete counterpart that forward and backward deterministic computations let available
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7:2 A Certified Study of a Reversible Programming Language

to the programmer. Each computation step can move forth/back between a unique pair
of predecessor/successor states. Therefore, in these languages the backward execution of a
program can result in an efficient search/backtrack-free process. We remark that, despite
such a restricted-looking form of computation, reversible programming languages exist which
can simulate every function which is computable in classical sense.

The subject of this work is Janus which Lutz and Derby conceived as a student project
in 1982 at Caltech [10]. Janus is the first imperative structured programming language,
explicitly supporting reversible computing. Yokoyama Glück present and study the language
in [20]. Extensions, mainly addressed to introduce built-in programming facilities, are in
[19, 18] by Yokoyama, Axelsen, and Glück who also formalize an operational semantics in
[20] and improve it in [19, 18].

The operational semantics in [19, 18] does not naturally incorporate an efficient imple-
mentation of the reversible aspects which are specific to Janus. This is why we provide an
all-round certified treatment of denotational and operational semantics for it.

Concerning the operational side, we define a fully self-contained big-step operational
evaluation that formalizes a relation on terms which is injective. Our big-step operational
semantics explicitly completes the one in [20] by formalizing the “un-call of a procedure” as
a fully embedded deterministic process. The reason to make the “un-call” explicit is to put
the backward and the forward computational directions at the same level, which sounds
coherent with the spirit of the reversible computation.

Concerning the denotational side, we interpret the statements and the programs of Janus
as functional injective relations. The interpretation composes suitable reversible categorical
combinators which belong to Pinj, the category of sets and functional injective relations.
The advantage of this approach is twofold. The correctness of the interpretation follows
directly from composing combinators which we already know they are reversible. By the
way, this addresses the possibility of synthesizing a combinatorial reversible language along
the lines of James and Sabry [9] that we could use as a target language for compiling Janus.
Furthermore, we prove that our denotational interpretation is fully abstract with respect to
the operational semantics, entailing that operational and denotational equivalences coincide.

Finally, we certify our results by means of Matita [1]. Matita is an interactive theorem
prover based on the Calculus of (Co)Inductive Constructions (CIC) — a dependent type
theory. At the proof term level, Matita’s proofs are compatible with those ones the theorem
prover Coq [7] is based on. The certification is obtained by defining an abstract framework
for imperative reversible languages. This abstract structure provides sufficient conditions to
model classes of denotational and operational semantics for imperative languages which are
reversible. It turns out that both the denotational and the operational semantics of Janus
are possible instances of the framework. Getting both the operational and the denotational
semantics as a instances of a general framework naturally allows us to fill some of the gaps
that [20, 19, 18] leave open about the semantics of Janus. The formalization is available
on-line [13].

2 Janus, a Reversible Programming Language

We introduce a minor variant of Janus, starting from [20], while we neglect some extensions
which [19] provides. Specifically, we extend ground constants to all natural numbers unlike
in [20] which limits them to 32-bit non-negative integer ranging from 0 to 232 − 1.
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I Definition 1 (The syntax of Janus). The grammar which generates expressions, programs
and statements of the dialect of Janus we focus on is:

e ::= n |x | e+ e | e− e | e ∗ e | e/e | e%e | e <= e | e != e | e == e

P ::= (procedure id s)(procedure id s)∗
s ::= x+= e |x−= e | call id | uncall id | skip | s s

| if e then s else s fi e | from e do s loop s until e .

An expression e is either a numeral n (tacitly confused with a natural number in N) a
variable x or the application of a binary operator to sub-expressions. Arithmetic operators are
+,−, ∗, /,%. Relational ones are <=, ! =,==. Under a standard convention, they return zero
meaning false, and a number different from zero which stands for true. Binary operators
are not necessarily reversible.

A program P consists of a list of procedure declaration. The keyword procedure starts
a procedure declaration. A procedure identifier id, or procedure name, follows it. The
declaration completes by means of a statement s, i.e. the procedure body.

A statement s is one among a reversible assignment, a procedure call, a procedure un-call,
a skip, a statement sequence, a reversible conditional, or a reversible loop. In both reversible
assignments x+= e and x−= e we ask that there are no free occurrences of the variable x in
the expression e. All variables are global to the whole program as in [19] (we just omit their
declaration at the beginning of programs).

We provide a formalization of the programming language Janus in the proof assistant
Matita [1]. The formalization is available at [13]. There, we first provide a parametric
syntax of Janus, where the choice of values, unary and binary operator used in expression
and assignments and their behaviour is not fixed (file janus.ma). Then we show that all the
properties of the operational semantics (like reversibility) hold for all possible instances of
the parameters. Finally we provide the concrete instance of Janus being introduced by the
following definition (file concrjanus.ma).

We now describe the semantics of Janus, informally. We informally recall the semantics
of Janus following [20, 19, 18]. We remark that in informal discussion we confuse booleans and
numbers used as truth-values (0 represents false while other numbers represent true). The
leftmost diagram in Figure 1 helps understanding the work-flow of a reversible conditional
if e then s else s fi e. Two branches are available both in forward direction, from left to
right, and in the backward one, from right to left. Let us assume we are interpreting it
forwardly, entering e1 from its left. First we evaluate e1. If it is “true”, i.e. if e1 yields a
non zero value, we execute s1. Otherwise, we execute s2. No matter which between s1 and
s2 we have executed, the interpretation proceeds as expected, i.e. it exits from e2, only if
e2 yields the correct value. Such a value must be 6= 0 if we just came from s1 and must be
0 if we just came from s2. Every remaining combination results in a “system abort”. The
interpretation of Figure 1(a) from right to left does not abort only if, conversely, either both
e2 and e1 yield “true” with s1 executed as intermediate step, or either both e2 and e1 yield
“false” with s2 executed in-between them.

The rightmost diagram in Figure 1 helps understanding the work-flow of a reversible
loop from e1 do s1 loop s2 until e2. Let us assume we are interpreting it forwardly, trying
to enter e1 from its left. If e1 gives “false”, then we stress that the computation aborts.
Otherwise, entering the loop means executing s1 and evaluating e2. As soon as e2 results in
a value 6= 0, the interpreter exits the loop. Otherwise the interpreter executes s2. However,
it keeps looping only if the value of e1 is “false” just after the execution of s2. On the

TYPES 2015
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Figure 1 Work-flows of Reversible Conditional (a) and Reversible Loop (b).

contrary, getting a value 6= 0 from e1, would result in a “system abort”. The interpretation
of Figure 1(b) from right to left is perfectly symmetric. The correct flow is: e2 evaluates to
“true”, s1 operates on the state of the program, e1 evaluates to “false”, s2 operates on the
state of the program, e2 evaluates to “false” . . . and so on until either we exit the loop, or
we abort. Exiting is a consequence of evaluating e1 to “true”.

Calling and un-calling procedures execute the procedures in the right direction and will
be the subject of the operational semantics in the coming sections.

We now formally certify the semantics of Janus. A main contribution is the formal
certification of the study presented in this paper in Matita. The above definition has been
formalized in Matita as an instance of an abstract syntax of Janus presented in the file named
janus.ma.

In order to define a concrete instance of the abstract language we are referring to, we
need to provide a set of constants representing the data being manipulated by the program
(const_type), a special constant being the initial value of all variables appearing in the
program (init_val), a sort for unary and binary operators (op1_type and op2_type), a sort for
operators being used in reversible assignments (rev_type) together with a self-dual function
on them used to reverse the variable assignment (rev). We discuss our Matita representation
of Janus, in order to drive the reader in the certified formalization reading and understanding.� �
record params : Type[1] :=
{ const_type : DeqSet
; init_val : const_type
; op1_type : Type[0]
; op2_type : Type[0]
; rev_type : Type[0]
; rev : rev_type → rev_type
; idem_prop : ∀ x.rev (rev x) = x
}.� �

Both variables and procedure identifiers are implemented as inductive types with one
constructor storing a natural number. This number represents the index in which the value
of that variable or the body of that procedure can be found in the state.� �
inductive Variable : Type[0] :=
| var : N→Variable.

inductive FunctionName : Type[0] :=
| a_function_id : N→FunctionName.� �

The set of expressions in Janus are defined in the following way. Expressions that could be
variables, values, the application of an operator of arity 1 to an expression, or the application
of an operator of arity 2 to two expressions.
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� �
inductive Expression (p : params) : Type[0] :=
| VAR : Variable →Expression p
| CONST : const_type p →Expression p
| OP_1 : op1_type p →Expression p →Expression p
| OP_2 : op2_type p →Expression p →
Expression p →Expression p.� �

Thus, the set of statements of Janus is implemented as an inductive type with the expected
constructors, one for each syntactic construct.� �
inductive stm (p : params) : Type[0] :=
| ASSIGN : rev_type . . .p →∀ x : Variable.∀ e : Expression p.
(x ∈ (expr_fv . . .e)) = false → stm p
| CALL : FunctionName → stm p
| UNCALL : FunctionName → stm p
| SKIP : stm p
| COMP : stm p → stm p → stm p
| IF : Expression p → stm p → stm p →
Expression p → stm p
| LOOP : Expression p → stm p → stm p →
Expression p → stm p.� �

In the previous definition and in some other following ones, we use the Matita syntactical
construt . . .. We remind that the dots stand here for an arbitrary number of implicit
arguments to be guessed by the system.

It turns out that a program is just a list of statements that constitute the bodies
corresponding to each procedure identifier.� �
record program (p : params) : Type[0] :=
{ procs :> list (stm p)
}.� �

The procedure identifier carries a natural number. Thus it provides the index being the
position in the list of statement being the body of the considered procedure.

3 Big-Step Operational Semantics

The operational semantics in Figure 2 comes directly from [19, 18]. It defines two relations
⇓p and ⇓e (program and expression evaluations) whose meaning we shall introduce once
recalled some notations.

Let P be a program as in Definition 1. With σP we denote a state-function from the
variables of P to N. The state-function represents a statically allocated fragment of memory
in a hypothetical real implementation. Thus, σP(x) is the value of x in σP whenever x is a
variable of P. The allocation of the value n to the variable x in σP is σP[x 7→ n]. Conversely,
the restriction of σP to all its names but x is σP�x. With P(id) we identify the body of P with
name id.

Let � range over the operators +,−, ∗, /,%. By J�K we denote its obvious interpretation.
Every clause σP, e ⇓e n says that the evaluation of the expression e in state σP yields the
result n ∈ N using the rules:

σP, n ⇓e n
Con

σP, x ⇓e σP(x)
Var

σP, e1 ⇓e n1 σP, e2 ⇓e n2 n1J�Kn2 = n
σP, e1 � e2 ⇓e n

BinOp . (1)

TYPES 2015
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σP�x, e ⇓e n1 n = n0J�Kn1 � ∈ {+,−}
σP[x 7→ n0], x�= e ⇓p σP[x 7→ n]

AssVar
σP, skip ⇓p σP

Skip

σP, e1 ⇓e n + 1 σP, s1 ⇓p σ
′
P σ′

P, e2 ⇓e n + 1

σP, if e1 then s1 else s2 fi e2⇓p σ
′
P

IfTrue
σP, e1 ⇓e 0 σP, s2 ⇓p σ

′
P σ′

P, e2 ⇓e 0

σP, if e1 then s1 else s2 fi e2⇓p σ
′
P

IfFalse

σP, e1 ⇓e n + 1 σP, s1 ⇓p σ
′
P σ′

P, (e1, s1, s2, e2) ⇓p σ
′′
P

σP, from e1 do s1 loop s2 until e2 ⇓p σ
′′
P

LoopMain
σP, e2 ⇓e n + 1

σP, (e1, s1, s2, e2) ⇓p σP
LoopBase

σP, e2 ⇓e 0 σP, s2 ⇓p σ
′
P σ′

P, e1 ⇓e 0 σ′
P, s1 ⇓p σ

′′
P σ′′

P , (e1, s1, s2, e2) ⇓p σ
′′′
P

σP, (e1, s1, s2, e2) ⇓p σ
′′′
P

LoopRec

σP, P(id) ⇓p σ
′
P

σP, call id ⇓p σ
′
P

Call
σ′

P, P(id) ⇓p σP

σP, uncall id ⇓p σ
′
P

Uncall
σP, s1 ⇓p σ

′
P σ′

P, s2 ⇓p σ
′′
P

σP, s1 s2 ⇓p σ
′′
P

Seq

Figure 2 Original operational semantics of Janus.

σP�x, e ⇓e n1 n = n0J+Kn1

σP[x 7→ n0], x−= e ⇓rp σP[x 7→ n]
+r

σP�x, e ⇓e n1 n = n0J−Kn1

σP[x 7→ n0], x+= e ⇓rp σP[x 7→ n]
−r

σP, skip ⇓rp σP
Skipr

σP, e2 ⇓e n + 1 σP, s1 ⇓rp σ′
P σ′

P, e1 ⇓e n + 1

σP, if e1 then s1 else s2 fi e2⇓rp σ′
P

IfTruer
σP, e2 ⇓e 0 σP, s2 ⇓rp σ′

P σ′
P, e1 ⇓e 0

σP, if e1 then s1 else s2 fi e2⇓rp σ′
P

IfFalser

σP, e2 ⇓e n + 1 σP, s1 ⇓rp σ′
P σ′

P, (e1, s1, s2, e2) ⇓rp σ′′
P

σP, from e1 do s1 loop s2 until e2 ⇓rp σ′′
P

LoopMainr σP, e1 ⇓re n + 1
σP, (e1, s1, s2, e2) ⇓p σP

LoopBaser

σP, e1 ⇓e 0 σP, s2 ⇓rp σ′
P σ′

P, e2 ⇓e 0 σ′
P, s1 ⇓rp σ′′

P σ′′
P , (e1, s1, s2, e2) ⇓rp σ′′′

P

σP, (e1, s1, s2, e2) ⇓rp σ′′′
P

LoopRecr

σP, P(id) ⇓rp σ′
P

σP, call id ⇓rp σ′
P

Callr
σP, P(id) ⇓p σ

′
P

σP, uncall id ⇓rp σ′
P

coCallr
σP, s2 ⇓rp σ′

P σ′
P, s1 ⇓rp σ′′

P

σP, s1 s2 ⇓rp σ′′
P

Seqr

Figure 3 Rules that formalize how the backward interpretation of Janus works.

We remark that no rule here above have side effects on σP.
Concerning ⇓p, every clause σP, s ⇓p σ

′
P says that the evaluation of the statement s in

state σP yields the state σ′P possibly affected by the side effects of s.
It is usual (albeit not mandatory) to assume that variables are initialized to zero starting

the evaluation of a program, i.e. executing the body of the first procedure. The evaluation of
P = procedure id1; s1 . . . procedure idn; sn starting from σP stops whenever σP, call id1 ⇓p

σ′P holds, for some σ′P.
Some remarks on the rules in Figure 2 are worth making and help moving towards our

first contribution.
The rules LoopMain, LoopRec and LoopBase introduce the auxiliary syntax (e1, s1, s2, e2).

It separates the interpretation phases of from e1 do s1 loop s2 until e2. LoopMain introduces
(e1, s1, s2, e2) if e1 evaluates to “true”. LoopRec uses (e1, s1, s2, e2) to keep unfolding the
loop only if e1 and e2 evaluate to “false”. LoopBase concludes the interpretation of the loop.

Last, the rule Uncall in Figure 2 serves to unroll the interpretation of the procedure
with name id. The rule is effectively computable but it is non-deterministic and inefficient.
Uncall must pick up in the whole set of state-functions, a σ′P such that when evaluating the
statement P(id) we obtain the “input” state σP. Uncall does not provide any explicit guideline
on how explicitly and efficiently finding that such a state σ′P exists at the level of big-step
semantics.
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Our first contribution is the definition of a big-step operational semantics which makes
the process of reversing the interpretation of a program both explicit and efficient. The
operational semantics we propose contains the union between the set of new rules in Figure 3
and the set of rules in Figure 2 with the proviso of replacing

σP, P(id) ⇓rp σ′P

σP, uncall id ⇓p σ
′
P

coCall
(2)

for Uncall.
An other possible strategy to recover efficiency could be to define a compiler that translates

the “un-call” of P(id) into the equivalent program of Janus that we can interpret with the
operational semantics in Figure 2. This is proposed in [20]. The rules in Figure 3 somewhat
embed the self-interpreter in [20] directly into the evaluation process. Our completion of the
operational semantics greatly improves the understanding of Janus and the possibility to
formally reason on it, as we do in Matita.

I Definition 2. Given a program P, the two mutually defined relations ⇓p and ⇓rp map a
pair with a state σP and a statement s into a state σ′P. The relations hold whenever there
is a finite derivation of σP, s ⇓p σ

′
P or σP, s ⇓rp σ′P, using the rules of Figure 2 with coCall

in place of Uncall and the rules of Figure 3. The evaluation of P exists if σP, P ⇓p σ
′
P, for

some σP and σ′P.

Some comments on the rules in Figure 3 are worth making before stating the main
properties of the operational semantics we propose. Roughly, those rules interpret programs
backwardly.

For instance, Seqr evaluates s1s2 by starting from s2. The rule LoopMainr mirrors
the behavior of LoopMain. It checks whether e2 evaluates to a value 6= 0 and introduces
(e1, s1, s2, e2) to signal that the interpretation of a reversible loop has just started. The
choice between LoopRecr or LoopBaser follows from the value that e1 — not e2 —
produces. Analogously, the interpretation of if e1 then s1 else s2 fi e2 under ⇓rp starts
from evaluating e2. Finally, let us focus on Callr and coCallr. The first one works like
Call but on the “reversed” procedure. We mean that Callr executes the procedure from
its conclusion, replacing every instruction by means of its “opposite”. Instead, coCallr

re-reverses the evaluation “direction” moving again the evaluation control flow to ⇓p.
Figure 4 shows the details about what “undoing a procedure-call” means directly inside

the new, full blown, big-step operational semantics.
The following Lemma is preliminary to the main properties. If the control-flow enters a

loop (cf. Figure 1(b)), then s1 is executed once and the control moves to the exit-conditional:
either the control exits the loop or, s1, s2 are both executed (forwardly or backwardly), before
to re-check the exit-conditional.

I Lemma 3 (Length of loops and number of states).
1. σP, (e1, s1, s2, e2) ⇓p σ

′
P if and only if there are σ0

P , . . . , σ
2m
P where m ∈ N (2m is the double

of m), σ0
P = σP, σ2m

P = σ′P, such that:
σ2m

P , e2 ⇓e n + 1 and σ2i
P , e2 ⇓e 0, σ2i

P , s2 ⇓p σ
2i+1
P for i < m;

σ2i+1
P , e1 ⇓e 0 for i < m, and σ2i+1

P , s1 ⇓p σ
2i+2
P for i ≤ m− 2.

2. σP, (e1, s1, s2, e2) ⇓rp σ′P if and only if there are σ0
P , . . . , σ

2m
P where m ∈ N, σ0

P = σP,
σ2m

P = σ′P, such that:
σ2m

P , e1 ⇓e n + 1 and σ2i
P , e1 ⇓e 0, σ2i

P , s1 ⇓rp σ2i+1
P for i < m;

σ2i+1
P , e2 ⇓e 0 for i < m, and σ2i+1

P , s2 ⇓rp σ2i+2
P for i ≤ m− 2.

TYPES 2015
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Proof. (⇒). By induction on the derivation proving σP, (e1, s1, s2, e2) ⇓p σ
′
P.

(⇐). By induction on the derivation proving σP, (e1, s1, s2, e2) ⇓p σ
′
P. J

Forward and backward computation are related in the correct and expected way, as stated
by the following Theorem.

I Theorem 4 (⇓p and ⇓rp annihilate each other). σP, s ⇓p σ
∗
P if and only if σ∗P , s ⇓rp σP.

Proof. (⇒). The proof is given by induction on s. All cases are straightforward except for
loop. Suppose σP, from e1 do s1 loop s2 until e2 ⇓p σ

∗
P . Thus σP, e1 ⇓e n + 1, σP, s1 ⇓p σ

′
P

and σ′P, (e1, s1, s2, e2) ⇓p σ
∗
P . By Lemma 3.1 there are σ0

P , . . . , σ
2m
P where m ∈ N, σ0

P = σ′P,
σ2m

P = σ∗P , such that: σ2m
P , e2 ⇓e n + 1 and σ2i

P , e2 ⇓e 0, σ2i
P , s2 ⇓p σ2i+1

P for i < m;
σ2i+1

P , e1 ⇓e 0 for i < m, and σ2i+1
P , s1 ⇓p σ

2i+2
P for i ≤ m − 2. Re-organizing (in reverse

order the list of state), we have that the list σ2m−1
P , . . . , σ0

P , σP satisfies the right-hand side
of the statement Lemma 3.2. Thus, σ2m−1

P , (e1, s1, s2, e2) ⇓rp σP. It is easy to conclude
σ∗P , from e1 do s1 loop s2 until e2 ⇓rp σP. (⇐). Dual to the above proof. J

The operational semantics we introduce is deterministically syntax driven. Given a
statement and chosen which evaluation between ⇓p or ⇓rp to use, we can apply a single rule
at every step. The consequence is the following Corollary, whose existence we anticipated in
the introduction

I Corollary 5 (⇓p and ⇓rp are functional and injective). The relations ⇓p and ⇓rp are functional,
i.e.:
1. If σP, s ⇓p σ

1
P and σP, s ⇓p σ

2
P , then σ1

P = σ2
P .

2. If σP, s ⇓rp σ1
P and σP, s ⇓rp σ2

P , then σ1
P = σ2

P .
The relations ⇓p and ⇓rp are injective, i.e.:
1. If σ1

P , s ⇓p σP and σ2
P , s ⇓p σP, then σ1

P = σ2
P .

2. If σ1
P , s ⇓rp σP and σ2

P , s ⇓rp σP, then σ1
P = σ2

P .

The proofs of Lemma 3 and Theorem 4 are certified in the file janus.ma, while the proof
of Corollary 5 is formalized in the file completeness.ma in [13].

We now give some comments on how we represent and certify the properties of the whole
operational semantics in Figure 2 and 3. To this aim we need to comment about how the
abstract syntax and its instances work. We start from the evaluation of unary and binary
operators. This formalization is in the file janus.ma in [13].� �
record sem_params (p : params) : Type[0] :=
{ evaluate_op1 : op1_type . . .p → const_type . . .p → option (const_type . . .p)
; evaluate_op2 : op2_type . . .p → const_type . . .p → const_type . . .p
→ option (const_type . . .p)
; evaluate_rev : rev_type . . .p → const_type . . .p → const_type . . .p
→ option (const_type . . .p)
; const_to_bool : const_type . . .p →bool
; reverse_eval_rev : ∀ r,a,b,c.evaluate_rev r a b = return c
→ evaluate_rev (rev . . .r) c b = return a
}.� �

The behaviour of unary operators is specified by the field evaluate_op1. The behaviour of
binary operators is specified by the field evaluate_op2. The evaluation of the binary operators
used in reversible assignments is specified by the field evaluate_rev. We require also to specify
a canonical projection const_to_bool from constant types to boolean ones, that will be used
in the evaluation of the expression guards in conditional and loop statements. Furthermore
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we require that the evaluation of a binary operator used in reversible assignment can be
reversed by using the specific reverse operator specified by the function specified in the field
rev of record params.

All the procedures implementing the evaluation of the above mentioned operators may
fail. In order to keep track of this possibility, we use the option monad, which is specified in
the standard library of Matita.� �
inductive option (A:Type[0]) : Type[0] :=
None : option A
| Some : A → option A.� �

In the file concrjanus.ma of [13] we provide an instance of the above record which
correspond to the concrete operational semantics in Figures 2 and 3. Let us see how to
instantiate the record sem_params. Since there is no unary operator, we do not provide any
implementation. The procedures implementing the behaviour of remaining operators are
straightforward by cases. The projection from integers to boolean values is the standard one:
zero is false and every non-zero value correspond to true. Finally a proof of correctness
for the specific choice of operators used in reversible assignments is provided.

The specification of the behaviour of all operators involved in the syntax of expressions
makes it possible to define how the expressions are evaluated in a given program state.� �
definition syn_state :=λ p : params.list (const_type . . .p).

let rec evaluate_expression (p : params) (p’ : sem_params p)
(e : Expression p) (st : syn_state p) on e : option (const_type . . .p) :=. . ..� �

A state (syn_state) is just a list of constant values. The Matita representation of variables
assumes that each variable carries an index identifying uniquely the position where its value is
stored. After having provided suitable instances of both the records params and sem_params
as specified above the evaluation of an expression e on a given state st is described by the
procedure evaluate_expression. Notice that the evaluation of an expression on a given state
may fail. When e is a variable, then it is evaluated to its value in the state st (if the index
carried by the variable is not beyond the length of the state). The value of a constant is
the constant itself. The value of an expression obtained by applying an unary (resp. binary)
operator o to a sub-expression(s) e1 (and e2) is equal to the application of the behaviour of
that operator to the value of the expression e1 (and the value of e2).� �
let rec fwd_operational_semantics (p : params) (p’ : sem_params p)
(env : list (stm p)) (q : stm p) (s1 : syn_state p)
(n : N) on n : option (syn_state p) :=
match n with
[ O ⇒None ?
| S m ⇒match q with [. . ...]
]
and
bwd_operational_semantics (p : params) (p’ : sem_params p)
(env : list (stm p)) (q : stm p) (s1 : syn_state p)
(n : N) on n : option (syn_state p) :=
[ O ⇒None ?
| S m ⇒match q with [. . ...]
]� �
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
x == m

y == n

z == 0
w == 0

 call incr;


x == m

y == n+m

z == m

w == 0

 call copy;


x == m

y == n+m

z == m

w == n+m

 uncall incr;


x == m

y == n

z == 0
w == n+m

 call exchange;


x == m

y == n

z == n+m

w == 0


Figure 4 The sequence of transformations that call sum in (3) operates on the initial state.

Since Janus allows both forward and backward execution, we have to provide a proper
way to unroll the computation. We defined a fully fledged operational semantics of Janus
statements in a given program state. It is realized by two mutually recursive procedures
named respectively fwd_operational_semantics and bwd_operational_semantics. The former
defines how a statement is executed in forward way while the latter defines how a statement
is executed backward way.

Both procedures take in input also a natural number n used as a threshold limit to the
number of steps needed by both the forward and backward executors to reach a final state.
It follows that the evaluation predicate σ, s ⇓p σ

′ can be expressed in Matita by postulating
the existence of a number n such that the final state σ′ is reached from σ when evaluating s
after having settled n as threshold.

We have proven a monotonicity result of both forward and backward execution i.e. if
in the evaluation of a statement a final state is reached in at least n steps threshold, then
it can again be reached even if the threshold is augmented. Monotonicity entails that the
operational semantics is forward deterministic. Backward determinism is guaranteed by the
fact that if the forward evaluation of a statement on a given state s1 evaluates to the state s2
then the backward evaluation of the same statement from s2 evaluates to s1. These results
hold for every choice of syntactical and semantic parameters, thus they hold also for the
concrete language formalized in concrjanus.ma, providing in this way the certification of
Theorem 4 and Corollary 5.� �
theorem op_sem_reversibility :
∀ p : params.∀p’ : sem_params p.∀ env : list (stm p).
∀ q : stm p.∀ s1,s2 : syn_state p.∀ n : N.
(fwd_operational_semantics p p’ env q s1 n = return s2 →
bwd_operational_semantics p p’ env q s2 n = return s1) ∧
(bwd_operational_semantics p p’ env q s1 n = return s2 →
fwd_operational_semantics p p’ env q s2 n = return s1).

theorem operational_semantics_monotone : ∀ p : params.∀ p’ : sem_params p.
∀ env : list (stm p).∀ q : stm p.∀ s1,s2 : syn_state p.∀n,m : N.n≤m →
(fwd_operational_semantics p p’ env q s1 n = return s2 →
fwd_operational_semantics p p’ env q s1 m = return s2).

theorem bwd_operational_semantics_monotone : ∀p : params.∀ p’ : sem_params p.
∀ env : list (stm p).∀ q : stm p.∀ s1,s2 : syn_state p.∀n,m : N.n≤m →
(bwd_operational_semantics p p’ env q s1 n = return s2 →
bwd_operational_semantics p p’ env q s1 m = return s2).� �
3.1 A Running Example

The sum of two natural numbers is computable, but certainly not injective. More precisely,
if we say that the result of a sum is 8, we do not know if it results from summing 5 and 3 or
2 and 6. Following Bennett [4], we can program the sum of x and y in Janus as follows:
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Rsum(x, y, z) =
{

(x, y, x+ y) if z = 0,
undefined otherwise.

The function Rsum : N3 → N3 is reversible because it is defined to preserve the input values.
Using the very rich language of expressions of Janus, RSum simply can be
from z = 0 do z+ = (x+ y) loop skip until 1. As a curiosity the same function exists in
a restriction of the syntax of expression that only contains successor, predecessor and an
equality test. Inside the restriction RSum is given by the following Janus-program (where
we used semicolons and a natural indentation to make explicit the language parsing).

procedure main
call sum;

procedure sum
call incr; call copy; uncall incr; call exchange;

procedure incr
from z = 0 do skip loop z+= 1; y+= 1 until z = x;

procedure copy
from w = 0 do skip loop w+= 1 until w = y;

procedure exchange
from z = 0 do skip loop z+= 1;w− = 1 until w = 0;

(3)

The execution of (3) would yield σP, P(sum) ⇓ σP[z 7→ σP(x) + σP(y)] for all σP such that
σP(z) = 0 and σP(w) = 0. We have that the following statements hold:

σP, P(incr) ⇓ σP[y 7→ σP(x) + σP(y), z = σ(x)], for all σP such that σP(z) = 0,
σP, P(copy) ⇓ σP[w 7→ σP(y)], for all σP such that σP(w) = 0, and
σP, P(exchange) ⇓ σP[z 7→ σP(w), w = 0], for all σP such that σP(z) = 0.

Compactly, the sequence of predicates that describes the states change along the execution
of the procedure are depicted in Figure 4.

Notice that the variable w is a variable for which we can predict its final value at the end
of computation of the sum, so it could be safely deleted. For this purpose it might be useful
to extend the syntax of Janus with the reversible allocation of local variables as in [19]. Let
decr be defined as from z = x do z−= 1; y−= 1 loop skip until z = 0. A call decr can be
used to replace uncall incr. Symmetrically, a uncall to decr be used to replace call incr.

4 The Model

In this section, we introduce step by step the components that we will need in the next section
to define the model of Janus. We are going to interpret Janus statements and programs in terms
of relations between states. These relations are both functional and injective. We show a full
abstraction between the equality on programs induced by the denotational semantics and the
equality induced by the operational semantics. Both the denotational semantics and the full
abstraction theorems have been formalized in the proof assistant Matita. The formalization
provided in the files rel.ma, pinj.ma, rel_interpretation.ma. The correspondence results
are formalized in correctness.ma, completeness.ma and compl_thm.ma in [13].

4.1 A Category of Partial Injective Functions
We denote with Rel the category of sets and relations. A relation r : A→ B is functional
if (a, b), (a, b′) ∈ r implies b = b′ for all a, b, b′. A relation r : A → B is injective if
(a, b), (a′, b) ∈ r implies a = a′ for all a, a′, b. Pinj is a subcategory of Rel whose objects are
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sets and whose morphisms are functional injective relations (partial injective function, in
other words). We will denote with Pfn the subcategory of Rel whose objects are sets and
whose morphisms are functional relations.

We will denote with idA : A → A the identity relation on A and with ◦ the relational
composition. When f : A→ B is a functional relation and a ∈ A, we sometimes write f(a)
to denote the unique b ∈ B (if it exists) such that (a, b) ∈ f . When � : A × B → C is a
functional relation, we could also use the infix notation a� b to denote the unique c ∈ C (if
it exists) such that ((a, b), c) ∈ �.

Given r : A→ B in Pinj we define the inverse of r denoted with r† as {(b, a) | (a, b) ∈ r}.
It is again a morphism in Pinj.

Both Pinj and Pfn admit two symmetric tensor products. They are the cartesian product
× (a.k.a. product) and the disjoint union + (a.k.a. sum or coproduct). We will denote with
1 the singleton set i.e. the unit of the product, and with 0 the empty set i.e. the unit of the
sum. We will denote with

α×A,B,C : A× (B × C)→ (A×B)× C α+
A,B,C : A+ (B + C)→ (A+B) + C

σ×A,B : A×B → B ×A σ+
A,B : A+B → B +A

λ×A : A→ 1×A λ+
A : A→ 0 +A

respectively the associative laws of product and sum, the symmetric laws of product and
sum and the left neutral element laws of product and sum: they are the same morphisms in
both Pinj and Pfn. Sometimes, the apexes and the subscripts will be omitted when clear
from the context or uninteresting. These morphisms satisfy the standard properties that
make both the sum and the product two symmetric tensor products in both Pinj and Pfn.

The two tensor products are related by a distributive law that establishes a natural
isomorphism δ : (B + C)×A→ (B ×A) + (C ×A). It is defined in the following way

δ = {((inl(b), a), inl(b, a)) | a ∈ A, b ∈ B} ∪ {((inr(c), a), inr(c, a)) | a ∈ A, c ∈ C}

while its inverse δ†A,B,C is defined as

δ† = {(inl(b, a), (inl(b), a)) | a ∈ A, b ∈ B} ∪ {(inr(c, a), (inr(c), a)) | a ∈ A, c ∈ C}

Suppose r : X + V → Y + U is a relation. The coproduct injections induce four
restricted relations rll, rrl, rlr, rrr defined as rll = {(x, y) ∈ X × Y | (inl(x), inl(y)) ∈ r},
rrl = {(v, y) ∈ V × Y | (inr(v), inl(y)) ∈ r}, rlr = {(x, u) ∈ X × U | (inl(x), inr(u)) ∈ r}
and rrr = {(v, u) ∈ V × U | (inr(v), inr(u)) ∈ r}. We denote with ·? the reflexive transitive
closure of a relation. Given r : X + U → Y + U , its trace can be defined as follows:

TrU
X,Y r = rll ∪ rrl ◦ r?

rr ◦ rlr : X → Y

where r?
rr is the reflexive transitive closure of rrr. This operator is sometimes known as

particle-style trace operator. The trace operation preserves injectivity and functionality
of relations, namely if r : X + U → Y + U is functional (resp. injective) then TrU

X,Y r is
functional (resp. injective). For details see Blute and Scott [6].

I Corollary 6. Rel, Pfn and Pinj are symmetric traced monoidal categories.

The proof of the above corollary has been certified in the file pinj.ma of [13].
The standard notion of assignment cannot be coherent with the idea of reversible compu-

tation. Just observe that the value v in a given variable is lost forever once we overwrite
v by u 6= v. The way out is a restricted version of assignment, called reversible update by
Axelsen, and Yokoyama [3], which we recall in the following.
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I Definition 7. A functional relation � : (A×B)→ C is first argument injective operator
if and only if ((a, b), c) ∈ � and ((a′, b), c) ∈ � then a = a′.

Equivalently, if a exists such that a � b = c, for some b, c, then a is unique. Then we can
define an operator � : (C ×B)→ A as � = {((c, b), a) | a� b = c}. Notice that � is again a
first argument injective operator and it is such that ∀a ∈ A.∀b ∈ B.((a � b) � b) = a and
((a� b)� b) = a. Sometimes we identify � as the reverse of �.

I Definition 8. Given a functional (possibly non-injective) relation f : D → B and a first
argument injective operator � : (A×B)→ C, a partial function g : (A×D)→ (C ×D) is a
reversible update wrt to its first argument if it is functionally equivalent to

g(x, y) = (x� f(y), y).

There always exists a (left) inverse for a reversible update:

g†(x, y) = (x� f(y), y)

where � is the reverse of �. Thus a reversible update g is necessarily injective.
Given an operator � : A×B → C being injective in his first argument and given a partial

function f : D → B, we denote with ru(�, f) : A×D → C ×D the partial injective function
ru(�, f)(x, y) = (x� f(y), y) which is a reversible update.

Reversible updates are particularly well suited to model changes of a computation state
where one part of the state is updated using the remaining part of the state that is not
changed. As an example consider g(x, y) = (x+f(y), y) and its inverse g†(x, y) = (x−f(y), y).
A reversible update with the XOR (̂ ) is self-inverse for any f : g(x, y) = g†(x, y) = (x̂ f(y), y).
See [3] for more details on reversible updates.

4.2 Formalization of the Model
The formalization of Pinj in Matita relies on a domain-theoretic substrate whose purpose is to
certify a whole set of standard properties which allows us to prove the categorical/denotational
correctness of a model.

We assume some familiarity with the notion and the formalization of chain complete
partial orders (CPOs), CPO-enriched categories and monoidal categories. The formalization
of domain theory is based on Benton, Kennedy, and Varming [5] and it is in domain.ma. We
remind that the notion of chain on a CPO D is defined as any monotonic function c : N→ D

where N is ordered in the natural way. Formalization of CPO-enriched category and monoidal
categories are in the files category.ma and monoidal_category.ma. Our formalization of
categories adapts a fragment of the COQ library [11]. As usual the homsets are CPOs and
the composition of morphisms is a continuous function. Observe that given a CPO, it is
always possible to extract a setoid from it by taking the symmetric closure of the preorder in
the CPO as the equivalence relation of reference. This is a standard trick useful to tackle
the certification of properties of extensional equivalences. The formalization of this concept
is in the file cpo_to_setoid.ma.

Given A,B : Type[0] in Matita (roughly representing two sets), a relation is implemented
as an inhabitant of A →B →Prop, where Prop represents the set of logic propositions. Re-
lational composition of two relations r : A →B →Prop and s : B →C →Prop is r · s is the
relation λ a : A.λ c : C.∃b : B.r a b ∧ s b c. This approach allows us to stay in a constructive
set theory (as Matita-competent readers know). The setoid construction allows us to define
the extensional collapse of these intensional definitions of sets. As expected, relations can
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be structured in a CPO by taking the inclusion as its underlying pre-order and the general-
ized union as its lub operator (i.e. λ c : (N→ (A →B →Prop)).λ a : A.λ b : B.∃ n : N.c n a b).
Relational composition is certified to be a monotonic and continuous function. It is also
associative and admits a neutral element being the identity relation λ a : A.λ a’ : A.a = a’.

We aim at certifying that the category Pinj of sets and relations, being injective and
functional, provides a correct model for Janus. Our approach is very general. First we identify
sufficient constraints on a property P on relations about our formal construction in Matita
that are sufficient to provide a correct model. Second, we prove that Pinj can be obtained
from a suitable instance of P. More precisely, if the property P : (A →B →Prop) →Prop on
relations between A and B satisfies our sufficient constraints then our formal construction is:
1. a CPO-enriched category of relations satisfying the property P;
2. a symmetric monoidal category built on top of the category mentioned on point (1.),

where the tensor product is the cartesian product;
3. a symmetric monoidal category built on top of the category mentioned on point (1.),

where the tensor product is the disjoint union;
4. a dagger category built on top of the category mentioned on point (1.);
5. a traced monoidal category built on top of the category mentioned on point (3.), where

the trace operator is particle-style;
6. is a category admitting a distributive law of cartesian product over disjoint union built

on top of the categories mentioned on point (2.) and (3.).

In order to get (1.) we ask that the identity relation satisfies the property P (condi-
tion named id_ok), P is closed under logical equivalence (condition named cong_ok) and
composition (condition named comp_preserve), the empty relation satisfies the property P
(condition named good_bot) and given any chain c : (N→ (A →B →Prop)) such that c n
satisfies P for all n : N we have that the lub of c satisfies P (condition named good_lub).
Each mathematical structure arising from relations satisfying the property P enjoying these
constraints is actually a CPO-enriched category. In the formalization, all these conditions
are given in the record good_rel_category in the file rel.ma of [13].

In order to get (2.) we ask that the property P is closed under the product of relations
(condition named prod_ok) and that, both the isomorphisms describing the associativity law
of the product, the left and right identity law of the product (the neutral element is the
singleton set unit) and commutativity law of the product (i.e. the isomorphisms between
(A ×(B ×C)) and ((A ×B) ×C) and between A and (unit ×A) and between A and (A ×unit)
and between (A ×B) and (B ×A)) satisfy the property P. In the formalization, all these
conditions are given in the record good_rel_prod, in the file rel_prod.ma of [13].

In order to get (3.), we ask mutatis mutandis the same conditions asked for (2.). In
the formalization, all these conditions are given in the record good_rel_sum, in the file
rel_sum.ma of [13].

In order to get (4.), we ask that the property P is closed under the operation of inversion
of relations. In the formalization, this condition is given in the record good_rel_dagger, in
the file rel_dagger.ma of [13].

In order to get (5.), we ask that P is closed under application of the particle style trace
operator. In the formalization, this condition is given in the record good_rel_trace, in the
file rel_trace.ma of [13].

In order to get (6.) we ask that the isomorphisms describing the distributive law of product
over disjoint union (i.e. the isomorphisms between A ×(B+C) and (A ×B) + (A ×C)) satisfy
the property P. In the formalization this condition is given in the record good_rel_distr, in
the file rel_distr.ma of [13].
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A relation r : A →B →Prop is functional when if r a b and r a b’ hold then b = b’. A
relation r : A →B →Prop is injective when if r a b and r a’ b hold then a = a’. If P is “all
relations are functional” or “all relations are injective” then, it turns out that P satisfies all
above conditions, except the one expressed by good_rel_dagger. If P is “all relations are both
functional and injective” then P satisfies all above conditions, including the one expressed by
good_rel_dagger. So it is possible to build the CPO-enriched category of functional injective
relations which is named Pinj. The formalization of the results here mentioned can be found
in the file pinj.ma.

4.3 Graphical Language
After Selinger [16], we use the graphical notation of Figure 5 for monoidal categories to
illustrate the semantics of Janus . We do not intend neither to formalize it in the proof
assistant nor to introduce it formally, we introduce it only to give a geometrical intuition of
the objects being the denotation of our Janus-programs to readers. The general idea of the
graphical notation is that combinators are modeled by “wiring diagrams” or “circuits” and
that values are modeled as “particles” that flow along the wires. Every wire of the graph is
labeled with an object which corresponds to the type of the value (denoted with a particle)
flowing along that wire. Evaluation is modeled by the flow of particles along the wires. In
this paper we will use graphical conventions introduced by James and Sabry [9].

Every circuit is built up from basic atomic components that are connected together.
The identity is a wire. Sum and products are parallel wires: in order to distinguish them
graphically, we put a + symbol between wires labeled with objects that are summed. On
two summed wires a value can reside in only one of the two, while on two non-summed
wires, a values have to stay on both. Commutativity is represented by crisscrossing wires.
Distributivity should essentially be thought of as a multiplexer that redirects the flow of
v : A depending on what value inhabits the type B + C as shown below. Factoring is the
corresponding inverse operation. The trace operation is a looped circuit where the traced
type U is shown as flowing backwards. Sum injections and quasi projections are represented
as parallel summed wires in which one of them is isolated in order to denote the absence of
values on that wire. Moreover an combinatorial representation of reversible update is given.

5 Interpretation

In this section we provide a denotational semantics of Janus statements in terms of injective
functional relations, i.e. partial injective functions. Every Janus language construct is
interpreted as a suitable composition of some categorical combinators introduced in the
previous section. The goal is twofold: we aim at enforcing reversibility (since the interpretation
is obtained by composition of some basic reversible functions) and we aim at making evident
a connection between Janus and a framework of categorical reversible languages like those
introduced in [9].

The interpretation of numerals and states is straightforward and it is given by the identity
function. We denote with Σ the set of all states. From sake of simplicity, we stop to annotate
states with the involved program (it is implicit in the context), but we still assume that the
state is a function from all involved variables to natural numbers. An expression e of the
language is interpreted into a functional relation JeK from states to N in the following way.

JnK = {(σ, n) | σ ∈ Σ}
JyK = {(σ, σ(y)) | σ ∈ Σ}
Je1 ~ e2K = {(σ, n) | (σ, n1) ∈ Je1K, (σ, n2) ∈ Je2K, n = n1J~Kn2}
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Combinator Graphical convention Evaluation

identity relation on A A v : A

Cartesian product. Tokens
flow in parallel along the two
wires

A×B A

B

v : A×B v1 : A

v2 : B

Disjoint union. Only one
token can flow in one of the
two wires.

A+B A

B

+

v1 : A

B

+

A

v2 : B

+

Isomorphism between A × B
and B ×A

A

AB

B v1 : A

v2 : B

Isomorphism between A×unit
and A

A A

1

A A

1

Isomorphism between A×(B+
C) and (A×B) + (A× C)

A

B + C

B

A

C

A

+

B

A

C

A
B + C

A

+
A

B + C

v1 : B

v2 : A

C

A

+
A

B + C

B

A

v2 : A

v1 : C

+

Particle-style trace on the re-
lation f : A+ U → B + U

fA B

U

Reversible update built from
a first argument injective op-
erator � and a functional re-
lation f

D D

f

�A C

Left and right injection, left
and right quasi-projections
(i.e. the inverses of injections)

A

A

B

+

A

A

B

+
B

B

A

+

B

B

A

+

Figure 5 Graphical convention for circuits.

Notice that the relation being the interpretation of an expression may not be injective.

I Lemma 9. σ, e ⇓e n if and only if (σ, n) ∈ JeK.

Lemma 9 is certified in rel_interpretation.ma.
To interpret guards of the conditional and loop constructs, we give a representation of

truth-values. The set of boolean values is the set of functional (injective) relations between 1
and 1 + 1 which contains only the injections {inl, inr} as elements. True is identified by inr
while false is identified by inl. The idea is to use them in conjunction with the distributive
law of product over sum in order to redirect the flow in the correct branch of the conditional.
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Σ Σ
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1

(a.) (b.)

Figure 6 (a.) The testing morphism test(e)~x. (b.) The assertion morphism ass(e)~x.

Let φ : N→ (1 + 1) be the functional (non-injective) relation performing the canonical
embedding of natural numbers into booleans, i.e. the functional relation mapping the natural
number 0 into inl(it) and all other non-zero values into inr(it), where it is the unique element
of the set 1. Let e be an expression. The testing morphism test(e) : Σ → ((1 + 1) × Σ)
generates a state annotated with the evaluation of the expression e. More formally

test(e) = {(σ, (b, σ)) | σ ∈ Σ, (σ, n) ∈ JeK, (n, b) ∈ φ}

which is obviously an injective functional relation.
Its inverse is the assertion morphism ass(e) = test(e)† : ((1 + 1)× Σ)→ Σ. It asserts

whether in the annotated state the value of the additional variable coincides with the value
of e (seen as a boolean). More formally:

ass(e) = {((b, σ), σ) | σ ∈ Σ, (σ, n) ∈ JeK, (n, b) ∈ φ}

In Figure 6 we depicted the circuits realizing both tests and assertions.
Each statement is interpreted as a functional injective relation on states. Suppose that

~id = (id1, . . . , idk) are the identifiers of the procedures defined. A functional environment
is a k-pla ϕ = (ϕ1, . . . , ϕk) where each ϕi : Σ → Σ is a morphism of Pinj, i.e. a partial
injective function. We denote with FEnv~id the set of all functional environments.

I Definition 10 (Interpretation of statements). Let ϕ = (ϕ1, . . . , ϕk) be a functional environ-
ment, let s be a statement. JsKϕ is a partial injective function on Σ i.e. JsKϕ : Σ→ Σ and it
is defined by structural induction on s as follows.

Jz�= eKϕ = {(σ[z 7→ n], σ[z 7→ m]) | σ ∈ Σ, (σ�z, n′) ∈ JeK,m = nJ�Kn′}
Jcall idiKϕ = ϕi

Juncall idiKϕ = ϕ†i
JskipKϕ = idΣ
Js1 s2Kϕ = Js2Kϕ ◦ Js1Kϕ
Jif e1 then s1 else s2 fi e2Kϕ = ass(e2)◦δ† ◦ ((id1× Js2Kϕ)+(id1× Js1Kϕ))◦δ ◦ test(e1)
Jfrom e1 do s1 loop s2 until e2Kϕ = TrΣ

Σ,Σ(f) where
f = ((λ×)† + ((λ×)† ◦ Js2Kϕ)) ◦ δ ◦ test(e2) ◦ Js1Kϕ ◦ ass(e1) ◦ δ† ◦ (λ× + λ×)

The interpretation of the assignment, the conditional and the loop deserves some explan-
ations. The morphism denoting z�= e is a reversible update that allows the embedding in
Janus of possibly irreversible evaluation of expressions. Clearly � is a first argument injective
operator since addition and subtraction are. We recall that z cannot occur in e because of an
explicit proviso in Definition 1. In the formalization the restriction of state σ to all its names
but z is implemented by setting the value of z to 0. This operation is again inane since z does
not appear in e. The morphisms denoting if e1 then s1 else s2 fi e2 evaluates the guard
e1 to annotate the state with a corresponding boolean. Then, according to the value of this
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Figure 7 Graphical representation of the interpretation of conditional and loop.

annotation, the flow is redirected either to the circuit denoting s1 or to the circuit denoting
s2 giving back the transformed state. Finally the annotation is tested to be the same as the
value of the expression e2: if the test is satisfied then the annotation is removed otherwise the
operation is undefined. The morphism denoting from e1 do s1 loop s2 until e2 is obtained
applying the trace operator on a function f : (Σ + Σ) → (Σ + Σ). This function is the
composition of many mappings that we discuss step-by-step. First of all, f annotates the
state with a boolean recording which side of the input sum was filled. Then it “asserts”
whether the value of annotation corresponds to the value of the expression e1 and if so,
the annotation is removed (otherwise the function is undefined). Afterwards it evaluates
the circuit denoting s1. Then it evaluates the guard e2 to annotate the state. Then the
transformed state is redirected either on the left or on the right side of a sum according to
the state annotation. In right case, the state is again transformed according to the evaluation
of the circuit denoting s2. A graphical representation of these circuits is given in Figure 7.

The set of morphisms of Pinj between two sets can be CPO-enriched with the set-
theoretical order. For the same reason, also the set FEnv~id endowed with the pointwise
order is still a CPO. Following Winskell [17, p. 162, Lemma 9.3] one can prove that JsK is a
continuous function. Thus, we can apply the fixpoint theorem to define the denotation of a
Janus program containing procedure calls in terms of functional environments as explained
in the following definition.

IDefinition 11 (Interpretation of programs). If P = procedure id1 s1, . . . , procedure idk sk

is a program then, its interpretation is

JPK = fix(λλϕ.(Js1Kϕ, . . . , JskKϕ)) ∈ FEnv~id.

The following statements assert that the interpretation of statements is correct w.r.t. the
operational semantics of statements.

I Theorem 12. Let P be a program. Then σP, s ⇓p σ
′ implies (σP, σ

′) ∈ JsK(JPK).

Proof. By induction on the derivation of the evaluation predicates. We develop only the
case of loop of point (1.), the other cases being easy. Notice that in the case of call
we need to use the definition of fixpoint together with the inductive hypothesis, while in
the case of uncall we can use inductive hypothesis, Theorem 4 and definition of fixpoint.
If s =from e1 do s1 loop s2 until e2 then we have that σP, e1 ⇓e n + 1, σP, s1 ⇓p σ

′
P and

σ′P, (e1, s1, s2, e2) ⇓p σ
′. By applying Lemma 3 point (i) we know that there are σ0

P , . . . , σ
2m
P

where m ∈ N (2m is the double of m), σ0
P = σ′P, σ2m

P = σ′, such that:
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σ2m
P , e2 ⇓e n + 1 and σ2i

P , e2 ⇓e 0, σ2i
P , s2 ⇓p σ

2i+1
P for i < m;

σ2i+1
P , e1 ⇓e 0 for i < m, and σ2i+1

P , s1 ⇓p σ
2i+2
P for i ≤ m− 2.

It is not difficult to prove by induction that if m = 0 then (σP, σ
′) ∈ fll while (σP, σ

′) ∈
frl ◦ f∗rr ◦ flr if m ≥ 0 by observing that m is the number of iterations in the trace operator.
This allows us to conclude. J

Let P be a program. Notice that by Theorem 12 in combination with Theorem 4, it
follows that σP, s ⇓rp σ′ implies (σP, σ

′) ∈ (JsK(JPK))†.

I Theorem 13. Let P be a program. If (σP, σ
′) ∈ JsK(JPK) then σP, s ⇓p σ

′.

Proof. We follow [17, Lemma 9.7 p. 167]. Let P = (procedure id1 s1, . . . , procedure idk sk)
and define the functional environment ϕ as (σ, σ′) ∈ ϕi if σ, si ⇓p σ

′. Then we can prove by
structural induction on s that if (σP, σ

′) ∈ JsK(ϕ) then σP, s ⇓p σ
′. Then we can prove easily

that ϕ is a pre-fixpoint of the function defined in Definition 11, allowing us to conclude. J

The formalization of denotational semantics is given in the file rel_interpretation.tex.
The interpretation is provided for all suitable instances of the abstract syntax.� �
let rec den_eval_stm (p : params) (p’ : sem_params p)
(prog : stm p) (n : N) on prog :
L^{n}_{(Mor Pinj (list (const_type . . .p)) (list (const_type . . .p)))} →
(Mor Pinj ( list (const_type . . .p)) (list (const_type . . .p))) :=. . .� �

The interpretation is defined by induction on the statement prog. It gives back a
function from L^{n}_{(Mor Pinj (list (const_type . . .p)) (list (const_type . . .p)))} (which is the
implementation of FEnv~id) to an injective functional relation on states. We proved that
the obtained function is both monotonic and continuous. So it is possible to define the
interpretation using the fixpoint operator. The analogous of theorems 12 and 13 are certified
in correctness.ma and compl_thm.ma.

6 Conclusions

This paper focuses on various aspects of the semantics of the reversible and imperative basic
programming language Janus.

On one side we focus on the operational semantics of Janus. The reason is standard:
constructing efficient compilers and interpreters rely on well formalized and unambiguous
operational semantics. We provide a syntax-driven operational semantics which is
deterministic. This property does not hold for the first contributions to the operational
semantics of Janus [20, 19, 18, 12]. The proposals in [20, 19, 18, 12] rest on a non-
deterministic rule which describes a mechanism of “procedure un-call.” For sake of
completeness, however, we must recall that the authors of [20, 12] explain how to let their
evaluation be deterministic by means of an external program transformation.
A noteworthy by-product of our approach is that the well-known properties expressed
by Corollary 5 can be formally expressed and proven in a friendly operational settings
(indeed, the functionality and the injectivity of the evaluation are usually proved for
Reversible Turing-Machines, for which we refer to Axelsen and Glück [2].)
On the other side, we focus on a suitable categorical domain where correctly interpreting
Janus. Obtaining full-abstraction is somewhat expected because Janus is not a higher-
order language. The formalization of the interpretation, however, is not trivial because
the semantic analysis of reversible languages is quite a new trend. In particular, we see
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our analysis and its relationships with the work by James and Sabry [9, 8] as a starting
point to deepen the knowledge about the reversible programming. So we are in the
position to exploit a standard by-product of semantics, i.e. simplified tools to investigate
equivalences among programs.
Finally, our (meta)-proofs are certified by Matita.
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