
Treewidth in Non-Ground Answer Set Solving and
Alliance Problems in Graphs∗

Bernhard Bliem

TU Wien, Vienna, Austria
bliem@dbai.tuwien.ac.at

Abstract
To solve hard problems efficiently via answer set programming (ASP), a promising approach
is to take advantage of the fact that real-world instances of many hard problems exhibit small
treewidth. Algorithms that exploit this have already been proposed – however, they suffer from
an enormous overhead. In the thesis, we present improvements in the algorithmic methodology
for leveraging bounded treewidth that are especially targeted toward problems involving subset
minimization. This can be useful for many problems at the second level of the polynomial
hierarchy like solving disjunctive ground ASP. Moreover, we define classes of non-ground ASP
programs such that grounding such a program together with input facts does not lead to an
excessive increase in treewidth of the resulting ground program when compared to the treewidth
of the input. This allows ASP users to take advantage of the fact that state-of-the-art ASP
solvers perform better on ground programs of small treewidth. Finally, we resolve several open
questions on the complexity of alliance problems in graphs. In particular, we settle the long-
standing open questions of the complexity of the Secure Set problem and whether the Defensive
Alliance problem is fixed-parameter tractable when parameterized by treewidth.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases answer set programming, treewidth, secure set, defensive alliance, pa-
rameterized complexity

Digital Object Identifier 10.4230/OASIcs.ICLP.2017.12

1 Introduction

The problem solving paradigm Answer Set Programming (ASP) [12, 30, 46, 45] has become
quite popular for tackling computationally hard problems. It offers its users a very convenient
declarative language that allows for succinct specifications, and there are highly efficient
systems available [32, 31, 29, 2, 3, 44, 4, 51, 23].

Although ASP systems have made huge advances in performance, they still struggle with
several tough problems. This is not always just an issue of computational complexity in the
classical sense. Interestingly, ASP systems may perform quite well in practice on one problem
whereas the performance on another problem of the same complexity can be significantly
worse. Often classical complexity theory is thus only of limited help to explain ASP solving
performance in practice. In such cases, it may be insightful to consider the parameterized
complexity of the problems [20, 28, 17, 48]. This theoretical framework investigates the
complexity of a problem not only in terms of the input size, but also of other parameters.

In this work, we are particularly interested in the effect of the structural parameter
treewidth [50] on the performance of ASP solvers. Intuitively, the smaller the treewidth

∗ This work was supported by the Austrian Science Fund (FWF) projects P25607 and Y698.

© Bernhard Bliem;
licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 12; pp. 12:1–12:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Treewidth in Non-Ground ASP and Alliance Problems

of a graph, the closer the graph resembles a tree. It is well-known that many graph
problems become easy if we restrict the input to trees and it has turned out that for many
important problems this even holds for the more general class of instances of bounded
treewidth [5]. Luckily, it has been observed that real-world instances usually exhibit small
treewidth [10, 52, 41]. Moreover, treewidth is not only relevant for graph problems. It can
also be applied to instances of all kinds of problems by choosing a suitable representation
of the instance as a graph. For instance, treewidth has also been considered for constraint
satisfaction problems [19], where it is known under the name of “induced width” and is
crucial for the performance of a technique called bucket elimination [18].

There have already been some investigations concerning treewidth and ground ASP (i.e.,
ASP programs without variables, also known as propositional programs) [34, 49, 26]. An
important result is the algorithm from [39] for deciding whether a ground ASP program
has a solution in linear time on instances of bounded treewidth. This algorithm employs a
technique called dynamic programming on tree decompositions, which is very common for
algorithms that exploit small treewidth. The algorithm from [39] has also been implemented
and proposed as an alternative solver for ground ASP [47]. For certain problems, this
dynamic-programming-based solver was able to outperform state-of-the-art ASP solvers if
the instances had a very small treewidth and the sizes of the instances were very large.

Although the encouraging results from [47] confirmed that small treewidth can be
successfully exploited for ASP solving in experimental settings, the restrictions on problems
and instances that make this approach perform well were still too severe for most practical
applications. The main obstacles that prevented this approach from being useful for a broad
range of applications were the facts that, on the one hand, the naive dynamic programming
approach involves an enormous overhead (especially in terms of memory) and, on the other
hand, state-of-the-art ASP solvers often perform so well that the theoretical superiority of
the dynamic programming algorithm only pays off for instances of tremendous size. In fact,
experiments in [7] indicated that state-of-the-art ASP solvers are “sensitive” to the treewidth
of their input in the sense that smaller treewidth strongly correlates with higher solving
performance.

These issues hint at interesting research challenges. In particular, two approaches seem
promising for successfully exploiting small treewidth for ASP solving in practice:

The first research challenge is to improve the dynamic-programming-based methodology
in order to avoid some of its overhead and redundant computations.
For solving ground ASP, these issues are especially severe compared to other problems
because the corresponding computational problems are even harder than NP under
standard complexity-theoretic assumptions. (In fact, deciding whether a ground ASP
program with disjunctions has an answer set is at the second level of the polynomial
hierarchy.) This high complexity of ground ASP is mirrored in the dynamic programming
algorithm [39], which uses brute force to first of all find all models of all parts of the
decomposed program, and it subsequently uses brute force again for each such partial
model to find all potential counterexamples that may cause the candidate to be discarded.
This pattern also frequently occurs in dynamic programming algorithms for other problems
that search for solutions satisfying some form of subset minimality. Besides ground ASP,
this is the case, for instance, for the problem of finding subset-minimal models of a
propositional formula. In general, problems involving subset-minimization are quite
common in AI, and dynamic programming algorithms have been proposed for, e.g.,
circumscription, abduction or abstract argumentation (see [38, 35, 21]). Such algorithms
typically store a great number of redundant objects because the subsets that may invalidate

B. Bliem 12:3

a solution candidate are themselves solution candidates. Moreover, the specifications of
such algorithms themselves contain redundancies because the potential counterexamples
are usually manipulated in almost the same way as the solution candidates.
The second research challenge is to solve ASP by not doing dynamic programming at
all but instead exploiting small treewidth implicitly by relying on the assumption that
state-of-the-art solvers perform better when given ground programs of small treewidth
(as indicated by the experiments in [7]).
Since problems are usually encoded in non-ground ASP, here the research objective is to
investigate which non-ground encoding techniques significantly blow up the treewidth of
the grounding when compared to the treewidth of the input facts.

In addition to leveraging treewidth for ASP solving, we are interested in several variants
of a graph problem called Secure Set [13]. It belongs to the class of so-called alliance
problems [42, 24, 53], which are problems that ask for groups of vertices that help each other
out in a certain way. Practical applications of alliance problems include finding groups of
websites that form communities [27] or distributing resources in a computer network in such
a way that simultaneous requests can be satisfied [36]. Intuitively, a set S of vertices in a
graph is secure if every subset of S has as least as many neighbors in S as neighbors not in
S. The Secure Set problem asks whether a given graph contains a secure set at most of a
certain size.

The reason why we are concerned with Secure Set is that this problem has quite
interesting properties, especially for ASP researchers: Attempts of encoding this problem in
ASP have resulted in very involved specifications indicating that Secure Set may require
the full expressive power of ASP [1]. However, it is unfortunately unclear whether this is
really necessary because its complexity has still remained unresolved although the problem
has been introduced already in 2007 [13].

One of the variants of Secure Set that we consider in the proposed thesis is the
Defensive Alliance problem [42, 43]. This problem has received quite some attention in
the literature [24]. It is known to be NP-complete, but its complexity when parameterized
by treewidth has remained open.

2 Background

We assume some familiarity with ASP; introductions can be found in [12, 30, 46, 45]. In
the thesis, we study both ground ASP programs, i.e., programs without variables, but also
programs utilizing the full ASP language as described in the ASP-Core-2 specification [14].
In particular, we include weak constraints and aggregates.

We only outline the syntax of a simplified version of non-ground ASP. For details and
semantics, we refer to the standard [14]. An ASP program consists of rules of the following
form:

h1 | . . . | hk :− p1, . . . , p`, not n1, . . . , not nm.

The head of a rule r is the set denoted by H(r) = {h1, . . . , hk}, the positive body of r is the
set B+(r) = {p1, . . . , p`}, and the negative body of r is the set B−(r) = {n1, . . . , nm}. All
elements of these sets are called atoms. An atom is either a predicate atom or an aggregate
atom. Predicate atoms have the form p(t1, . . . , tj), where p is a predicate and t1, . . . , tj are
terms, that is, constants or variables. A predicate is called extensional in a program Π if it
only occurs in rule bodies of Π. An atom is called extensional in Π if it is a predicate atom
over an extensional predicate. We omit a definition of aggregate atoms but only mention

ICLP 2017 TCs

12:4 Treewidth in Non-Ground ASP and Alliance Problems

that they allow us to, e.g., compute a sum of integers or count the cardinality of a set. For
details, we refer to [14]. In addition to rules as defined above, we allow for weak constraints,
which are special kinds of rules and have the following form:

:∼ p1, . . . , p`, not n1, . . . , not nm. [w, t1, . . . , tq]

The intuition is that if an answer set violates a ground instantiation of such a weak constraint,
then this incurs a penalty of w to the cost of the solution. (Without the terms t1, . . . , tk,
each weight w would in fact only be counted once in the cost of a solution, hence t1, . . . , tk

can be specified for counting the same weight multiple times.) Again, we omit details and
refer to [14] instead.

To solve a non-ground ASP program, ASP systems usually first invoke a grounder that
transforms a program into a set of ground rules. The answer sets of the original program are
the stable models (as defined in [33]) of the resulting ground program.

A “naive” grounder blindly instantiates variables by all possible ground terms. Grounders
in practice, on the other hand, employ sophisticated techniques in order to keep the resulting
ground program as small as possible. As these techniques differ between systems, we define
a simplified notion of grounding that is easier to study. For a meaningful investigation of the
relationship between the treewidth of the input and the treewidth of the grounding, we need
to assume that the grounder still performs some basic simplifications. These simplifications
are so basic that they can be assumed to be implemented by all reasonable grounders. The
intuition is that a rule from the “naive” grounding is omitted in our grounding whenever its
positive body contains an atom that cannot possibly be derived.

I Definition 1. Let Π be a non-ground ASP program, let Π+ denote the positive program
obtained from Π by removing all negated atoms and replacing disjunctions with conjunctions
(i.e., splitting disjunctive into normal rules), and let M+ be the unique minimal model of Π+.
The grounding of Π, denoted by gr(Π), is such that, for every substitution s from variables
to constants, s(r) ∈ gr(Π) iff s(B+(r)) ⊆M+.

In our work, we are interested in the treewidth of ground ASP programs. For this, we
represent programs as graphs as follows.

I Definition 2. The primal graph of a ground ASP program Π is an undirected graph whose
vertices are the atoms in Π and there is an edge between two atoms if they appear together
in a rule in Π. The treewidth of a ground ASP program Π is the treewidth of its primal
graph.

Deciding whether a disjunctive ground ASP program has a stable model is ΣP
2 -complete in

general [22], and it can be done in linear time for ground programs of bounded treewidth [34].
Treewidth is an important parameter studied in the context of parameterized complexity
theory. Here, decision problems consist not only of an instance and a yes-no question, but
additionally of a parameter of the instance. For introductions, we refer to [20, 28, 17, 48].
The central notion of tractability is called fixed-parameter tractability.

I Definition 3. A problem is fixed-parameter tractable (FPT) w.r.t. a parameter k of the
instances if it admits an algorithm that runs in time O(f(k) · nc), where f is an arbitrary
computable function that only depends on k, n is the input size and c is an arbitrary constant.
We call such an algorithm an FPT algorithm.

Note that the factor f(k) in this running time may be exponential in the parameter k, but
if k is bounded by a constant, then the algorithm runs in polynomial time. Importantly,
the degree c of the polynomial must be a constant and may not depend on the parameter,
otherwise the algorithm is not considered FPT.

B. Bliem 12:5

Dynamic programming on tree decompositions is perhaps the most common technique for
obtaining FPT algorithms when the parameter is treewidth. It is employed in the algorithm
for solving ground ASP in [39], for instance. The basic idea is the following: Given a graph
G, a tree decomposition of G is a tree whose nodes correspond to subgraphs of G according
to certain conditions. If the treewidth of a graph is bounded by a constant, then we can find
(in linear time) a tree decomposition whose nodes correspond to subgraphs of constant size
[11]. We can then solve many problems by first applying brute force at each subgraph in
order to solve a subproblem corresponding to this subgraph and then trying to combine the
obtained partial solutions. Due to the bound on the treewidth, we can afford this brute force
approach because each of the considered subgraphs has bounded size. Formal definitions and
examples of this technique can be found in, e.g., [48].

We now define secure sets in graphs [13]. For this, we use the notation NG[S] to denote
the closed neighborhood of a subset S of the vertices of a graph G; that is, NG[S] contains
the vertices in S itself and the vertices that are adjacent to an element of S.

I Definition 4. Let G be a graph and S be a subset of its vertices. We call S secure in G if
|NG[X] ∩ S| > |NG[X] \ S| holds for every X ⊆ S.

Intuitively, we can regard a neighbor of X as a “good” neighbor if it is also in S, and as a
“bad” neighbor otherwise. Now X is a counterexample to S being secure if X has more bad
neighbors than good ones.

3 Contributions

Our contributions can be arranged in three groups: First, we present improvements in the
dynamic programming methodology; second, we define non-ground ASP classes that can be
shown to preserve bounded treewidth of the input in grounding; third, we provide complexity
results and algorithms for alliance problems in graphs.

3.1 Improvements in the Dynamic Programming Methodology
We present an improved dynamic programming methodology for problems that involve subset
minimization. Specifically, for any problem P whose solutions are exactly the subset-minimal
solutions of some base problem B, we formalize how a dynamic programming algorithm for
B can automatically be transformed into a dynamic programming algorithm for P . We prove
that the resulting algorithm runs in linear time on instances of bounded treewidth if the
base algorithm does. Moreover, we prove that the resulting algorithm is correct if the base
algorithm is correct and, intuitively, it only computes partial solutions that do not “revoke
decisions” made by associated partial solutions further down in the tree decomposition. The
resulting algorithm has two advantages compared to solving P directly in a naive way: first,
it is usually easier to specify because we only need to design an algorithm for the base
problem and need not care about subset minimization; second, it is potentially more efficient
because it stores fewer redundant items.

Indeed, this methodology has been empirically shown to lead to significant performance
benefits for several problems [6]. An improved version of the classical dynamic programming
algorithm for ground ASP has been implemented using these ideas [25] and proved to be
significantly more efficient than the algorithm from [39]. Our result formalizes the common
scheme that underlies these algorithms. We thus provide a formal framework that makes
it possible to transfer the mentioned optimizations easily to other problems. Thereby we
make the impressive performance benefits that have been reported in [6, 25] accessible to

ICLP 2017 TCs

12:6 Treewidth in Non-Ground ASP and Alliance Problems

Listing 1 A guarded ASP encoding for checking whether a given set S (declared using predicate
s) is secure in a given graph (declared using predicates v and e). The guards of rules are underlined.
% Guess a subset X o f S .
x(S) | nx(S) :- s(S).
% Neighbors o f X are " good " i f they are in S , o therwi s e they are " bad " .
neighbor (V) :- x(X), e(X,V).
neighbor (X) :- x(X), v(X).
good(V) :- neighbor (V), s(V).
bad(V) :- neighbor (V), v(V), not s(V).
% I f X has more bad ne ighbors than good ones , S i s not s e cure .
% We use the f o l l o w i n g weak c o n s t r a i n t s to determine t h i s by summing up .
:~ v(V), good(V). [1,V] % Add 1 f o r each good neighbor .
:~ v(V), bad(V). [-1,V] % Subtract 1 f o r each bad neighbor .

algorithm designers working on related problems. This is primarily useful for problems on
the second level of the polynomial hierarchy as subset minimization is a recurring theme in
many such problems.

3.2 Non-Ground ASP Classes that Preserve Bounded Treewidth
We define non-ground ASP classes for which grounding, according to Definition 1, preserves
bounded treewidth of the input. By restricting the syntax of non-ground ASP, we define two
classes of programs called guarded and connection-guarded programs [7]. Guarded programs
guarantee that the treewidth of any fixed program after grounding stays small whenever
the treewidth of the input facts is small. We formally prove this property and show that,
despite their restrictions, guarded programs can still express problems that are complete for
the second level of the polynomial hierarchy.

Connection-guarded programs are even more expressive than guarded programs. We
show that the treewidth of any fixed connection-guarded program after grounding is small
whenever the treewidth and the maximum degree of (a graph representation of) the input
facts is small.

These results bring us closer to the goal of implicitly taking advantage of the apparent
sensitivity to treewidth exhibited by modern ASP solvers because they give us insight into
what happens to the treewidth of the input during grounding. Thus, by writing a program
in guarded ASP, we can be sure that the grounder does not destroy the property of bounded
treewidth. In the case of connection-guarded ASP, the same holds for the combination of
treewidth and maximum degree.

I Example 5. The ASP encoding in Listing 1 can be used for deciding whether a given set S

of vertices is secure in a given graph G. It guesses a subset X of S and uses weak constraints
in such a way that the cost of each answer set is exactly |NG[X] ∩ S| − |NG[X] \ S|. If there
is a subset of S that has more “bad” neighbors than “good” ones, then the program has
an answer set with negative cost. The solutions of a program with weak constraints are
those answer sets that minimize the cost incurred by violated weak constraints. We can thus
decide whether S is secure by checking if this minimum value is negative.

The program in Listing 1 is guarded, which means that, for each rule r, all variables of r

occur together in a single extensional atom of B+(r) that we call the guard of r. Note that,
alternatively, it is also possible to check whether a set of vertices is secure without using
weak constraints. For instance, we can replace the weak constraints by the “hard” constraint

B. Bliem 12:7

:- #sum{ 1,G : good(G); -1,B : bad(B) } >= 0. The resulting program has an answer set
if and only if S is not secure. However, the new constraint is not guarded. This means that
the original program in Listing 1 generally leads to groundings of much lower treewidth and
can thus be expected to perform better. Indeed, the ground instantiation of the new hard
constraint would contain a linear number of atoms. Thus, the primal graph of the grounding
would contain a clique of linear size and thus have linear treewidth even if the treewidth of
input graphs is bounded by a constant.

In the thesis, we also present a complexity analysis of computational problems corre-
sponding to these classes when the parameter is the treewidth of the input, the maximum
degree of the input, or the combination of both. The results of this analysis show that, for
any fixed guarded ASP program, answer set solving is FPT when parameterized by the
treewidth of the input; moreover, for any fixed connection-guarded ASP program, answer set
solving is FPT when parameterized by the combination of treewidth and maximum degree.
This is not obvious because our ASP classes support weak constraints and aggregates, which
are not accounted for in the FPT algorithms [39, 25] for ground ASP. Furthermore, we prove
hardness results showing that for connection-guarded ASP programs both the treewidth and
the maximum degree must be bounded for obtaining fixed-parameter tractability. We do
this by presenting a connection-guarded ASP encoding of a problem that is NP-hard even if
the treewidth of the instances is fixed and by presenting a guarded encoding of a problem
that is ΣP

2 -hard even if the degree of the instances is fixed.
As a side-product of these investigations, we obtain metatheorems for proving FPT

results. That is, our results on guarded ASP allow us to prove that a problem is FPT
when parameterized by treewidth by simply expressing the problem in guarded ASP. We
compare this metatheorem to the common approach of proving fixed-parameter tractability
by expressing a problem in monadic second-order logic and invoking the well-known theorem
by Courcelle [15, 16]. Similarly, we can prove that a problem is FPT when parameterized by
the combination of treewidth and maximum degree by expressing the problem in connection-
guarded ASP. This result is appealing because we are not aware of any metatheorems that
allow us to obtain FPT results for the combination of treewidth and degree as the parameter.

3.3 Alliance Problems in Graphs
We perform a complexity analysis of alliance problems in graphs, both in the classical setting
and when parameterized by treewidth. First, we settle the complexity of the Secure Set
problem by proving that the problem, along with several variants, is ΣP

2 -complete (that is, at
the second level of the polynomial hierarchy).

Next we turn to the complexity of Secure Set and Defensive Alliance when the
problems are parameterized by treewidth. We illustrate the use of our ASP classes as
FPT classification tools by presenting simple encodings for alliance problems in graphs. By
encoding the NP-complete Defensive Alliance problem in connection-guarded ASP, we
easily obtain the already known result that the problem is FPT when parameterized by the
combination of treewidth and maximum degree. More importantly, we obtain the new result
that the co-NP-complete problem of deciding whether a given set is secure in a graph is FPT
for the parameter treewidth by encoding the problem in guarded ASP.

We also give several negative results. We prove that both Defensive Alliance and
Secure Set, as well as several problem variants, are not FPT when parameterized by
treewidth (under commonly held complexity-theoretic assumptions). These questions have
been open since the problems have been introduced in 2002 and 2007, respectively. They
have explicitly been stated as open problems in [40] (for Defensive Alliance) and in [37]
(for Secure Set).

ICLP 2017 TCs

12:8 Treewidth in Non-Ground ASP and Alliance Problems

Despite the parameterized hardness of Secure Set, we can give at least a slightly
positive result: We show that the Secure Set problem can still be solved in polynomial
time for instances of bounded treewidth although the degree of the polynomial depends on
the treewidth.

4 Current Status

The largest part of the research for the proposed thesis has already been done and is in the
process of being integrated and written down. Most of the results have been published in
conference proceedings and journals:

The work on improving the dynamic programming methodology for problems involving
subset minimization has been published in [6].
The class of connection-guarded ASP programs, which preserves bounded treewidth of
the input in grounding whenever the maximum degree is also bounded has been published
in [7]. That paper neither contained the thorough complexity analysis performed in the
proposed thesis nor the work on the class of guarded programs, which may be attractive
because this class does not require the degree of input graphs to be bounded.
The ΣP

2 -completeness result of the Secure Set problem has been published in [9]. An
extended version [8], which is currently under review for a journal, additionally contains
the parameterized complexity results. The proposed thesis extends this by results on the
parameterized complexity of the Defensive Alliance problem as well.

5 Open Issues

The proposed thesis opens up several possibilities for future research:
The class of connection-guarded ASP programs may be of interest for algorithmic purposes
because it allows us to classify a problem as FPT when parameterized by treewidth plus
degree. A common technique for classifying problems parameterized by treewidth as
FPT is expressing them in monadic second-order logic (MSO). Our result may lead to an
extension of MSO that can be used for classifying problems as FPT when the parameter
is treewidth + degree.
From a more practical perspective, it is promising to look closely into what ASP solvers
and in particular their heuristics are doing when they are presented with a grounding
of small treewidth. This could provide us insight into why state-of-the-art ASP solvers
perform better on instances of small treewidth even though they do not “consciously”
exploit this fact. With the gained understanding, we may be able to improve their
performance by explicitly taking information from a tree decomposition into account
during solving. This could perhaps lead to a hybrid ASP solving approach that uses
classical conflict-driven clause learning in combination with techniques based on tree
decompositions.
We showed that Secure Set is not FPT when parameterized by treewidth (unless the
class W[1] is equal to FPT). It would be interesting to study which additional restrictions
beside bounded treewidth need to be imposed on Secure Set instances to achieve
fixed-parameter tractability. In particular, we do not know whether it becomes FPT
when additionally the degree is bounded.
Regarding our polynomial-time algorithm for Secure Set on instances of bounded
treewidth, it would be interesting to study if this result can be extended to instances of
bounded clique-width, a parameter related to treewidth.

B. Bliem 12:9

Moreover, we have not considered a problem that is closely related to Defensive
Alliance, namely Offensive Alliance. Possibly some of our techniques can also be
applied to obtain complexity results for this problem.
Defensive Alliance differs from Secure Set in the size of the subsets of solution
candidates that need to be checked. For future work it would be interesting to study the
complexity of a problem that generalizes both of them, where the size of the subsets is a
parameter.
Finally, for the parameterized hardness results that we obtained we do not have corre-
sponding membership results. This is an obvious task for future work.

Acknowledgements. The proposed thesis was supervised by Stefan Woltran and is based
on publications with significant contributions by Günther Charwat, Markus Hecher, Marius
Moldovan and Michael Morak.

References
1 Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, and Stefan

Woltran. Computing secure sets in graphs using answer set programming. J. Logic Comput.,
2015. Accepted for publication. doi:10.1093/logcom/exv060.

2 Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.
WASP: A native ASP solver based on constraint learning. In Pedro Cabalar and Tran Cao
Son, editors, Proceedings of LPNMR 2013, volume 8148 of LNCS, pages 54–66. Springer,
2013. doi:10.1007/978-3-642-40564-8_6.

3 Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in
WASP. In Francesco Calimeri, Giovambattista Ianni, and Mirosław Truszczyński, edi-
tors, Proceedings of LPNMR 2015, volume 9345 of LNCS, pages 40–54. Springer, 2015.
doi:10.1007/978-3-319-23264-5_5.

4 Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and Giorgio
Terracina. The disjunctive datalog system DLV. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Jon Sellers, editors, Revised Selected Papers of Datalog 2010, volume
6702 of LNCS, pages 282–301. Springer, 2011. doi:10.1007/978-3-642-24206-9_17.

5 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)
90006-K.

6 Bernhard Bliem, Günther Charwat, Markus Hecher, and Stefan Woltran. D-FLATˆ2: Sub-
set minimization in dynamic programming on tree decompositions made easy. Fund. In-
form., 147(1):27–61, 2016. doi:10.3233/FI-2016-1397.

7 Bernhard Bliem, Marius Moldovan, Michael Morak, and Stefan Woltran. The impact of
treewidth on ASP grounding and solving. In Carles Sierra and Fahiem Bacchus, editors,
Proceedings of IJCAI 2017. The AAAI Press, 2017. Accepted for publication.

8 Bernhard Bliem and Stefan Woltran. Complexity of secure sets. CoRR, abs/1411.6549,
2014. Updated to version 3 on July 11, 2017. URL: http://arxiv.org/abs/1411.6549.

9 Bernhard Bliem and Stefan Woltran. Complexity of secure sets. In Ernst W. Mayr, editor,
Revised Papers of WG 2015, volume 9224 of LNCS, pages 64–77. Springer, 2016. doi:
10.1007/978-3-662-53174-7_5.

10 Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11(1-2):1–21,
1993.

11 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

ICLP 2017 TCs

http://dx.doi.org/10.1093/logcom/exv060
http://dx.doi.org/10.1007/978-3-642-40564-8_6
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-642-24206-9_17
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.3233/FI-2016-1397
http://arxiv.org/abs/1411.6549
http://dx.doi.org/10.1007/978-3-662-53174-7_5
http://dx.doi.org/10.1007/978-3-662-53174-7_5
http://dx.doi.org/10.1137/S0097539793251219

12:10 Treewidth in Non-Ground ASP and Alliance Problems

12 Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming
at a glance. Communications of the ACM, 54(12):92–103, 2011. doi:10.1145/2043174.
2043195.

13 Robert C. Brigham, Ronald D. Dutton, and Stephen T. Hedetniemi. Security in graphs.
Discrete Appl. Math., 155(13):1708–1714, 2007. doi:10.1016/j.dam.2007.03.009.

14 Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten
Schaub. ASP-Core-2 input language format. https://www.mat.unical.it/aspcomp2013/
ASPStandardization, 2015. Version: 2.03c.

15 Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Inform. and Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

16 Bruno Courcelle. The monadic second-order logic of graphs III: Tree-decompositions,
minors and complexity issues. RAIRO Theor. Inform. Appl., 26:257–286, 1992. doi:
10.1051/ita/1992260302571.

17 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
International Publishing, Cham, Switzerland, 2015. doi:10.1007/978-3-319-21275-3.

18 Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelli-
gence, 113(1-2):41–85, 1999. doi:10.1016/S0004-3702(99)00059-4.

19 Rina Dechter. Constraint Processing. Elsevier Morgan Kaufmann, Amsterdam, The Nether-
lands, 2003. doi:10.1016/b978-1-55860-890-0.x5000-2.

20 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, New York, NY, USA, 1999. doi:10.1007/
978-1-4612-0515-9.

21 Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1–37, 2012.
doi:10.1016/j.artint.2012.03.005.

22 Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995. doi:
10.1007/BF01536399.

23 Islam Elkabani, Enrico Pontelli, and Tran Cao Son. SmodelsA - A system for computing
answer sets of logic programs with aggregates. In Chitta Baral, Gianluigi Greco, Nicola
Leone, and Giorgio Terracina, editors, Proceedings of LPNMR 2005, volume 3662 of LNCS,
pages 427–431. Springer, 2005. doi:10.1007/11546207_40.

24 Henning Fernau and Juan A. Rodríguez-Velázquez. A survey on alliances and related
parameters in graphs. Electron. J. Graph Theory Appl. (EJGTA), 2(1):70–86, 2014. doi:
10.5614/ejgta.2014.2.1.7.

25 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer set
solving with bounded treewidth revisited. In Marcello Balduccini and Tomi Janhunen,
editors, Proceedings of LPNMR 2017, volume 10377 of LNCS, pages 132–145. Springer,
2017. doi:10.1007/978-3-319-61660-5_13.

26 Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable answer set programming.
Artificial Intelligence, 220:64–103, 2015. doi:10.1016/j.artint.2014.12.001.

27 Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-organization
and identification of web communities. IEEE Computer, 35(3):66–71, 2002. doi:10.1109/
2.989932.

28 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006. doi:10.1007/3-540-29953-X.

29 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. Progress in clasp series 3. In Francesco Calimeri, Giovambattista Ianni, and

http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1016/j.dam.2007.03.009
https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://www.mat.unical.it/aspcomp2013/ASPStandardization
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1051/ita/1992260302571
http://dx.doi.org/10.1051/ita/1992260302571
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/S0004-3702(99)00059-4
http://dx.doi.org/10.1016/b978-1-55860-890-0.x5000-2
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1016/j.artint.2012.03.005
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/11546207_40
http://dx.doi.org/10.5614/ejgta.2014.2.1.7
http://dx.doi.org/10.5614/ejgta.2014.2.1.7
http://dx.doi.org/10.1007/978-3-319-61660-5_13
http://dx.doi.org/10.1016/j.artint.2014.12.001
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1007/3-540-29953-X

B. Bliem 12:11

Mirosław Truszczyński, editors, Proceedings of LPNMR 2015, volume 9345 of LNCS, pages
368–383. Springer, 2015. doi:10.1007/978-3-319-23264-5_31.

30 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, Williston, VT, USA, 2012. doi:10.2200/
S00457ED1V01Y201211AIM019.

31 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A
conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S. Schlipf,
editors, Proceedings of LPNMR 2007, volume 4483 of LNCS, pages 260–265. Springer, 2007.
doi:10.1007/978-3-540-72200-7_23.

32 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187:52–89, 2012. doi:10.1016/j.
artint.2012.04.001.

33 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of JICSLP 1988,
volume 2, pages 1070–1080. The MIT Press, 1988.

34 Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artificial Intelligence, 174(1):105–132, 2010.
doi:10.1016/j.artint.2009.10.003.

35 Georg Gottlob, Reinhard Pichler, and Fang Wei. Tractable database design and datalog
abduction through bounded treewidth. Inf. Syst., 35(3):278–298, 2010. doi:10.1016/j.
is.2009.09.003.

36 Teresa W. Haynes, Stephen T. Hedetniemi, and Michael A. Henning. Global defensive
alliances in graphs. Electron. J. Combin., 10, 2003. URL: http://www.combinatorics.
org/Volume_10/Abstracts/v10i1r47.html.

37 Yiu Yu Ho and Ronald D. Dutton. Rooted secure sets of trees. AKCE Int. J. Graphs
Comb., 6(3):373–392, 2009.

38 Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Fast counting with
bounded treewidth. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Proceedings of LPAR 2008, volume 5330 of LNCS, pages 436–450. Springer, 2008. doi:
10.1007/978-3-540-89439-1_31.

39 Michael Jakl, Reinhard Pichler, and Stefan Woltran. Answer-set programming with
bounded treewidth. In Craig Boutilier, editor, Proceedings of IJCAI 2009, pages 816–822.
The AAAI Press, 2009.

40 Masashi Kiyomi and Yota Otachi. Alliances in graphs of bounded clique-width. Discrete
Appl. Math., 223:91–97, 2017. doi:10.1016/j.dam.2017.02.004.

41 András Kornai and Zsolt Tuza. Narrowness, pathwidth, and their application in natural lan-
guage processing. Discrete Appl. Math., 36(1):87–92, 1992. doi:10.1016/0166-218X(92)
90208-R.

42 Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Introduction to
alliances in graphs. In Ilyas Cicekli, Nihan Kesim Cicekli, and Erol Gelenbe, editors,
Proceedings of ISCIS 2002, pages 308–312. CRC Press, 2002.

43 Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Alliances in graphs.
J. Combin. Math. Combin. Comput., 48:157–178, 2004.

44 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499–562, 2006. doi:10.1145/1149114.1149117.

45 Vladimir Lifschitz. What is answer set programming? In Dieter Fox and Carla P. Gomes,
editors, Proceedings of AAAI 2008), pages 1594–1597. The AAAI Press, 2008.

ICLP 2017 TCs

http://dx.doi.org/10.1007/978-3-319-23264-5_31
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2009.10.003
http://dx.doi.org/10.1016/j.is.2009.09.003
http://dx.doi.org/10.1016/j.is.2009.09.003
http://www.combinatorics.org/Volume_10/Abstracts/ v10i1r47.html
http://www.combinatorics.org/Volume_10/Abstracts/ v10i1r47.html
http://dx.doi.org/10.1007/978-3-540-89439-1_31
http://dx.doi.org/10.1007/978-3-540-89439-1_31
http://dx.doi.org/10.1016/j.dam.2017.02.004
http://dx.doi.org/10.1016/0166-218X(92)90208-R
http://dx.doi.org/10.1016/0166-218X(92)90208-R
http://dx.doi.org/10.1145/1149114.1149117

12:12 Treewidth in Non-Ground ASP and Alliance Problems

46 Victor W. Marek and Mirosław Truszczyński. Stable models and an alternative logic pro-
gramming paradigm. In Krzysztof Apt, Victor W. Marek, Mirosław Truszczyński, and
David S. Warren, editors, The Logic Programming Paradigm: A 25-Year Perspective, pages
375–398. Springer, New York, NY, USA, 2011. doi:10.1007/978-3-642-60085-2.

47 Michael Morak, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. A dynamic-
programming based ASP-solver. In Tomi Janhunen and Ilkka Niemelä, editors, Pro-
ceedings of JELIA 2010, volume 6341 of LNCS, pages 369–372. Springer, 2010. doi:
10.1007/978-3-642-15675-5_34.

48 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lec-
ture Series in Mathematics and its Applications. Oxford University Press, Oxford, United
Kingdom, 2006. doi:10.1093/acprof:oso/9780198566076.001.0001.

49 Reinhard Pichler, Stefan Rümmele, Stefan Szeider, and Stefan Woltran. Tractable answer-
set programming with weight constraints: Bounded treewidth is not enough. Theory Pract.
Log. Program., 14(2):141–164, 2014. doi:10.1017/S1471068412000099.

50 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Combin.
Theory Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

51 Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1-2):181–234, 2002. doi:10.1016/
S0004-3702(02)00187-X.

52 Mikkel Thorup. All structured programs have small tree-width and good register allocation.
Inform. and Comput., 142(2):159–181, 1998. doi:10.1006/inco.1997.2697.

53 Ismael González Yero and Juan A. Rodríguez-Velázquez. Defensive alliances in graphs: A
survey. CoRR, abs/1308.2096, 2013. URL: http://arxiv.org/abs/1308.2096.

http://dx.doi.org/10.1007/978-3-642-60085-2
http://dx.doi.org/10.1007/978-3-642-15675-5_34
http://dx.doi.org/10.1007/978-3-642-15675-5_34
http://dx.doi.org/10.1093/acprof:oso/9780198566076.001.0001
http://dx.doi.org/10.1017/S1471068412000099
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1006/inco.1997.2697
http://arxiv.org/abs/1308.2096

	Introduction
	Background
	Contributions
	Improvements in the Dynamic Programming Methodology
	Non-Ground ASP Classes that Preserve Bounded Treewidth
	Alliance Problems in Graphs

	Current Status
	Open Issues

