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Abstract
This paper presents pl-cliquer, a Prolog interface to the cliquer tool for the maximum clique
problem. Using pl-cliquer facilitates a programming style that allows logic programs to in-
tegrate with other tools such as: Boolean satisfiability solvers, finite domain constraint solvers,
and graph isomorphism tools. We illustrate this programming style to solve the Graph Coloring
problem, applying a symmetry break that derives from finding a maximum clique in the input
graph. We present an experimentation of the resulting Graph Coloring solver on two bench-
marks, one from the graph coloring community and the other from the examination timetabling
community. The implementation of pl-cliquer consists of two components: A lightweight C in-
terface, connecting cliquer’s C library and Prolog, and a Prolog module which loads the library.
The complete tool is available as a SWI-Prolog module.
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1 Introduction

The maximum clique problem, which is about finding the largest set of pairwise adjacent
vertices in a graph, has been studied extensively both in theory [18, 10, 16, 2, 3, 14, 15, 5, 33]
and in practice [29, 28, 19, 6, 7]. Several tools have been developed recently, which tackle
the maximum clique problem [28, 21, 20, 29]. One of these tools is cliquer [27], which uses
an exact branch-and-bound algorithm in the search for maximum cliques. cliquer consists
of a collection of C routines, which can be compiled to either a standalone executable or a
shared library.
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5:2 Logic Programming with Max-Clique and its Application to Graph Coloring

The maximum clique problem is related to several other well-known graph problems.
The chromatic number of any graph is bound from below by its maximum clique size, and
the chromatic number of perfect graphs is identical to its maximum clique size. The size of
the largest independent set in any graph G is identical to the size of the maximum clique
in the complement graph of G (i.e., the graph in which u and v are adjacent if and only
if they are not adjacent in G). The fast detection of cliques may also assist in the search
for Ramsey graphs, which are characterized by their clique sizes. Further applications of
maximum cliques can be found in bioinformatics (e.g., to infer evolutionary trees [11] and
predict protein structures [32]), and in the analysis of random processes, where maximum
cliques are sought in a dependency graph [13].

Integrating a (maximum) clique finding tool into a Logic Programming tool-chain has
the potential to benefit search when solving hard graph problems. Such a tool can be used,
for example, as a preprocessing step for instances of the graph coloring problem. After
preprocessing, instances are processed by a constraint solver, or a SAT solver to find a
solution. Moreover, using a tool-chain fitted for Prolog leads to new logic programming
styles, such as those presented in [9], which integrates SAT solvers with Prolog, or [12] which
integrates the nauty graph automorphism library with Prolog.

In this paper we demonstrate how a maximum clique tool can be integrated with Prolog,
resulting in a library for SWI-Prolog [34] containing predicates that find maximum cliques in
graphs. Moreover, we demonstrate how this library is integrated with an entire tool-chain
written for Prolog. This tool-chain includes a collection of problem solving tools such as
SAT and CSP solvers (e.g., [9]), finite-domain constraint compilers (e.g., [25, 26]), as well
as a collection of additional symmetry breaking predicates which allow us to detect and
prune equivalent solutions. We also observe that our tool-chain, augmented by cliquer,
is competitive for graph coloring with results reported in the literature, and in some cases
obtains previously unreported solutions.

The rest of this paper is structured as follows. Section 2 introduces the basic definitions
and notations used throughout. Section 3 describes and illustrates the use of the pl-cliquer
interface. Section 4 introduces the graph coloring problem, as well as a graph coloring solver,
which is extended with optimizations based on the identification of a maximum clique. This
example demonstrates how pl-cliquer augments an existing tool-chain. Section 5 defines
the exam timetabling problem, as an application of the graph coloring problem. Sections 4
and 5 also present selected results of an experimentation using the standard graph coloring
and exam timetabling benchmarks. Section 6 contains some technical details on pl-cliquer,
and Section 7 concludes. Appendices A and B present results on the full benchmarks.

2 Preliminaries

A graph G = (V,E) consists of a set of vertices V = [n] =
{

1, . . . , n
}
and a set of edges

E ⊆ V ×V . In the context of the tools that we present in this paper, it is natural to consider
only simple graphs. Meaning, we assume that graphs are undirected, and there are no self
loops or multiple edges. The degree of a vertex v ∈ V is denoted by deg(v) and it is equal
to the number of neighbors v has. The maximum degree of a graph G = (V,E) is denoted
∆(G) and it is equal to the maximum over all vertex degrees. In this paper we represent
graphs as Boolean adjacency matrices, a list of N length-N lists. We also make use of the
DIMACS file format for graph representation, which contains the line e i j for every edge
(i, j) of the graph, such that i < j.

A function w : V → N \ {0}, which assigns positive weights to the vertices of the graph is
called a positive weight function. As an abuse of notation, we denote the weight of a set of



M. Codish, M. Frank, A. Metodi, and M. Muslimany 5:3

vertices U ⊆ V by w(U) =
∑
u∈U w(u). For the sake of simplicity, throughout this paper,

we assume that vertex weights are 1, thereby identifying the weight of U with its size.
A clique C ⊆ V of G = (V,E) is a set of vertices that are pairwise connected, meaning

that if u, v ∈ C then (u, v) ∈ E. If |C| = k we call C a k-clique. The clique number of a
graph G is denoted ω(G) and is the number of vertices in a largest clique of G. A clique
C ⊆ V such that |C| = ω(G) is called a maximum clique. The max-clique problem is about
finding a maximum clique in a given graph G. The max-weighted-clique problem is about
finding a clique C ⊆ V such that the weight of C is maximal. The max-clique problem is
known to be NP-Hard [18].

A vertex k-coloring of a graph G = (V,E), for k ∈ N, is a mapping c : V → [k]
([k] =

{
1, . . . , k

}
) such that (u, v) ∈ E implies that c(u) 6= c(v). The chromatic number of

a graph G is denoted χ(G) and it is the smallest number k such that the vertices of G are
k-colorable. The graph coloring problem is about finding a k-coloring of a given graph G.
The minimum graph coloring problem is about finding a k-coloring of a given graph G such
that k = χ(G). The graph coloring problem is known to be NP-Complete, and the minimum
graph coloring problem is NP-Hard [18].

3 Interfacing Prolog with cliquer’s C library

The pl-cliquer interface is implemented using the foreign language interface of SWI-
Prolog [34]. The C library of cliquer is linked against corresponding C code written for
Prolog, which contains the low-level Prolog predicates connecting cliquer with Prolog.
These low-level predicates are wrapped by a Prolog module, which extends their functionality
and provides five high-level predicates. The five high-level predicates, available through the
module are:
1. graph_read_dimacs_file/5
2. clique_find_single/4
3. clique_find_multi/5
4. clique_find_n_sols/6
5. clique_print_all/6

In the following we describe these in more detail and present several usage examples.

3.1 The clique_read_dimacs_file/5 predicate
The call graph_read_dimacs_file(DIMACS, NVert, Weights, Matrix, Options) applies
to convert a graph represented in the standard DIMACS format to a Prolog representation
as a Boolean adjacency matrix (list of lists). Figure 1 illustrates an example graph with
seven vertices, its DIMACS representation, and its corresponding adjacency matrix. If the
DIMACS representation resides in the file example.dimacs then the following call:

?- graph_read_dimacs_file(’example.dimacs’, NVert, Weights, Matrix, []).
Matrix = [[0,1,1,1,1,0,0],

[1,0,1,1,0,0,1],
[1,1,0,1,0,1,0],
[1,1,1,0,0,1,0],
[1,0,0,0,0,1,0],
[0,0,1,1,1,0,0],
[0,1,0,0,0,0,0]],

NVert = 7,
Weights = [1,1,1,1,1,1,1]

ICLP 2017 TCs
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1 2
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p edge 7 11
e 1 2
e 1 3
e 1 4
e 1 5
e 2 3
e 2 4
e 2 7
e 3 4
e 3 6
e 4 6
e 5 6

[[0,1,1,1,1,0,0],
[1,0,1,1,0,0,1],
[1,1,0,1,0,1,0],
[1,1,1,0,0,1,0],
[1,0,0,0,0,1,0],
[0,0,1,1,1,0,0],
[0,1,0,0,0,0,0]]

Figure 1 An example graph (left), its DIMACS representation (middle), and corresponding
adjacency matrix (right).

will bind (as indicated) the variable Matrix to the matrix depicted also on the right of
Figure 1, the variable NVert to the number of vertices in the graph, i.e., 7, and the variable
Weights to a list of ones (since the vertices of this graph are without weights). The last
argument (an empty list in the example) specifies a list of options which may contain the
options edge(Value) and non_edge(Non). These respectively determine the symbols used
to represent edges and non-edges in the adjacency matrix Matrix. The empty list indicates
default settings. By default, edges are represented by the symbol 1 and non-edges by the
symbol 0.

3.2 The clique_find_single/4 predicate

The clique_find_single/4 predicate provides an interface to the cliquer routine by the
same name. It finds a single clique in the input graph. The predicate takes the form
clique_find_single(NVert, Graph, Clique, Options). The first argument indicates
the number of vertices in the graph, the second argument is an adjacency matrix representing
the graph, and the third argument is the output clique. The last argument is a list of options
which fine-tune the behavior of pl-cliquer, constraining the size and weight of the sought
after clique.

Options may include min_weight(Min) and max_weight(Max) limiting the clique weight
to be between Min and Max. In order to obtain a maximum clique (which is the default beha-
vior) both Min and Max should be 0. Other options are maximal(Maximal), where Maximal is a
Boolean specifying whether only maximal cliques should be found, static_ordering(Order)
where Order is a permutation of

{
1 . . . n

}
specifying the order in which the n vertices

of the graph are backtracked over by cliquer’s algorithm. The option weights(Weights)
specifies a list of n Weights associated with the n vertices of the graph (by default all weights
are 1). The empty list indicates default settings.

For example, calling clique_find_single(NVert, Graph, Clique, Options) with the
graph from Figure 1, unifies Clique with the vertices [1,2,3,4], which are easily verified as
the maximum clique. Notice that during the runtime of cliquer additional information is
printed to screen, which indicates the current workload and the maximal clique found so far.
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?- Graph = [[0,1,1,1,1,0,0], [1,0,1,1,0,0,1] | ... ],
clique_find_single(7, Graph, Clique, []).

2/7 (max 1) 0.00 s (0.00 s/round)
4/7 (max 2) 0.00 s (0.00 s/round)
5/7 (max 3) 0.00 s (0.00 s/round)
7/7 (max 4) 0.00 s (0.00 s/round)
size=4 (max 7) 0 1 2 3

Graph = [[0, 1, 1, 1, 1, 0, 0] | ... ],
Clique = [1, 2, 3, 4].

3.3 The clique_find_n_sols/6 predicate

The call clique_find_n_sols(MaxSols, NVert, Graph, Sols, Total, Opts) allows to
find several cliques in the input graph. The first argument, MaxSols, indicates the maximal
number of cliques to be found. The second argument NVert indicates the number of vertices
in the graph, and third argument is an adjacency matrix representing the graph. The fourth
argument Sols, is unified with the cliques that are found in the graph, and the fifth argument
is unified with the number of cliques found. The last argument is the option list, which is
identical to the one for clique_find_single/4.

For example, calling clique_find_n_sols/6, with the graph from Figure 1, with options
indicating that at most ten cliques of weight 3 and 4 should be found, also indicating these
cliques may not be maximal – returns a result that implies that six such cliques exist, five
cliques of weight 3 and one clique of weight 4, and they are: [[1, 2, 3], [2, 3, 4], [1,
2, 3, 4], [1, 3, 4], [1, 2, 4], [3, 4, 6]].

?- Graph = [[0,1,1,1,1,0,0], [1,0,1,1,0,0,1] | ... ],
NVert = 7, MaxSols = 10,
Options = [min_weight(3), max_weight(4), maximal(false)],
clique_find_n_sols(MaxSols, NVert, Graph, Sols, Total, Options).

Graph = [[0, 1, 1, 1, 1, 0, 0] | ... ],
Sols = [[1, 2, 3], [2, 3, 4], [1, 2, 3, 4], [1, 3, 4], [1, 2, 4], [3, 4, 6]],
Total = 6.

3.4 The clique_find_multi/5 predicate

The clique_find_multi/5 is similar in nature to clique_find_n_sols/6, except that
it backtracks over the cliques that are found instead of collecting them in a list. This
predicate takes the form clique_find_multi(MaxSols, NVert, Graph, Sol, Opts), with
parameters identical in description to those of clique_find_n_sols/6 except that Sol will
be unified with a single clique, which will change upon backtracking.

For example, calling clique_find_multi/5, with the graph from Figure 1, and options
indicating that at most three cliques with weights between 3 and 4 should be found, such
that these cliques may not be maximal – the call returns a result that implies that at least
three such cliques exist: two cliques of weight 3 and one clique of weight 4, and they are: [1,
2, 3], [2, 3, 4] and [1, 2, 3, 4].

ICLP 2017 TCs



5:6 Logic Programming with Max-Clique and its Application to Graph Coloring

?- Graph = [[0,1,1,1,1,0,0], [1,0,1,1,0,0,1] | ... ],
NVert = 7, MaxSols = 3,
Options = [min_weight(3), max_weight(4), maximal(false)],
clique_find_multi(MaxSols, NVert, Graph, Sol, Total, Options).

Graph = [[0, 1, 1, 1, 1, 0, 0] | ... ],
Sol = [1, 2, 3] ;
Sol = [2, 3, 4] ;
Sol = [1, 2, 3, 4] ;
false.

3.5 The clique_print_all/6 predicate
The clique_print_all/6 predicate is primarily intended for debugging and exploring, and it
will print all the cliques of a graph which comply to certain constraints. The predicate takes
the form clique_print_all(NVert, Min, Max, Maximal, Graph, Total). For example,
the following call to clique_print_all/6 will print all of the cliques in the example graph
of Figure 1, which contain at least two vertices and at most three vertices, and unify Total
with the total number of lines printed.

?- NVert = 7, Min = 2, Max = 3, Maximal = false,
Graph = [[0,1,1,1,1,0,0],

[1,0,1,1,0,0,1],
[1,1,0,1,0,1,0],
[1,1,1,0,0,1,0],
[1,0,0,0,0,1,0],
[0,0,1,1,1,0,0],
[0,1,0,0,0,0,0]],

clique_print_all(NVert, Min, Max, Maximal, Graph, Total).
[1, 2]
[2, 3]
[1, 2, 3]
[1, 3]
[3, 4]
[2, 3, 4]
[1, 3, 4]
[2, 4]
[1, 2, 4]
[1, 4]
[1, 5]
[5, 6]
[4, 6]
[3, 4, 6]
[3, 6]
[2, 7]
Total = 16.

The predicate clique_print_all/6 does not print out the graph, or the edge list. This
is because in many cases, the graph is very large, and printing these details provides no
constructive effect. Moreover, while the list of edges is available to cliquer when parsing
the graph, it is not available to the interface of pl-cliquer. Nevertheless, one may extract
a list of graph edges using an auxiliary predicate included with the pl-cliquer source code.
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4 Solving the Graph Coloring Problem

The graph coloring problem has been studied vigorously, for both theoretical and practical
purposes. Some of the real world applications of the graph coloring problem include:
timetabling problems (e.g., [22]), frequency assignment (e.g., [1]) and register allocation
(e.g., [8]). We demonstrate, using a logic program tool-chain augmented by pl-cliquer,
a solution for the graph (vertex) coloring problem, with an application for the minimum
examination timetabling schedule problem. We demonstrate how pl-cliquer integrates
with an existing tool-chain, all specified as part of the Prolog programming process. We
compare our graph coloring application to previous work using to two standard benchmark
sets [7, 17], one from the graph coloring community, and the other from the exam timetabling
community.

In the graph coloring problem we are given a graph G = ([n], E) and a natural number
k > 0, and we seek a labeling c : [n] → [k] of the graph vertices such that (i, j) ∈ E =⇒
c(i) 6= c(j). In the minimum graph coloring problem, we seek the smallest k for which such a
labeling exists. Both the graph coloring problem and the minimum graph coloring problem
are known to be NP-Hard [18].

In practical scenarios, solving the graph coloring problem has often involved formulating
it as an integer linear program [4] or as a constraint model [31]. We solve the graph coloring
problem by modeling it using a constraint language and then applying the finite-domain
constraint compiler BEE [25, 26], which stands for Ben-Gurion University Equi-propagation
Encoder (written in Prolog), to encode it to an instance of Boolean satisfiability which is then
solved using an underlying SAT solver (through its Prolog interface [9]). In the configuration
for this paper we use CryptoMiniSAT v2.5.1 as the underlying SAT solver.

When describing our approach we distinguish between the constraint model for the
decision problem: given a graph G and a number k — does there exist a vertex coloring with
at most k colors? and the optimization problem — given a graph G what is the smallest
number k for which there exists a vertex coloring with at most k colors? To model the
optimization problem we apply the minimization option of the BEE solver which incrementally
refines the number k for which the corresponding decision problem has a solution. The
remainder of this section focuses on implementing the graph coloring decision problem, on
which we later perform the minimization.

4.1 The Constraint Model for Graph Coloring
The basic constraint model is straightforward: for a graph G = (V,E) and a given number
(of colors) k, each vertex u ∈ V is affiliated with a finite domain integer variable Iv taking
a value in the range [1, . . . , k] representing its color. For each edge (u, v) ∈ E, a constraint
Iu 6= Iv is added to the model, forcing distinct colors between adjacent vertices.

The following graphColoring/3 predicate lists the high level Prolog code which imple-
ments this encoding for the graph coloring problem. Given a Boolean adjacency matrix
M for a graph with N vertices, we represent a coloring of that graph as a list of N values,
such that the value in position I of the list is the color of vertex I. The graphColoring/3
predicate takes the following form: graphColoring(Graph, KColors, Coloring). The first
parameter is the adjacency matrix for the graph to be colored, the second parameter is the
number of colors, and the last parameter will be unified with the coloring.

The call in the first line of the definition of graphColoring/3 generates a constraint
model that is satisfiable if and only if Graph has a coloring with KColors colors. It also
generates a Map which relates the integer variables (the colors per vertex) with their Boolean

ICLP 2017 TCs
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% Initial Coloring % Different Colors
[A,B,C,D,E,F,G] int_neq(A,B)

int_neq(A,C)
% Coloring Declaration int_neq(A,D)
new_int(A,1,5) int_neq(A,E)
new_int(B,1,5) int_neq(B,C)
new_int(C,1,5) int_neq(B,D)
new_int(D,1,5) int_neq(B,G)
new_int(E,1,5) int_neq(C,D)
new_int(F,1,5) int_neq(C,F)
new_int(G,1,5) int_neq(D,F)

int_neq(E,F)

Figure 2 Example of the constraint model for the graph in Figure 1.

(bit-blasted) representation. The second line is a call to BEE which compiles the constraint
model to CNF, and the third line contains a call to the underlying SAT solver. The last
line of graphColoring/3 translates the coloring from BEE’s (bit-blasted) representation of
integers to that of Prolog.

graphColoring(Graph, KColors, Coloring) :-
encode(coloring(Graph, KColors), Map, Constr),
bCompile(Constr, CNF),
sat(CNF),
decode(Map, Coloring).

As an example, consider the graph in Figure 1. A call to graphColoring(Graph, 5,
Coloring) would result in finding a coloring of that graph with 5 colors, and unifying
Coloring with it. The first line of graphColoring/3 will generate the constraint model, the
second and third lines will compile and solve it. Figure 2 illustrates the constraint model
for the example graph in Figure 1. The left column details the initial (unknown) coloring
generated by the encoding process, as well as the variable declarations, and the right column
lists the constraints forbidding adjacent vertices from having the same color. After solving
the problem, in line 4 of graphColoring/3 the coloring is translated back to Prolog values,
and Coloring is unified with [1,2,3,4,5,1,3], for example.

4.2 Throwing pl-cliquer into the mix
It is often the case that fast detection and iteration of cliques can be used to simplify and
break symmetries in graph related problems [33, 6, 24]. In the case of graph coloring, when
coloring the graph G = (V,E), a clique C ⊆ V must correspond to a set of vertices which
are labeled by different colors, since C contains a set of mutually adjacent vertices. Given
a clique C ⊆ V of the graph, it is possible to arbitrarily label the vertices of C with |C|
different colors, thereby breaking symmetries and establishing a lower bound on χ(G).

The following graphColoring/3 predicate is augmented with a preprocessing step which
applies pl-cliquer in order to find a maximum clique of the input graph. This clique is
passed to the encoder, to be used by it during the generation of the constraint model. The
first and second lines of the predicate find a maximum clique in Graph and unify it with
MaxClique. The remaining lines of code follow the same outline as in graphColoring/3
described in Section 4.1, with the exception that MaxClique is taken into account as part of
the encoding process.
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% Partial Coloring % Different Colors
[1,2,3,4,E,F,G] int_neq(1,E)

int_neq(2,G)
% Coloring Declaration int_neq(3,F)
new_int(E,1,5) int_neq(4,F)
new_int(F,1,5) int_neq(E,F)
new_int(G,1,5)

Figure 3 Example of the constraint model for the graph in Figure 1 with a partial coloring.

graphColoring(Graph, KColors, Coloring) :-
length(Graph, NVert),
clique_find_single(NVert, Graph, MaxClique, []),
encode(coloring(Graph, KColors, MaxClique), Map, Constr),
bCompile(Constr, CNF),
sat(CNF),
decode(Map, Coloring).

The encoding process initially assigns colors { 1, . . . , |MaxClique| } to the vertices of
MaxClique. The remaining vertices are associated with finite-domain variables taking values
between { 1, . . . , KColor }, representing their color. Finally, constraints are added which
prevent adjacent vertices from sharing a color.

As an example, consider the graph in Figure 1. A call to the augmented predicate
graphColoring(Graph, 5, Coloring) would result in finding a coloring of that graph with
5 colors, and unifying Coloring with it. The first line of graphColoring/3 determines the
number of vertices in the graph. The second line of graphColoring/3 finds a maximum
clique and unifies MaxClique with a list of its vertices. For example, given the graph in
Figure 1, the solver might unify MaxClique with [1,2,3,4]. The third line generates the
constraint model, and the fourth line compiles the constraint model to CNF. The fifth line
calls a SAT solver and the sixth line translates the result to Prolog values, resulting in either
a coloring for the graph, or an unsatisfiable result, implying the graph can not be colored
by KColor colors. Notice that since the maximum clique is known, the encoding process
may introduce a partial coloring of the graph, which substantially reduces the constraint
model, because constraints involving clique vertices may now be omitted. Figure 3 illustrates
the constraint model for the example graph in Figure 1. The left column details the partial
coloring generated by the encoding process, as well as the variable declarations, and the right
column lists the constraints forbidding adjacent vertices from having the same color.

4.3 Additional Optimizations & Results
In this section we mention additional optimizations that can be made, when solving the
graph coloring problem, given that the maximum clique of the graph is known. So far, the
graph coloring solver is composed of: (1) a preprocessing step which embeds the colors of a
maximum clique, and (2) a constraint model which is translated to CNF and solved by a SAT
solver. In addition to (1) and (2), we have also implemented, as a secondary preprocessing
step, the optimizations discussed in [23]. These optimizations reduce symmetries, as well as
the instance size leading to an improved constraint model. Once solved, the improved model
is passed through a postprocessing step, also described in [23] in order to obtain the final
coloring. For the sake of brevity, we refer the interested reader to the relevant paper [23] for
a complete description of the optimizations. We tested this method on the DIMACS coloring
instances, which were introduced in the Second DIMACS Implementation Challenge [17].

ICLP 2017 TCs
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Table 1 Satisfiable Dimacs Instances Results.

with cliquer without cliquer
Instance k time status time status
anna.col 11 0.02 sat(BEE) 0.06 sat
david.col 11 0.02 sat(BEE) 0.05 sat

DSJC125.1.col 5 0.06 sat 0.03 sat
DSJR500.1.col 12 0.07 sat 0.31 sat
DSJR500.5.col 122 4661.28 memory ∞ memory
fpsol2.i.1.col 65 0.03 sat(BEE) 4.13 sat
fpsol2.i.2.col 30 0.07 sat 1.31 sat
fpsol2.i.3.col 30 0.07 sat 1.31 sat
games120.col 9 0.05 sat 0.07 sat

huck.col 11 0.02 sat(BEE) 0.04 sat
inithx.i.1.col 54 0.12 sat 4.38 sat
inithx.i.2.col 31 0.3 sat 2.03 sat
inithx.i.3.col 31 0.33 sat 2.2 sat

jean.col 10 0.02 sat(BEE) 0.03 sat
le450_15a.col 15 1.6 sat 0.78 sat
le450_15b.col 15 0.76 sat 0.68 sat
le450_25a.col 25 0.57 sat 1.12 sat
le450_25b.col 25 0.7 sat 1.13 sat
le450_5a.col 5 0.18 sat 0.22 sat
le450_5b.col 5 0.18 sat 0.23 sat
le450_5c.col 5 0.26 sat 0.36 sat
le450_5d.col 5 0.27 sat 0.34 sat
miles1000.col 42 0.02 sat(BEE) 1.29 sat
miles1500.col 73 0.02 sat(BEE) 3.83 sat
miles250.col 8 0.02 sat(BEE) 0.04 sat
miles500.col 20 0.02 sat(BEE) 0.23 sat
miles750.col 31 0.03 sat 0.69 sat
mulsol.i.1.col 49 0.02 sat(BEE) 0.98 sat
mulsol.i.2.col 31 0.13 sat 0.62 sat
mulsol.i.3.col 31 0.13 sat 0.64 sat
mulsol.i.4.col 31 0.14 sat 0.64 sat
mulsol.i.5.col 31 0.14 sat 0.63 sat
myciel3.col 4 0.03 sat 0.01 sat
myciel4.col 5 0.03 sat 0.01 sat
myciel5.col 6 0.03 sat 0.01 sat
myciel6.col 7 0.04 sat 0.04 sat
myciel7.col 8 0.09 sat 0.11 sat

queen5_5.col 5 0.03 sat 0.01 sat
queen6_6.col 7 0.03 sat 0.04 sat
queen7_7.col 7 0.04 sat 0.04 sat
queen8_12.col 12 0.1 sat 0.15 sat
queen8_8.col 9 0.92 sat 0.24 sat
queen9_9.col 10 6.98 sat 14.42 sat

queen10_10.col 11 21638.0 sat 2168.42 sat
school1.col 14 66.91 sat 1.34 sat

school1_nsh.col 14 27.08 sat 1.06 sat
zeroin.i.1.col 49 0.02 sat(BEE) 1.05 sat
zeroin.i.2.col 30 0.03 sat 0.56 sat
zeroin.i.3.col 30 0.03 sat 0.56 sat

Selected results for this set of benchmarks are given in Tables 1 and 2, a more complete set
of results can be found in (B).

Table 1 compares solving times for the satisfiable instances of the DIMACS benchmarks
with and without our augmented tool-chain. Table 2 similarly compares the solving times of
the unsatisfiable instances. Both tables share the same structure: the first column lists the
instance name and the second column lists the coloring size we seek. In Table 1 these values
k correspond to the best known colorings described in the literature [23, 24]. In Table 2
these correspond to corresponding values k − 1, the largest values for which there does not
exist a coloring. The third and fifth columns detail the solving times with and without
our augmented tool-chain, and the fourth and sixth columns detail the means by which
the instance was solved. The means by which an instance was solved may be one of the
following: (a) sat(BEE) – which means that BEE solved the constraints without calling the
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Table 2 Unsatisfiable Dimacs Instances Results.

with cliquer without cliquer
Instance k time status time status
anna.col 10 0.01 unsat(cliquer) 1.63 unsat
david.col 10 0.01 unsat(cliquer) 0.79 unsat

DSJC125.1.col 4 0.03 unsat(BEE) 0.03 unsat
DSJR500.1.col 11 0.02 unsat(cliquer) 4.79 unsat
DSJR500.5.col 121 4597.34 unsat(cliquer) ∞ memory
fpsol2.i.1.col 64 0.02 unsat(cliquer) ∞ timeout
fpsol2.i.2.col 29 0.02 unsat(cliquer) ∞ timeout
fpsol2.i.3.col 29 0.02 unsat(cliquer) ∞ timeout
games120.col 8 0.01 unsat(cliquer) 0.82 unsat

huck.col 10 0.01 unsat(cliquer) 0.52 unsat
inithx.i.1.col 53 0.05 unsat(cliquer) ∞ timeout
inithx.i.2.col 30 0.05 unsat(cliquer) ∞ timeout
inithx.i.3.col 30 0.05 unsat(cliquer) ∞ timeout

jean.col 9 0.01 unsat(cliquer) 0.29 unsat
le450_15a.col 14 0.02 unsat(cliquer) 535.52 unsat
le450_15b.col 14 0.02 unsat(cliquer) 432.15 unsat
le450_25a.col 24 0.02 unsat(cliquer) ∞ timeout
le450_25b.col 24 0.02 unsat(cliquer) ∞ timeout
le450_5a.col 4 0.01 unsat(cliquer) 0.18 unsat
le450_5b.col 4 0.01 unsat(cliquer) 0.18 unsat
le450_5c.col 4 0.01 unsat(cliquer) 0.3 unsat
le450_5d.col 4 0.01 unsat(cliquer) 0.32 unsat
miles1000.col 41 0.01 unsat(cliquer) ∞ timeout
miles1500.col 72 0.01 unsat(cliquer) ∞ timeout
miles250.col 7 0.01 unsat(cliquer) 0.1 unsat
miles500.col 19 0.01 unsat(cliquer) ∞ timeout
miles750.col 30 0.01 unsat(cliquer) ∞ timeout
mulsol.i.1.col 48 0.01 unsat(cliquer) ∞ timeout
mulsol.i.2.col 30 0.01 unsat(cliquer) ∞ timeout
mulsol.i.3.col 30 0.01 unsat(cliquer) ∞ timeout
mulsol.i.4.col 30 0.01 unsat(cliquer) ∞ timeout
mulsol.i.5.col 30 0.01 unsat(cliquer) ∞ timeout
myciel3.col 3 0.03 unsat 0.01 unsat
myciel4.col 4 0.03 unsat 0.03 unsat
myciel5.col 5 0.87 unsat 109.25 unsat
myciel6.col 6 22970.5 unsat ∞ timeout
myciel7.col 7 ∞ timeout ∞ timeout

queen5_5.col 4 0.01 unsat(cliquer) 0.01 unsat
queen6_6.col 6 0.03 unsat 1.68 unsat
queen7_7.col 6 0.01 unsat(cliquer) 0.04 unsat
queen8_12.col 11 0.01 unsat(cliquer) 9.09 unsat
queen8_8.col 8 15.93 unsat ∞ timeout
queen9_9.col 9 2295.93 unsat ∞ timeout
queen10_10.col 10 ∞ timeout ∞ timeout

school1.col 13 66.39 unsat(cliquer) 592.95 unsat
school1_nsh.col 13 26.6 unsat(cliquer) 793.89 unsat
zeroin.i.1.col 48 0.01 unsat(cliquer) ∞ timeout
zeroin.i.2.col 29 0.01 unsat(cliquer) ∞ timeout
zeroin.i.3.col 29 0.01 unsat(cliquer) ∞ timeout

SAT solver, or (b) sat – which means that the SAT solver was called, or (c) unsat – which
means the SAT solver was called and returned with an unsatisfiable result, or (d) unsat(BEE)
– meaning that the BEE constraint compiler determined during its compilation stages that
the instance is unsatisfiable, or (e) unsat(cliquer) – meaning that cliquer determined that
the instance is unsatisfiable, or (f) memory – meaning that the computer ran out of memory
while solving this instance, or (g) timeout – meaning that the computation for this instance
did not terminate within 24 hours. All times are listed in seconds.

Table 1 illustrates that little improvement is gained from using cliquer when solving
satisfiable instances with k = χ(G). In fact, solving times substantially increase for three
satisfiable instances when cliquer is applied as part of a preprocessing step. Table 2
illustrates that when cliquer is incorporated to solve unsatisfiable instances where k =

ICLP 2017 TCs
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Table 3 Satisfiable Toronto Instances Results.

with cliquer without cliquer
Instance k (lit) time status time status
hec-s-92 17 (17) 0.08 sat 0.17 sat
sta-f-83 13 (13) 0.03 sat 0.15 sat
yor-f-83 18 (19) 0.46 sat 0.93 sat
ute-s-92 10 (10) 0.16 sat 0.13 sat
ear-f-83 22 (22) 0.3 sat 0.62 sat
tre-s-92 20 (20) 0.51 sat 1.023 sat
lse-f-91 17 (17) 0.13 sat 0.62 sat
kfu-s-93 19 (19) 0.4 sat 0.98 sat
rye-s-93 21 (21) 0.61 sat 1.67 sat
car-f-92 27 (28) 2.08 sat 6.95 sat
uta-s-92 29 (30) 3.7 sat 4.45 sat
car-s-91 27 (27) 1580.47 sat ∞ timeout
pur-s-93 31 (36) 6.71 sat 32.03 sat

χ(G)−1, solving times are considerably improved, often making the difference between being
able to determine a result or not.

5 Exam Timetabling: An Application of Graph Coloring

The examination timetabling problem is about scheduling exams to a set of sequential
timeslots, in such a way that conflicting exams are not scheduled to the same timeslot. An
instance of the examination timetabling problem specifies n, the total number of exams,
a set D ⊆ [n] × [n] of conflicting exams, in such a way that conflicts are symmetric
(i.e., (i, j) ∈ D ⇐⇒ (j, i) ∈ D), as well as a number of timeslots, m. We seek to
find a legal schedule of size m, which is a tuple S = 〈t1, . . . , tn〉 describing a mapping from
exams to timeslots such that ti is the timeslot of exam i. Each timeslot takes a value in
the set

{
1, . . . ,m

}
, and for every pair of conflicting exams i and j — the exams are not

scheduled to the same timeslot (i.e., ti 6= tj).
The examination timetabling problem is reducible to the graph coloring problem by

considering the conflict graph derived from the problem instance. This is the graph with
vertices corresponding to courses and edges induced by the constraint set D such that (i, j)
is an edge of the graph if and only if (i, j) ∈ D. If the graph is m-colorable, then the coloring
can be taken to be a legal schedule of size m.

In the minimum examination timetabling problem, we seek the minimum m for which
there exists a legal schedule. The minimum examination timetabling problem is equivalently
reducible to the minimum graph-coloring problem.

We tested our approach on the Toronto timetabling instances, which were introduced
by Carter et al., [7]. Selected results for this set of benchmarks are given in Tables 3
and 4, the complete set of results can be found in Appendix A Table 3 lists instances for
which satisfiable results were found, illustrating the coloring size that was found using our
augmented tool-chain. The table follows the same description as that of Table 1, except
that the second column lists the optimal coloring size we found as well as the best known
coloring we found in literature [30]. Table 4 lists the corresponding unsatisfiable instances
which prove that the colorings found in Table 3 are optimal. The columns of this table follow
the same description as those of Table 2.

Table 3 illustrates the improvement gained by using cliquer when solving satisfiable
instances. The table lists four instances for which the best known colorings are improved, while
colorings for the remaining instances match the best known results from literature. Moreover,
Table 4 illustrates that when cliquer is incorporated to solve unsatisfiable instances, solving
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Table 4 Unsatisfiable Toronto Instances Results.

with cliquer without cliquer
Instance k (lit) time status time status
hec-s-92 16 0.01 unsat(cliquer) 3736.02 unsat
sta-f-83 12 0.01 unsat(cliquer) 25.43 unsat
yor-f-83 17 0.01 unsat(cliquer) ∞ timeout
ute-s-92 9 0.1 unsat(cliquer) 0.65 unsat
ear-f-83 21 0.24 unsat ∞ timeout
tre-s-92 19 0.01 unsat(cliquer) ∞ timeout
lse-f-91 16 0.01 unsat(cliquer) 3718.11 unsat
kfu-s-93 18 0.02 unsat(cliquer) ∞ timeout
rye-s-93 20 0.03 unsat(cliquer) ∞ timeout
car-f-92 26 50.2 unsat ∞ timeout
car-s-91 26 ∞ timeout ∞ timeout
uta-s-92 28 8.18 unsat ∞ timeout
pur-s-93 30 4.71 unsat ∞ timeout

times are considerably improved, often making the difference between solvable and unsolvable
instances. Also notice that, to the best of our knowledge, the chromatic numbers of Toronto
instances were not previously reported in the literature [30].

6 Technical Details

The package containing pl-cliquer is available for download from the pl-cliquer homepage
at: https://www.cs.bgu.ac.il/~frankm/plcliquer/. The package contains a README file,
which contains usage and installation instructions, as well as an examples directory containing
the examples discussed in this paper. The C code for pl-cliquer may be found in the src
directory. Also in the src directory are the module files for pl-cliquer.

pl-cliquer was compiled and tested on Debian Linux and Ubuntu Linux using the 7.x.x
branch of SWI-Prolog. Note that pl-cliquer should compile and run on any architecture
where cliquer will compile and run.

7 Conclusions

We have presented, and made available, a Prolog interface to the core components of the
cliquer clique-finding tool [27]. The principle contribution of this paper is in the utility of
the tool which we expect to be widely used. The tool provides a “drop in” clique finding
utility, through which Prolog programs which address graph related problems may apply
cliquer natively, through Prolog, as part of the solving process. Cliques may be generated,
subject to programmer selected constraints on size, maximality etc., and may be generated
deterministically or non-deterministically. Additionally, we illustrate in Prolog the standard
approach to implement a graph coloring solver. The experiments we report on indicate that
our tool-chain, augmented with pl-cliquer, is on par with results reported in the literature
[30, 23, 24].
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A Toronto Instances

Tables 5 and 6 describe in more detail the results obtained for satisfiable and unsatisfiable
instances of the Toronto benchmarks respectively. The first column lists the instance name,
the second column lists the best coloring found as well as the previously best known coloring
from literature [30], the third column lists the time it took cliquer to find a maximum
clique in the graph, the fourth column lists the time it took BEE to compile the constraints to
CNF, The fifth and sixth column detail the size of the CNF in terms of clauses and number
of variables, the seventh column lists the time it took the SAT solver to obtain a result, and
the last column detail the reason for that result. The values in column seven are the same as
the status column of Table 1.
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Table 5 Satisfiable Toronto Instances Results.

Instance k (lit) cliquer BEE #clauses #vars sat Status
hec-s-92 17 (17) 0.01 0.05 6601 590 0.02 sat
sta-f-83 13 (13) 0.01 0.01 735 175 0.01 sat
yor-f-83 18 (19) 0.01 0.37 37569 1812 0.08 sat
ute-s-92 10 (10) 0.1 0.04 9100 770 0.02 sat
ear-f-83 22 (22) 0.01 0.22 23159 1639 0.07 sat
tre-s-92 20 (20) 0.01 0.36 55756 2881 0.14 sat
lse-f-91 17 (17) 0.01 0.1 17478 1418 0.02 sat
kfu-s-93 19 (19) 0.02 0.23 48300 2807 0.15 sat
rye-s-93 21 (21) 0.03 0.42 69838 4160 0.16 sat
car-f-92 27 (28) 0.2 1.15 179749 7634 0.73 sat
uta-s-92 29 (30) 0.1 2.1 338007 11490 1.5 sat
car-s-91 27 (27) 0.06 1.93 407155 12672 1578.48 sat
pur-s-93 31 (36) 0.5 2.85 1098306 39613 3.36 sat

Table 6 Unsatisfiable Toronto Instances Results.

Instance k cliquer BEE #clauses #vars sat Status
hec-s-92 16 0.01 − − − − unsat(cliquer)
sta-f-83 12 0.01 − − − − unsat(cliquer)
yor-f-83 17 0.01 − − − − unsat(cliquer)
ute-s-92 9 0.1 − − − − unsat(cliquer)
ear-f-83 21 0.01 0.2 13841 1210 0.03 unsat
tre-s-92 19 0.01 − − − − unsat(cliquer)
lse-f-91 16 0.01 − − − − unsat(cliquer)
kfu-s-93 18 0.02 − − − − unsat(cliquer)
rye-s-93 20 0.03 − − − − unsat(cliquer)
car-f-92 26 0.2 1.12 159981 7138 48.88 unsat
car-s-91 26 0.06 1.09 373479 12053 ∞ timeout
uta-s-92 28 0.1 1.5 310668 10933 6.58 unsat
pur-s-93 30 0.5 2.77 1005456 37849 1.44 unsat

B Dimacs Instances

Tables 7 and 8 describe in more detail the results obtained for satisfiable and unsatisfiable
instances of the DIMACS benchmarks respectively. The tables description follows the
description of Tables 5 and 6.
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Table 7 Satisfiable Dimacs Instances Results.

Instance k cliquer BEE #clauses #vars sat Status
anna.col 11 0.01 0.01 − − − sat(BEE)
david.col 11 0.01 0.01 − − − sat(BEE)
DSJC125.1.col 5 0.01 0.02 4017 553 0.03 sat
DSJR500.1.col 12 0.02 0.02 14928 1209 0.03 sat
DSJR500.5.col 122 4661.28 − − − − memory
fpsol2.i.1.col 65 0.02 0.01 − − − sat(BEE)
fpsol2.i.2.col 30 0.02 0.04 9654 894 0.01 sat
fpsol2.i.3.col 30 0.02 0.04 9654 894 0.01 sat
games120.col 9 0.01 0.03 8820 1051 0.01 sat
huck.col 11 0.01 0.01 − − − sat(BEE)
inithx.i.1.col 54 0.05 0.05 17248 1192 0.02 sat
inithx.i.2.col 31 0.05 0.13 103315 3705 0.12 sat
inithx.i.3.col 31 0.05 0.15 103315 3705 0.13 sat
jean.col 10 0.01 0.01 − − − sat(BEE)
le450_15a.col 15 0.02 0.34 127561 6102 1.24 sat
le450_15b.col 15 0.02 0.32 117393 5879 0.42 sat
le450_25a.col 25 0.02 0.33 155049 6290 0.22 sat
le450_25b.col 25 0.02 0.34 190394 7420 0.33 sat
le450_5a.col 5 0.01 0.12 29092 2088 0.05 sat
le450_5b.col 5 0.01 0.11 30023 2117 0.06 sat
le450_5c.col 5 0.01 0.19 42630 1992 0.06 sat
le450_5d.col 5 0.01 0.19 44927 2051 0.07 sat
miles1000.col 42 0.01 0.01 − − − sat(BEE)
miles1500.col 73 0.01 0.01 − − − sat(BEE)
miles250.col 8 0.01 0.01 − − − sat(BEE)
miles500.col 20 0.01 0.01 − − − sat(BEE)
miles750.col 31 0.01 0.01 15 7 0.01 sat
mulsol.i.1.col 49 0.01 0.01 − − − sat(BEE)
mulsol.i.2.col 31 0.01 0.06 41878 1574 0.06 sat
mulsol.i.3.col 31 0.01 0.06 41878 1574 0.06 sat
mulsol.i.4.col 31 0.01 0.06 44293 1642 0.07 sat
mulsol.i.5.col 31 0.01 0.06 43042 1608 0.07 sat
myciel3.col 4 0.01 0.01 83 30 0.01 sat
myciel4.col 5 0.01 0.01 393 91 0.01 sat
myciel5.col 6 0.01 0.01 1570 240 0.01 sat
myciel6.col 7 0.01 0.02 5736 589 0.01 sat
myciel7.col 8 0.01 0.06 19929 1386 0.02 sat
queen5_5.col 5 0.01 0.01 266 31 0.01 sat
queen6_6.col 7 0.01 0.01 1584 138 0.01 sat
queen7_7.col 7 0.01 0.02 2566 192 0.01 sat
queen8_12.col 12 0.01 0.07 19816 872 0.02 sat
queen8_8.col 9 0.01 0.03 7314 380 0.88 sat
queen9_9.col 10 0.01 0.06 12026 547 6.91 sat
queen10_10.col 11 0.01 0.09 21322 856 21637.9 sat
school1.col 14 66.39 0.51 42 16 0.01 sat
school1_nsh.col 14 26.6 0.47 107 34 0.01 sat
zeroin.i.1.col 49 0.01 0.01 − − − sat(BEE)
zeroin.i.2.col 30 0.01 0.01 734 139 0.01 sat
zeroin.i.3.col 30 0.01 0.01 734 139 0.01 sat
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5:18 Logic Programming with Max-Clique and its Application to Graph Coloring

Table 8 Unsatisfiable Dimacs Instances Results.

Instance k cliquer BEE #clauses #vars sat Status
anna.col 10 0.01 − − − − unsat(cliquer)
david.col 10 0.01 − − − − unsat(cliquer)
DSJC125.1.col 4 0.01 0.02 − − − unsat(BEE)
DSJR500.1.col 11 0.02 − − − − unsat(cliquer)
DSJR500.5.col 121 4597.34 − − − − unsat(cliquer)
fpsol2.i.1.col 64 0.02 − − − − unsat(cliquer)
fpsol2.i.2.col 29 0.02 − − − − unsat(cliquer)
fpsol2.i.3.col 29 0.02 − − − − unsat(cliquer)
games120.col 8 0.01 − − − − unsat(cliquer)
huck.col 10 0.01 − − − − unsat(cliquer)
inithx.i.1.col 53 0.05 − − − − unsat(cliquer)
inithx.i.2.col 30 0.05 − − − − unsat(cliquer)
inithx.i.3.col 30 0.05 − − − − unsat(cliquer)
jean.col 9 0.01 − − − − unsat(cliquer)
le450_15a.col 14 0.02 − − − − unsat(cliquer)
le450_15b.col 14 0.02 − − − − unsat(cliquer)
le450_25a.col 24 0.02 − − − − unsat(cliquer)
le450_25b.col 24 0.02 − − − − unsat(cliquer)
le450_5a.col 4 0.01 − − − − unsat(cliquer)
le450_5b.col 4 0.01 − − − − unsat(cliquer)
le450_5c.col 4 0.01 − − − − unsat(cliquer)
le450_5d.col 4 0.01 − − − − unsat(cliquer)
miles1000.col 41 0.01 − − − − unsat(cliquer)
miles1500.col 72 0.01 − − − − unsat(cliquer)
miles250.col 7 0.01 − − − − unsat(cliquer)
miles500.col 19 0.01 − − − − unsat(cliquer)
miles750.col 30 0.01 − − − − unsat(cliquer)
mulsol.i.1.col 48 0.01 − − − − unsat(cliquer)
mulsol.i.2.col 30 0.01 − − − − unsat(cliquer)
mulsol.i.3.col 30 0.01 − − − − unsat(cliquer)
mulsol.i.4.col 30 0.01 − − − − unsat(cliquer)
mulsol.i.5.col 30 0.01 − − − − unsat(cliquer)
myciel3.col 3 0.01 0.01 37 15 0.01 unsat
myciel4.col 4 0.01 0.01 267 70 0.01 unsat
myciel5.col 5 0.01 0.01 1170 195 0.85 unsat
myciel6.col 6 0.01 0.02 4548 496 22970.47 unsat
myciel7.col 7 0.01 0.06 16499 1197 ∞ timeout
queen5_5.col 4 0.01 − − − − unsat(cliquer)
queen6_6.col 6 0.01 0.01 1070 108 0.01 unsat
queen7_7.col 6 0.01 − − − − unsat(cliquer)
queen8_12.col 11 0.01 − − − − unsat(cliquer)
queen8_8.col 8 0.01 0.04 5838 324 15.88 unsat
queen9_9.col 9 0.01 0.06 9859 474 2295.86 unsat
queen10_10.col 10 0.01 0.08 18110 716 ∞ timeout
school1.col 13 66.39 − − − − unsat(cliquer)
school1_nsh.col 13 26.6 − − − − unsat(cliquer)
zeroin.i.1.col 48 0.01 − − − − unsat(cliquer)
zeroin.i.2.col 29 0.01 − − − − unsat(cliquer)
zeroin.i.3.col 29 0.01 − − − − unsat(cliquer)
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