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Abstract
Outpatient care is a large share of total health care spending, making analysis of data on outpa-
tient utilization an important part of understanding patterns and drivers of health care spend-
ing growth. Common features of outpatient utilization measures include zero-inflation, over-
dispersion, and skewness, all of which complicate statistical modeling. Mixture modeling is a
popular approach because it can accommodate these features of health care utilization data. In
this work, we add a nonparametric clustering component to such models. Our fully Bayesian
model framework allows for an unknown number of mixing components, so that the data, rather
than the researcher, determine the number of mixture components. We apply the modeling
framework to data on visits to physicians by elderly individuals and show that each subgroup
has different characteristics that allow easy interpretation and new insights.
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1 Introduction

Outpatient hospital services account for a large share of health care utilization and therefore
of total health care spending. To understand the variation in this major component of
health care expenditures, researchers have sought to identify patient subgroups with different
utilization and spending patterns.

Health care resource use data are often non-negative, right-skewed, heavy-tailed, and
multi-modal with a point mass at zero. Desirable analytical approaches for these data should
be sufficiently powerful and flexible to accommodate all of these features. Several authors
showed that finite mixture models (FMMs) provide better model fit than single distribution
generalized linear models (GLMs) and the hurdle model. [1, 2] In addition, FMMs have
two advantages: first, they can easily handle multimodality. This may be important when
the outcome distribution suggests decomposing resource use into different components. For
example, it may be necessary to fit the tail distribution separately. Second, mixture models
allow us to link the prevalence of different mixture components to different covariates. [2]
Generally, mixture models distinguish between different groups of users (e.g. low- and high
users) and avoid the sharp dichotomy between users and non-users.

A key question in mixture models is the optimal number of components. (Note that we
use component, rather than cluster, to describe the subpopulations identified by FMMs.)
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Too many components may overfit the data and impair model interpretation, while too
few components limit the flexibility of the mixture to approximate the true underlying
data structure. The number of different user groups can be decided either “ex-ante” by a
defined value (two or three groups are common), or “ex-post”, i.e. chosen by model fit after
calculating different models. While the ex-ante approach is focused on feasibility and is a
one-stage decision process, ex-post approaches use information which extends beyond the
time at which the actual model is prepared and involves a second decision process. Both
approaches introduce a decision and model selection bias.

In this paper, we present a fully variational Bayesian (VB) hierarchical mixture model,
where the optimal number of components is evaluated during model fit. This one-stage process
yields both the ideal number of components and allows interpretation of each component. In
this Bayesian nonparametric mixture model, we let the data determine both the number and
the form of the local mean functions. In contrast to frequentist nonparametric regression
methods, this Bayesian approach creates a model that is only as complex as the data
require. [3] In models with a fixed, finite number of parameters, there may be misfit between
the complexity of the model and the amount of data available. By contrast, Bayesian
nonparametric models are less subject to over- or under-fitting: the unbounded complexity
of the infinite mixture mitigates under-fitting, while the Bayesian approach of computing the
full posterior over parameters mitigates over-fitting. [4]

Our model uses a Dirichlet process (DP) prior for the mixing component and comprises a
fully VB regression scheme. VB is an alternative to Markov chain Monte Carlo (MCMC)
sampling methods for taking a fully Bayesian approach to statistical inference over complex
distributions that are difficult to directly evaluate or sample from. In particular, whereas
MCMC techniques provide a numerical approximation to the exact posterior using a set of
samples, VB provides a locally-optimal, exact analytical solution to an approximation of the
posterior. VB inference algorithms are usually faster than MCMC and suitable for large
scale data sets, which are becoming more and more prevalent through the analysis of claims
data and electronic health records.

In the following, we define a VB regression mixture model for counts and apply it on a
data set to analyze outpatient health care utilization. The data set has already been used
in [1] where Deb and Trivedi showed that a FMM with two components provides better
model fit than a simple GLM. In this paper, we apply our proposed VB mixture model on
the DebTrivedi data set and demonstrate that this model has good clustering and inference
properties that allow new insights.

2 Model Definition

2.1 Dirichlet Process Mixtures for Generalized Linear Models

The DP is a measure on measures [5] or a distribution over distributions [6] parameterized
by a base distribution G0 and a concentration parameter α. Each draw from a DP is a
distribution that is discrete with countably infinite parameters, making this a nonparametric
model. Using a DP prior for the distribution of component means in mixture models does
not require one to specify the number of components. Instead, a concentration parameter
controls it implicitly. Suppose the sample space Ω is partitioned into measurable subsets
U1, ..., Uk. Let U be the collection of all possible subsets of Ω. If G is a random probability
measure over (Ω,U) that assigns probabilities to all subsets, then G ∼ DP(α,G0) is a measure
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with property

G(U1), ..., G(Uk) ∼ Dir(αG0(U1), ..., αG0(Uk)).

More precisely, if α > 0 and G is an instantiation of a DP with base measure G0, then each
component k has mixture weight ck sampled as follows:

G =
∞∑
k=1

ckδ(θ = ζk), where ζk
iid∼ G0, k = 1, ...,∞,

vk = Φ(α), ck = vk

k−1∏
j=1

(1− vj),
∞∑
k=1

ck = 1, (1)

where Φ(·) denotes the cumulative distribution function for the standard normal distribution
and δ is the delta function. The base measure G0 provides an initial guess at G, and
α controls how close samples from the Dirichlet process are to G0. The DP serves as a
nonparametric prior on the mixture components. As the ζ’s are drawn from a (discrete)
DP-distributed distribution, it is very likely that they will be the same in each draw. The
distinct number of ζ’s defines the number of components.

The representation in Equation 2.1 is called a stick-breaking process and yields an infinite
mixture model representation:

fmix(x|α,G0) =
∞∑
k=1

ckf(x|φk),

where f is the density function with parameters φk. Note that we define the stick-breaking
process according to the probit representation [7] instead of using Beta random variables.

In addition to the usual regression parameters, these nonparametric mixture models
produce several additional parameters of interest. For each mixture component k, we want
to estimate the relative prevalence of the mixture component in the data and parameters of
the mixture component’s distribution, such as the mean, variance, and regression coefficients.
The mixture weights ck are the probabilities associated with each component and come
directly from the stick-breaking proportions vk. The features of the mixture component are
in φk. In addition, for each observation, we want to estimate the mixture component from
which it was most likely drawn, also called the component assignment.

2.2 The Negative Binomial Regression Model
The Negative Binomial distribution is a flexible alternative to the Poisson model for counts
that accommodates over-dispersion with a longer, fatter tail. [8] Hilbe identified more than
12 different parameterizations of the Negative Binomial in the literature; [9] here, we use the
definition in [1].

For i = 1, . . . , N observations and d = 1, . . . , D covariates, the data comprise an (N,D)-
dimensional covariate matrix X with rows xi and an N -vector of outcomes y = (y1, . . . , yN )′.
For simplicity, we omit the subscript i in what follows. The density function for the
y ∼ NegBin(µ, ψ) distribution is

f(y) = Γ(y + ψ)
Γ(ψ)Γ(y + 1)

(
ψ

µ+ ψ

)ψ (
µ

µ+ ψ

)y
,

where we specify a regression model (with regression coefficients β) for the mean parameter

µ = exp(xβ)
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and ψ is a precision parameter. In this specification, mean and variance are

E(y|x) = µ, Var(y|x) = µ+ ψ−1µ2 ,

which corresponds to the NB2 model definition. [10]

2.3 Variational Inference Scheme

We assume a mixture distributions with K components, each following a negative binomial
regression model. The data set consists of pairs {xn, yn}Nn=1 where xn is a vector of length
D and yn is scalar. Therefore, for each pair of observations there exists a latent variable zn
indicating the component assignment. The conditional distribution of the observed data
vectors given the latent variables and the component parameters can be defined as:

p(y|x, z,β,ψ) =
N∏
n=1

K∏
k=1

NegBin(yn|xβ, ψ)znk .

We define a Dirichlet prior over the mixing proportions c:

p(c) = Dir(c|α0)

and introduce a Gaussian-Wishart prior over the mean and dispersion component:

p(β,ψ) =
K∏
k=1
N (βk|β̂k, ψ−1

k P̂−1
k )W(ψk|ν̂k, τ̂k).

The joint distribution over all random variables is:

p(y,x, z, c,β,ψ) = p(y|x, z,β,ψ)p(z|β)p(c)p(β|ψ)p(ψ).

The goal of variational inference is to optimize the parameters of a fully factorized variational
distribution q that minimizes the Kullback-Leibler divergence from the true intractable
posterior. The optimal q maximizes the evidence lower bound objective. Because of intractable
integrals in the variational distribution

q(z, c,β,ψ) = q(z)q(c,β,ψ),

We define

q(c,β,ψ) = q(c)
K∏
k=1

q(βk,ψk) = q(c)
K∏
k=1

q(βk,Σ−1
k ),

where q(βk,Σ−1
k ) = N (βk,Σ−1

k ).
The optimization problem is therefore

q∗(z) = arg min
q(z)∈D

KL(q(z, c,β,Σ)‖p(y,x, z, c,β,ψ)).

and we solve this by memoized online variational inference as in [11].
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Figure 1 Parameter estimates for all three components on the DebTrivedi data set based on the
negative binomial VB regression mixture model. Parameter estimates are presented as incidence
rate ratios and 95% high probability density intervals. Intercept is not shown. The yellow dashed
line at one marks no effect.

3 Data

We explore the model on the data set from Deb and Trivedi. [1] It contains 4406 individuals,
aged 66 and over, who are covered by Medicare, a public insurance program. Originally
obtained from the US National Medical Expenditure Survey (NMES) for 1987/88, the
data are available in the R package MixAll. The objective is to model the demand for
medical care–as captured by the number of physician/non-physician office and hospital
outpatient visits–by the covariates available for the patients. Here, we adopt the number
of physician office visits ofp as the dependent variable and use the health status variables
hosp (number of hospital stays), health (self-perceived health status), numchron (number
of chronic conditions: cancer, heart attack, gall bladder problems, emphysema, arthritis,
diabetes, other heart disease), as well as the socioeconomic variables gender, age, black
(race), faminc (family income), school (number of years of education), and privins (private
insurance indicator) as regressors.

4 Results and Conclusion

For the DebTrivedi data set, the VB regression mixture model finds three components.
The first component contains only 4.2% (186/4406) of all observations and corresponds
to individuals who, on average, utilize less health care, but with higher variance. The
second component corresponds to the largest proportion of individuals, 62.3%, (2745/4406)
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Figure 2 Boxplots for number of chronic conditions, age, and years of education for each
component as modeled by the VB mixture model for the DebTrivedi data set. The red triangle
marks the mean.

with medium health care utilization. The third component captures 33.5% (1475/4406) of
individuals, with high utilization counts and again high variance. Figure 1 presents the
parameter estimates from the regression model as incidence rate ratios (IRRs). In the first
component, insurance status has the largest influence with an IRR of 2.41. This means that
individuals with private insurance in the first component visit the doctor more than twice
as often as those without private insurance. A similar explanation can be made for the
number of hospital stays in the first component: one hospital stay accounts for 2.05 times
more doctor visits, on average. This effect diminishes in the other components who contain
individuals with higher utilization.

In the second component, a self perceived excellent health condition reduces the doctor
visits by a factor or 0.68, while a poor health condition increases them by 1.46. This trend
is slightly reduced in the third component. Most other variables show only slight effects
on the number of doctor visits in the second component. In the third component, age has
a protective influence on utilization, one additional year of age represents 0.73 times the
utilization, on average. This seems counter-intuitive, but may be explained when comparing
the age of the individuals in each cluster: Figure 2 shows that age is increasing over the
components. In addition, the number of chronic diseases is also increasing in each component.
That explains the highest number of doctor visits in component 3. Interestingly, the years
of education also increase slightly in each component. This should be subject of further
investigation as, for example, Fiscella et al. [12] found that the time spent for physical
examination is lower for more educated individuals.

Regarding computational speed, the VB inference method only takes 2 seconds to analyze
the data set. A comparable MCMC approach took about 45 minutes on a 2016 Core i7
CPU with 32 GB RAM. This difference is mainly due to VB providing only a solution to
an approximation of the posterior, while MCMC estimates the exact posterior. While we
did not find great differences in the estimates in the present case, future research should
investigate this difference, for example, in simulation studies.

In conclusion, the defined VB regression mixture model provides an interesting alternative
with good accuracy and speed, especially suited for large data sets.

Acknowledgements. We thank Laura Hatfield for improving the manuscript.
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