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Abstract
Distributed algorithms are inherently hard to get right, and a major challenge is to come up with
automated techniques for error detection and recovery. The talk will survey recent results on the
synthesis of distributed monitors and controllers.
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1 Overview

Distributed applications represent a significant part of our everyday life. Typically, our
personal data are stored on remote distributed servers, data management relies on remote
applications, data-intensive computations are performed on computer clusters, etc. Since
distributed applications are deployed at increasingly large scale, they have to be reliable and
robust, satisfying stringent correctness criteria. But distributed programs are hard to get
right, and errors can be very subtle1.

Formal methods, and in particular model-checking, can produce rigorous, automated
reliability proofs for hardware and software systems. The area has always had special interest
in distributed applications, for two reasons. First, distributed programs are error prone,
because programmers have to consider all possible effects induced by different schedulings
of events. Second, testing, which is widely used for certifying sequential programs, tends to
have low coverage in the distributed setting, because bugs are usually difficult to reproduce:
they may happen under very specific thread schedules, and the likelihood of taking such
corner-case schedules may be very low. As a consequence, automated verification techniques
represent a crucial support in the development of reliable distributed applications.

Many recent advances in formal methods are motivated by a substantial increase in
deploying distributed applications like robot-assisted systems, cloud-based services, etc.
However, formal verification of distributed programs is still extremely challenging. The
first challenge is scalability: automated verification, such as model-checking and other tra-
ditional exploration techniques, can only handle small instances of concurrent programs,
mostly because of the very large number of possible states and of the asynchronicity of
concurrent executions. The second challenge is parametrization: distributed protocols are
usually designed to work for an arbitrary number of concurrent processes, which means that
verification is required for an arbitrary number of processes. The third challenge is related to

1 A well-known quotation of Leslie Lamport says "A distributed system is one in which the failure of a
computer you didn’t even know existed can render your own computer unusable."
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contextual assumptions: distributed programs are often designed under specific assumptions
about synchronicity, failure behaviors, etc., which are often either difficult to model or even
hard to formalize at an informal level.

Runtime verification. In traditional model-checking, distributed programs and algorithms
are modeled as a set of communicating finite-state processes, and the correctness of all pos-
sible executions is specified in some temporal logic. If at all doable, model-checking usually
requires finite abstractions and clever heuristics, like partial-order reduction [9, 17, 21], in
order to cope with the scalability problem. Runtime verification is an appealing alterna-
tive method to traditional exhaustive exploration, situated somewhere between testing and
model-checking (see e.g. the surveys [12, 10] and the dedicated conference RV running for
more than 15 years). Runtime verification is about monitoring program executions against
formal specifications, and is a support for error detection. But designing distributed mon-
itors from a given specification is significantly more difficult than for sequential programs,
since for sake of feasibility, let alone efficiency, the monitoring information has to be com-
puted by a distributed algorithm using only the communication means provided by the
execution of the monitored program. The challenge here is to come up with algorithms con-
structing efficient monitors on various communication architectures, and with a reasonable
computational overhead.

Synthesis. In reactive synthesis the goal is to automatically derive from some given specifi-
cation a reactive program, that is, a program interacting continuously with its environment.
The notion of reactive synthesis goes back to work by Church in the 60s [1], and it has given
birth to a beautiful and rich theory of automata, logics and games of infinite duration (see
e.g. [11, 20]). The games paradigm captures the idea of interaction between a program and
its environment, and computing a winning strategy amounts to construct a program that
behaves correctly in any possible situation. Nowadays the efforts to translate the theory into
practical algorithms are considerable: a growing number of synthesis tools are available, and
there is the dedicated annual tool competition Syntcomp@CAV.

The reactive synthesis of distributed programs is a particularly attractive problem be-
cause distributed programs are notoriously hard to get right. The problem has been con-
sidered already in the early 90s, starting with a model proposed by Pnueli and Rosner [18]:
processes communicate via shared variables synchronously, according to a fixed communica-
tion architecture. Each process has a partial view about the global state, since its knowledge
is limited to its input variables. The partial knowledge of processes has as consequence that
the distributed synthesis problem is decidable only for very restricted communication archi-
tectures, without so-called information forks [5], basically for pipelines only [14].

2 Going distributed

The main distinguishing feature of runtime verification is that it is performed at runtime,
by continuously checking program executions against formal specifications. This opens the
possibility to use it as support for error diagnosis, and also to deploy correction mechanisms
when an illegal behavior of the program is detected.

The traditional runtime verification approach is to construct a monitor from a given
property. The monitor is then used to check e.g. the current execution of the system. In
other words, the monitor reads the finite trace incrementally and it is supposed to notify if
an error occurs. While in model-checking all executions of the system are considered (often
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with emphasis on infinite executions) runtime verification deals with a single execution
at a time and does not require complete knowledge about the program or system. In
other terms, runtime verification can be applied on black-box systems for which no model
is available. It also represents a lightweight method regarding complexity, since from a
theoretical viewpoint monitoring single traces simply corresponds to the word problem.
The main issue in runtime monitoring is the complexity of the monitor, i.e., its memory and
computation time requirements, as a monitor runs in parallel with the system and should
not slow it down too much.

Designing distributed monitors from a given specification is far more challenging than
for sequential programs, as the monitoring information has to be computed by a distributed
algorithm. A straightforward, but impractical, way to monitor a distributed program is to
synchronize the relevant components and to inquire about their states. A much better way
to do this is to build local monitors that deduce the required information by recording and
exchanging suitable information using mainly the communication means provided by the
execution of the monitored program. So the main point about distributed monitoring is to
avoid adding synchronization in the program, since this usually impacts negatively on the
overall performance [19].

A very successful example for the automatic generation of distributed monitors has its
roots in the theory of Mazurkiewicz traces [15]. Within this theory, Zielonka’s theorem [22]
is a prime example of synthesis of distributed, finite-state monitors. A Zielonka automaton
is in essence the parallel composition of finite-state processes that synchronize over shared
actions. Many researchers contributed to simplify the construction and to improve its com-
plexity. The most recent construction [7] produces deterministic distributed monitors of
size that is exponential in the number of processes (and polynomial in the size of a DFA
for the monitoring property). It is very challenging to try to adapt Zielonka’s construction
to models involving other types of synchronization. Generally speaking, constructing dis-
tributed monitors for specific architectures, and under specific conditions, like robustness
under failures, is an important open problem.

Reactive synthesis. Reactive synthesis lays the ground for error recovery, once errors have
been detected through monitoring. It can support for example the design of controllers
that are in charge of taking appropriate recovery steps, depending on the failure cause.
Zielonka automata turned out to be a promising alternative for reactive synthesis as well.
The crucial difference compared to the model of Pnueli-Rosner is that the synchronization
of processes in a Zielonka controller entails an exchange of information about the local
knowledge. So although information is still partial, it is in some sense complete, according
to the communication architecture. The decidability status of reactive distributed synthesis
in this model is still open, but the problem is known to be decidable when the communication
structure is acyclic [8, 16]. This result, together with some decidability results for restricted
communication [6, 13], makes the Zielonka version of distributed synthesis more attractive
than the one of Pnueli-Rosner.

Recently, Petri games were proposed as another formulation of the distributed reactive
synthesis. These games are played on Petri nets, with places that are either controllable
(belonging to the system) or uncontrollable (belonging to the environment). As for Zielonka
automata, the decidability status of the synthesis problem is open. The synthesis problem
was shown to be decidable whenever there is a single environment token, and a bounded
number of system tokens [4]. Petri net games are an interesting alternative to Zielonka
automata, but the precise relation between the two models remains to be explored.
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Negotiation diagrams [2], a concurrency model inspired by workflow nets, can offer an-
other fruitful setting for the synthesis problem. A negotiation diagram describes a dis-
tributed system with a fixed set of sequential processes. The diagram is composed of “atomic
negotiations”, each one involving some subset of processes. An atomic negotiation starts
when all its participants are ready to engage in it, and concludes with the selection of one
out of a fixed set of possible outcomes; for each participant process, the outcome deter-
mines which atomic negotiations the process is willing to engage in at the next step. In
essence, deterministic negotiations are stateless Zielonka automata, and it turns out that
their analysis is algorithmically much easier in some cases. For example, sound diagrams
have polynomial-time algorithms for Mazurkiewicz-invariant static analysis problems [3].
Negotiations are very likely to be an attractive setting for distributed synthesis as well.
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