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Abstract
We formulate what might be the simplest train scheduling problem considered in the literature
and show it to be NP-hard. We also give a log-factor randomised algorithm for it. In our problem
we have a unidirectional train track with equidistant stations, each station initially having at most
one train. In addition, there can be at most one train poised to enter each station. The trains
must move to their destinations subject to the constraint that at every time instant there can be
at most one train at each station and on the track between stations. The goal is to minimise the
maximum delay of any train. Our problem can also be interpreted as a packet routing problem,
and our work strengthens the hardness results from that literature.
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1 Introduction

In this paper, we formulate a very simple train scheduling problem, show its NP-hardness,
and give a randomised log-factor approximation algorithm.

Train scheduling is an extensively researched area (see, for example, the recent surveys of
[1, 7, 19, 21]). The major model used is as follows. We are given a graph in which vertices
represent stations and edges represent tracks. Initially, each station may hold one or more
trains, which are to be moved to specified stations using specified paths. Under the standard
signalling regime, on each edge there can be at most one train, and it takes some specified
finite time for a train to cross an edge. Additionally, there exists a buffering limitation –
each station is capable of holding no more than a specified number of trains. The goal is to
move the trains such as to minimise the makespan (maximum completion time), flow-time
(total completion time), or max-delay (maximum delay suffered by any train). This abstract
problem is also studied in the packet routing literature with trains, stations, and tracks
replaced by packets, network nodes, and communication links.

The problem as defined above is known to be NP-complete in various versions. See [20]
for minimising the makespan, assuming unbounded buffering at each node, even when the
graph is a tree. See [5] for minimising the makespan or max-delay even to a constant factor,
assuming bounded buffering at nodes, for levelled directed networks in which packets move
from the lowest numbered level to the largest numbered level.
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Figure 1 The model network

For general networks, constant factor approximation algorithms are known for minimising
the makespan even with constant number of buffers at each node [14, 15, 24, 22]. For directed
as well as undirected trees a 2-approximation of the optimal makespan can be obtained if we
have an unbounded number of buffers in each node [20]. For unidirectional rings, in-trees, and
out-trees, the optimal makespan can be obtained with unbounded buffers [16]. One recent
study analyses the computational complexity of a specific train scheduling problem [10]. It
models the problem of scheduling, with minimum makespan, several trains from opposite
sides along a single bi-directional track with unbounded capacity at intermediate stations
where trains can pass and cross each other. The problem is shown to be pseudo-polynomially
solvable with equal train-speeds; however, with different speeds, it can be translated to a
job-shop scheduling problem that is already strongly NP-hard.

Our concern in this paper is scheduling trains on a directed path, with trains allowed
to enter or exit the path at any station. We consider minimising the max-delay, which we
believe is more appropriate for train scheduling. The motivation for our study is twofold.
First, large train networks are often broken into smaller networks for the purpose of managing
them. These smaller networks often consist of a major trunk route with trains entering
and exiting the route from and to branch lines. Each direction of the route is like the path
network we consider. In addition, we are interested in a path network also because it is
presumably the simplest network possible. Indeed, we further simplify the network – we
assume that the inter-station distances, as well as the train speeds, are identical. We feel
that we should figure out good theory for this elementary model before moving on to more
complex ones. Finally, we note that there is also a large amount of experimental work on
train scheduling using simulation, heuristics, integer linear programming, game theory, etc.
[2, 3, 4, 6, 8, 11, 12, 17, 18, 23]. Our interest, as explained earlier, is different.

Outline of the paper is as follows. In Section 2, we formally define our problem. We
also define in Section 3 a chain-hole view of the movement of trains, which is useful in the
exposition of our lower and upper bounds. In Section 4, we show that finding a schedule
with minimum max-delay is NP-hard. In Section 5, we present a randomised algorithm that
schedules trains such that the max-delay is within a log-factor of the optimal. Section 6
concludes with directions for future work.

2 The Train Scheduling problem

We consider the network shown in Figure 1. It consists of :
1. The line – a sequence of N + 1 stations labelled 0, 1, . . . , N , and unit-length directed

links (s, s+ 1) connecting every pair of consecutive stations s and s+ 1.
2. The branches – an outer (where a train waits before entering the line) ws corresponding

to each station s, and a unit-length link (ws, s) connecting ws to s.
Every station and outer has a capacity to hold at most one train at a time. A train takes
unit time to move from one station to the next, or from an outer to its corresponding station.
When there is no train at a station s, we say that there is a hole at s. When a train reaches
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Figure 2 Example of a hole-jump
Boxes represent trains, circles represent holes. At time t− 1, there is a hole R at station u. During
step t, train E moves from station v to v+ 1, while the trains A, B, C, and D wait at their respective
stations u+ 1 to v − 1. The hole thus appearing at station v at time t is considered to be the same
as was present at station u at time t− 1. We say that the hole jumped from u to v in step t.

its destination, it immediately vanishes (exits), leaving a hole at that station. Every train
that is initially at a station is called an internal train, while every train that is initially at an
outer is called an external train.

Path of a train consists of all nodes and links it visits during its journey, including the
origin and the destination. Note that an external train has to enter the line (i.e., move from
the outer to its corresponding station) before it can move on the line towards its destination.
Therefore, while path-length of an internal train is just the distance from its origin to its
destination, that of an external train is one unit more than the distance from its entry station
to its destination. The event of an external train entering the line will be referred to as an
entry, to distinguish it from a movement which will refer to the event of a train moving on
the line from one station to the next.

An instance is defined by specifying (i) the number N , and (ii) destination of the train, if
any, placed initially at each station and outer; the destination must of course be downstream
of the initial position. In any schedule for movement of the trains to their destinations, the
amount of time a train remains stationary is said to be its delay. The required output is a
schedule such that max-delay – the maximum among the delays – is minimised.

The tth step of the schedule denotes the unit time duration (t−1, t]. The entry time of an
external train is the time when it entered the line. Last-entry-time of the schedule is the last
time instant when some external train entered the line, i.e., the maximum among the entry
times of external trains. Without loss of generality, we assume that after the last-entry-time,
all the trains proceed to their destinations without further delays.

I Theorem 1. In any schedule, (last-entry-time− 1) ≤ max-delay ≤ last-entry-time

Proof. No train waits after the last-entry-time, say T . Hence, the max-delay can be at most
T . If an external train has suffered the maximum delay, then the max-delay is T − 1. If every
train that suffered the maximum delay is an internal train, then the max-delay is T . J

Hence, from now on, we will worry about minimising the last-entry-time.

3 Chain-Hole view of schedules

An external train can only enter a hole. Thus, it is useful to understand holes :
Pre-existing holes. Initially, as part of the input, we are given some pre-existing holes on

the line. In addition, it will be convenient to assume that we also have stations −1,−2, . . .
upstream of station 0, each having a pre-existing hole; we will call them as external holes.
Clearly, these imaginary stations and holes cannot affect the movement of trains.

FSTTCS 2017
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Figure 3 External trains enter by filling holes
In step t, hole Q jumps across four links, from station u to station v = u+ 4, and is immediately
filled by an external train W that enters the line at station v simultaneously with the jump of Q. In
the same step, another external train W′ enters the line at a station v′, filling a hole S which has
simultaneously jumped to v′ from station v′ − 2 = v + 1. Hence, the trains A, B, C, and D have to
wait during this step, while the trains E and F as well as the hole R must move.

Hole creation. A hole is created when a train moves into its destination station and vanishes.
Hole destruction. A hole is destroyed when it is filled by an external train.
Hole movement (jump). Suppose at time t− 1 a hole is present in station u. Suppose that

the stations u+ 1, . . . , v − 1 have trains which do not move in step t, while the train at
station v moves. Then we will say that the hole at u at time t− 1 has jumped to v in
step t. Similarly, if the trains at stations 0, 1, . . . , s− 1 wait and the train at s moves, we
consider that to be a jump of an external hole from station −1 to station s.

Note that in a single step, a hole can jump across any number of links, while a train can only
move across one link (to an adjacent station). However, hole-jumps and train-movements
cannot overlap, as delineated in Lemma 2, which follows from the above definitions.

I Lemma 2. If two holes jump in the same step, then the paths of those jumps must be
link-disjoint, i.e., they do not share any link. If a train-movement occurs in the same step as
a hole-jump, then their paths too must be link-disjoint.

3.1 Chains induced by a schedule
In any given schedule, consider an external train p that enters the line by filling a hole h.
Define h as the predecessor of p. If h is created by the exit of another train p, then define
p as the predecessor of h. This procedure will link every external train into an alternating
sequence of trains and holes. Each such maximal sequence is called a chain.

The first element of a chain can either be an internal train or a pre-existing hole, both of
which do not have predecessors. That train or hole is said to be the beginning of the chain.
Let c be a chain and station s0 be the initial position of its beginning. Let pk be the last
train of c, and sk the entry station of pk. Then the span of chain c is defined as the interval
[s0, sk]. The last train pk is said to be the terminal train of the chain, while all other trains
of the chain are said to be its non-terminal trains (Figure 4). Every link within the span of
a chain c is either run over by a non-terminal train of c, or jumped over by a hole of c. We
say that the chain crosses all these links. Note that the links run over by the terminal train
of a chain are, by definition, not crossed by the chain.

I Definition 3. Congestion produced in a link, say l, by a set C of chains is defined as the
number of those chains in C which cross l. Congestion of a set of chains is the maximum
congestion produced by the set in any link (including those upstream of station 0).
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Figure 4 Spatial view of a chain 〈p0, h0, p1, h1, . . . , pk−1, hk−1, pk〉
Station s0 is the origin (•) of the internal train p0 with which the chain begins. Stations
s1, . . . , sk−1, sk are the entry points (?) of external trains p1, . . . , pk−1, pk. Stations s′0, s′1, . . . , s′k−1
are the destinations (◦) of non-terminal trains p0, p1, . . . , pk−1, where the holes h0, h1, . . . , hk−1 get
created when those trains exit. Links (– ) crossed by train-movements are shown in red, while the
links (– ) crossed by hole-jumps are in green. Trains have not been explicitly depicted.

I Definition 4. We define the age of a chain c as the minimum possible time by which its
terminal train, say p, can enter the line, i.e., the entry time t of p if it were the case that in
every step before t, either a train of c moves on the line or a hole of c jumps and gets filled in.

In other words, the age of c equals the number of movements on the line to be made by its
non-terminal trains, plus the number of its holes, since every hole h of a chain makes at least
one jump – the one coinciding with the entry of the train that succeeds h in the chain. Note
that the age of a chain is a unit more than the sum of path-lengths of its non-terminal trains.

I Theorem 5. Let S be a schedule, C the set of chains induced by S, and T the last-entry-time
in S. Then C has a congestion at most T , and every chain in C has an age at most T .

Proof. At most one train can cross a link in a single step. When a hole jumps in a step t
from a station s to another station s′, all trains and holes at the stations between s and s′
halt during step t. Hence, for any link l, at most one train or hole can move or jump across l
in each step, which implies that at most T chains can cross l by time T . Since the terminal
trains of all chains have entered the line by time T , no chain crosses any link afterwards.
Thus, congestion of any link can not exceed T , implying that C has a congestion at most T .

For any chain, movements of its trains along the line must happen at distinct times.
Furthermore, the hole-jumps must also happen at distinct times and every hole must make
at least one jump. Hence, the last hole-jump, which coincides with the entry of the last train
of the chain, cannot be made at a time smaller than the age of the chain. J

4 NP-hardness

For the decision version of Train Scheduling, the input is as given in Section 2 together with
an integer T . We are required to decide if there is a schedule S with max-delay less than T .

I Theorem 6. Train Scheduling is NP-hard.

Proof. The reduction is from the Bin Packing problem [9], for which the input is (i) a finite
set U = {X1, . . . , Xn} of positive integers, (ii) an integer bin capacity B such that B ≥ Xi ∀i,
and (iii) a positive integer M . The required decision is whether a partition of U into M
disjoint subsets U1, . . . , UM exists such that the sum of integers in every subset is at most B.

Given a Bin Packing instance, our Train Scheduling instance is as follows. We have a line
with stations 0, . . . , N along with an integer T , where N = α(3+(n+1)B), T = α(B+1), and
α = (n+M). Stations T + 1, . . . , T +M have holes h1, . . . , hM ; other stations have internal
trains going to the last station N . For external trains, we first have T trains p1, . . . , pT at
the outers of stations 0, . . . , T − 1, each going to station N . We then have n external trains
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q1, . . . , qn, each qi going a distance αXi. These wait, in any order, at the outers of stations
downstream of station T +M such that their paths are disjoint, i.e., they share neither a
link nor a station. Let D be the most downstream station among the destinations of qis.
We also have M external trains r1, . . . , rM at the outers of stations D + 1, . . . , D +M , each
going to station N . It should be clear that for our chosen value of N , all these trains do fit
within the network.1 To complete the proof, we make the following three observations.

First, note that the time taken for the reduction is polynomial in n and B. Since Bin
Packing is strongly NP-hard, we may assume its input to be in unary. Hence, the reduction
runs in time polynomial in the size of the Bin Packing instance.

Second, suppose the Bin Packing instance has a solution {U1, . . . , UM}. Then, for the
Train Scheduling instance, we can build a schedule with max-delay less than T as follows.
We partition the external trains into T +M chains. For every j ∈ {1, . . . , T}, we construct
a chain cj consisting of (i) the external hole at station −j, and (ii) the train pj . For every
k ∈ {1, . . . ,M}, we construct a chain c′k consisting of (i) the hole hk, (ii) |Uk| trains (and
the holes created by their exits) corresponding to the integers in Uk, and (iii) the train rk.
Note that the age of every c′k is 1 +

∑
X∈Uk

αX ≤ 1 + αB, while the age of every cj is 1.
In each step j ∈ {1, . . . , T} we schedule the train pj to enter the line. Note that the other

(n+M) entries further downstream the line do not conflict with these T entries. Therefore,
to prove that none of the external trains gets delayed by more than T − 1 steps, it suffices to
show that the other entries can also be scheduled to take place by time T . In fact, we show
that they can be made to take place by time T − 1 as follows. In each step k ∈ {1, . . . ,M}
we schedule the entry of the first train of chain c′k. Subsequently, in every step we prioritise
entries over movements on the line. There can be at most n+M steps in which the trains
qi and rk enter the line. In other steps, for each c′k, one of its non-terminal trains moves
on the line unless its last train rk has already entered; there can be at most αB − 1 such
steps. Thus, the total number of steps by the time every rk has entered must be at most
n+M + αB − 1 = T − 1. Hence, the maximum delay for the external trains is T − 1. This
can be easily seen to hold also for the internal trains.2

Third, suppose the Train Scheduling instance has a schedule S with max-delay at most
T − 1. Then we can build a solution for the Bin Packing instance as follows. From Theorem
1, it follows that the last-entry-time in schedule S can at most be T . Consider the set C of
chains induced by S. Suppose there are more than T + M chains in C. Since all internal
trains go till N , every chain must begin with a hole. Since there are only M internal holes,
more than T chains must begin with external holes, implying a congestion more than T in
the link (−1, 0), which is a contradiction to Theorem 5. Hence, C has at most T +M chains.
Each pj goes till the end and therefore must be the terminal train of its chain. Moreover,
it cannot have any other train in its chain since no other train ends upstream of its entry
station. Therefore, just pjs take T chains. Hence, the other n+M external trains must be
packed in the remaining chains, which then must be M in number since each rk has to be
the terminal train of one, say c′k. From Theorem 5, age of every c′k is at most T = α(B + 1).
That means the sum of path-lengths of all non-terminal trains of c′k is less than α(B + 1),
which implies that the sum of integers corresponding to the non-terminal trains in c′k is
strictly less than B + 1, i.e., at most B. Let Uk be the set of those integers. Thus, we get
the required partition {U1, . . . , UM} of the input set U . J

1 D+M ≤
(
T +M +

∑n

i=1 αXi

)
+M ≤ (α(B + 1) +M + nαB)+M = α+2M+α(n+1)B < N

2 The internal trains initially at stations 0, . . . , T always move ahead during the first T steps while pjs
are entering the line. None of the internal trains initially at stations (T +M + 1), . . . , N halts after time
T − 1 by when all qis and rks have entered the line. No train, internal or external, halts after time T .
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5 A log factor approximation

We present a randomised approximation algorithm which builds a schedule achieving a
last-entry-time O(T ∗ logN) with high probability (w.h.p.), where T ∗ is the optimal last-
entry-time. Theorem 1 implies that it is also a log-factor approximation for minimising
max-delay. The algorithm consists of two procedures :
1. The partitioning procedure takes as argument a target T . If T is a feasible last-entry-time

then it returns a set of chains having O(T ) age and O(T ) congestion, otherwise it correctly
declares T to be infeasible.

2. The scheduling procedure uses the set of chains returned by the partitioning procedure
to generate a schedule having a last-entry-time O(T logN) w.h.p.

The overall algorithm runs in two stages. In the first stage, by performing a binary search
on T in the range 1 through N , it finds the smallest value T̃ for which the partitioning
procedure returns a set of chains. In the second stage, it invokes the scheduling procedure
with the set of chains obtained for T̃ to get a schedule S̃. Since we know that no schedule is
possible with last-entry-time less than T̃ , the schedule S̃ – guaranteed to have last-entry-time
O(T̃ logN) – is a logN approximation of the optimal. Sections 5.1 and 5.2 give the details.

5.1 Partitioning
The partitioning procedure is given in Algorithm 1. It is called with a target time T . We use
the term short or long for a train to denote whether its path-length is less than or at least T .

5.1.1 Analysis
We will compare the chains in Ĉ, as they get constructed by the procedure, with the chains
in the set C∗ induced by an optimal schedule, i.e., a schedule having a last-entry-time T .
The comparison will show that at every station the set Ĉ has more active chains – to which
the external train (if any) can be added – than C∗. Additionally, it will show that the active
chains of Ĉ have more capacity to accommodate external trains than the active chains of C∗.
This, in turn, will imply that if T is a feasible last-entry-time then for every external train
the procedure has an active chain to add the train to, and hence it does not abort; rather, it
runs to completion and returns the set of chains. In the following, we call a chain a short
chain (long chain) if it ends with a short (long) train.

I Definition 7. We define the weight of a chain as the sum of the path-lengths of all short
trains (terminal train, if short, as well as the non-terminal trains) in the chain.

I Corollary 8. Given a target T for last-entry-time, let C∗ be the set of chains induced by
an optimal schedule, i.e., a schedule having a last-entry-time T . Then every chain in C∗ has
a weight at most 2T − 2, and every non-terminal train in C∗ is a short train.

Before embarking on the analysis, we make some technical modifications to C∗ as follows :
1. If C∗ has x < T chains beginning with external holes, then we additionally include T − x

degenerate3 chains, each containing an external hole not already there in another chain.

3 A chain consisting of just a hole or a short internal train (no external trains) is called a degenerate
chain.

FSTTCS 2017
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Algorithm 1 The partitioning procedure

1: Initialise set Ĉ with 9T chains beginning with external holes at stations −1, . . . ,−9T .
2: Designate every chain in Ĉ as active.
3: for each station s = 0, 1, . . . , N do
4: if exists a short external train p at station s then
5: if exist active chains with weight < 5T and last train ending upstream of s then
6: Add train p to any such chain c.
7: else
8: Declare T as infeasible and abort.
9: end if

10: else if exists a long external train p at station s then
11: if exist active chains with last train ending upstream of s then
12: Let c be any such chain with maximum weight.
13: Add train p to chain c.
14: Terminate chain c. {i.e., c is no longer active}
15: else
16: Declare T as infeasible and abort.
17: end if
18: end if
19: if exists a hole h or a short internal train p at station s then
20: if the number of active chains is 9T then
21: Let c̄ be any active chain with maximum weight.
22: Terminate chain c̄. {i.e., c̄ is no longer active.}
23: end if
24: Add to Ĉ a new chain c′ beginning with h or p.
25: Designate c′ as active.
26: end if
27: end for
28: Return Ĉ.

2. For every station s ∈ {0, . . . , N} having a hole h or a short internal train p, if C∗ does
not contain any chain beginning at s, then we add a degenerate chain containing h or p.

3. We extend the spans of short chains, without increasing the congestion of C∗ beyond T ,
as follows. Let [s, s′] be the original span4 of any chain c ∈ C∗. Then the span of c is
extended to [s, s′′], where s′′ is as follows. If c is long, then s′′ = s′; otherwise, s′′ is the
maximally downstream station from s′ such that the congestion of C∗ does not exceed T .

A chain c ∈ C∗ that has an extended span [s, s′′] is said to begin at station s, be active at all
stations and on all links in the open interval (s, s′′), and be terminated at station s′′. We say
that C∗ has been maximally extended by making these modifications. Note that this does
not change the trains, holes, age, and weight of any chain already in C∗.

I Theorem 9. If the specified target time T is feasible, then the partitioning procedure
completes successfully. Moreover, the set Ĉ of chains it returns has a congestion at most 9T ,
and each chain in the set has an age less than 6T .

Proof. First note that whenever the set Ĉ has 9T active chains, the procedure terminates an
active chain (Algorithm 1, line 20) before adding a new one (line 24). This implies that no

4 The original span of a degenerate chain beginning at station s is taken to be [s, s].
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more than 9T chains are active on any link, i.e., the congestion of Ĉ is at most 9T . Moreover,
once the weight of a chain exceeds 5T , no more short trains are added to it. Hence, the weight
of any chain can at most be (5T − 1) + (T − 1) = 6T − 2, and its age at most 6T − 1 < 6T .

Now suppose that T is a feasible last-entry-time. Then there must exist an optimal
schedule S∗ achieving it. Let C∗ be the maximally extended set of chains induced by S∗.
For any set C of chains – particularly for C ∈ {Ĉ, C∗} – let X(C, s) denote the number of
chains active on the link (s− 1, s), and let W (C, s) denote the total weight of active chains
before s, i.e., the sum of path-lengths of all those short trains that originate upstream of s
and belong to the chains active on (s− 1, s). We will prove that the following hold at each
station s ∈ {0, 1, . . . N} :
Invariant I. ∆X(s) := X(Ĉ, s)−X(C∗, s) = 8T
Invariant II. ∆W (s) := W (Ĉ, s)−W (C∗, s) < 26T 2

The two invariants will imply that Ĉ has an active chain to which the external train (if any)
at s can be added, and hence the procedure does not abort (line 8 or 16).

The proof is by induction on stations. At station 0, the invariants clearly hold. Suppose
they hold at stations 0, . . . , s. Then, to prove them at station s+ 1, we consider all the cases :
1. No external train, but a long internal train p at s

In Ĉ as well as C∗, neither any train is added nor any chain begins at s. In Ĉ, by
construction, no chain is terminated at s, implyingX(Ĉ, s+1) = X(Ĉ, s) andW (Ĉ, s+1) =
W (Ĉ, s). In C∗, since X(C∗, s) ≤ T and no chain begins at s, termination of a chain at s
would mean that its extended span is not maximal – a contradiction to that C∗ is maximally
extended. Hence, in C∗ as well no chain is terminated at s, that is, X(C∗, s+1) = X(C∗, s)
and W (C∗, s+ 1) = W (C∗, s). Clearly, both the invariants hold at s+ 1.

2. No external train, but a hole h or a short internal train p at s
In Ĉ as well as C∗, a chain begins at s. IfX(Ĉ, s) = 9T , then from Invariant I,X(C∗, s) = T ,
and hence a chain is terminated at s in each set (implied for Ĉ by construction, and for
C∗ by congestion ≤ T ). Otherwise, no chain is terminated in either (by construction of Ĉ,
and by C∗ being maximally extended). Both ways, Invariant I holds at s+ 1.
For Invariant II, we first note that in each of the two sets, the chain beginning at s with
h or p contributes the same additional weight – 0 (if it is h) or some ` < T (if it is p)
– to the total weight of active chains before s+ 1. If no chain is terminated at s, then
Invariant II clearly holds at s+ 1. Otherwise, we need to consider two subcases :
a. Suppose in Ĉ, the chain terminated at s has weight 2T or more, then ∆W (s+ 1) can

only be smaller than ∆W (s), since in C∗ the weight of the chain terminated at s can
at most be 2T − 2. Therefore, Invariant II holds at s+ 1.

b. Suppose in Ĉ, the chain terminated at s has weight less than 2T . Then, since it has
maximum weight among all chains active on (s− 1, s), each of the other active chains
must also have a weight less than 2T . The same chains are also active on (s, s+1) with
same weights before s+ 1 as before s. The only additional chain active on (s, s+ 1) is
the one beginning at s and having weight 0 or ` < T . Then X(Ĉ, s+ 1) ≤ 9T implies
W (Ĉ, s+ 1) < 18T 2. Since W (C∗, s+ 1) ≥ 0, Invariant II holds at s+ 1.

3. A short external train p′, and a long internal train p at s
Since in C∗ the train p′ must belong to some chain active on (s − 1, s), X(C∗, s) ≥ 1.
Then Invariant I implies X(Ĉ, s) ≥ 8T + 1. Moreover, X(C∗, s) ≤ T since the congestion
of C∗ is at most T , and from Corollary 8 the weight of any chain in C∗ is at most 2T − 2.
Hence, W (C∗, s) < 2T 2, and by Invariant II, W (Ĉ, s) < 26T 2 + 2T 2 = 28T 2. In Ĉ, out of
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all chains active on (s− 1, s), only less than 2T may end at or downstream of s.5 Thus,
more than 6T active chains must end upstream of s. Then for the average weight, say
W , of upstream ending active chains, we have W < 28T

6 < 5T . Since the average weight
before s of the upstream ending active chains is less than 5T , at least one of these chains
must have weight less than 5T , that is, p′ can be added to it. Hence, the partitioning
procedure will evaluate the condition in line 5 as true, and will not abort.
Train p, being a long internal train, does not belong to any chain, i.e., no chain begins or
is terminated at s either in Ĉ or in C∗. Therefore, X(Ĉ, s+ 1) = X(Ĉ, s), X(C∗, s+ 1) =
X(C∗, s), and ∆X(s+ 1) = ∆X(s). Moreover, addition of p′ increments the total weight
of active chains by the same amount in both the sets, and hence does not change the
difference, i.e., ∆W (s+ 1) = ∆W (s). Thus, both the invariants hold at s+ 1.

4. A short external train p′, and a hole h or a short internal train p at s
By the same argument as in case 3, the partitioning procedure will not abort; rather p′
will get added to an active chain in Ĉ, incrementing the total weight of active chains by
the same amount as in C∗. Then, by the argument of case 2, the invariants hold at s+ 1.

5. A long external train p′, and a long internal train p at s
By the same argument as in the earlier part of case 3, in Ĉ the number of active chains
ending upstream of s is more than 6T . Therefore, the partitioning procedure will evaluate
the condition in line 11 as true, and will not abort; rather it will add p′ to a chain, say
c, which in the current case will be terminated at s. Since one chain is terminated at s
out of the X(Ĉ, s) chains active on (s− 1, s) in Ĉ, X(Ĉ, s+ 1) = X(Ĉ, s)− 1. In C∗ too, a
chain (the one containing p′) is terminated at s, i.e., X(C∗, s+ 1) = X(C∗, s)− 1. Hence,
Invariant I holds at s+ 1. For Invariant II, we need to consider two subcases :
a. Suppose in Ĉ, the chain terminated at s has weight 2T or more. Then, by the same

argument as in case 2a, Invariant II holds at s+ 1.
b. Suppose in Ĉ, the chain terminated at s has weight less than 2T . Then each of the

other upstream ending active chains too must have a weight less than 2T , and we
know that each of the (less than 2T ) downstream ending active chains has weight less
than 6T . The same chains are also active on (s, s+ 1) with same weights before s+ 1
as before s. Then X(Ĉ, s+ 1) ≤ 9T implies W (Ĉ, s+ 1) < 7T · 2T + 2T · 6T = 26T 2.
Since W (C∗, s+ 1) ≥ 0, Invariant II holds at s+ 1.

6. A long external train p′, and a hole h or a short internal train p at s
In each of the sets Ĉ and C∗, p′ is added to a chain which is then terminated at s, and
a chain begins at s with h or p. For Ĉ by construction, and for C∗ being maximally
extended, no other chain is terminated at s. Therefore, X(Ĉ, s + 1) = X(Ĉ, s) and
X(C∗, s+ 1) = X(C∗, s), implying that Invariant I holds at s+ 1. For the change in total
weights due to the termination of a chain, the same arguments hold as in the cases 5a
and 5b. Moreover, the chain that begins at s contributes to the total weight of active
chains before (s+ 1) by the same amount in Ĉ as in C∗. Hence, Invariant II also holds at
s+ 1. J

5.2 Scheduling
If T is a feasible last-entry-time, then a chain set Ĉ is returned by the partitioning procedure,
and has a congestion O(T ) and maximum age O(T ). Clearly, the age and congestion are

5 The last train p† in such a chain c ends at or downstream of s, and has a path-length less than T since
if p† were long then c would already be terminated before s. Therefore, p† must originate at one of the
T − 1 nearest stations before s, each of which has at most two trains – one internal and one external.
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lower bounds on the last-entry-time with which the chains can be scheduled. However, to
schedule them with last-entry-time better than Θ(T 2), the train-movements and hole-jumps of
different chains need to be effectively pipelined. This is the goal of our scheduling procedure.

The procedure first splits the original big problem of scheduling the chains into several
small scheduling problems. For this, it assigns a random initial rank O(T ) independently
to every chain, and then successively incremental ranks to the holes and the movements of
non-terminal trains of the chain. Since the total number of train-movements and holes in any
chain is O(T ), the maximum value of rank assigned is O(T ). The original big problem has
thus been broken down to as many small problems as the total number Γ = O(T ) of distinct
ranks. The ith small problem consists of the train-movements and holes of rank i, and the
goal is to make every hole jump over its entire extent (Section 5.2.1) as well as to perform
all the train-movements. Each small problem involves at most one hole or train-movement
from every chain, and has a congestion O(logN) w.h.p. Note that the idea of using random
delays in order to achieve effective pipelining is not new – it has been used in many previous
works, e.g. [14] and [13].

Next, the procedure solves each small problem by using interval graph colouring to
partition its set of train-movements and holes into O(logN) subsets. The colouring ensures
that the extents of hole-jumps and train-movements in each subset are mutually disjoint, so
that they can be scheduled to take place in a single step.

Thus, the procedure consists of two subroutines – (i) the ranking subroutine which assigns
the ranks, and (ii) the scheduling subroutine which builds the schedule as a sequence of
several phases, the ith phase consisting of hole-jumps and train-movements of rank i. The
number of distinct values of the ranks is O(T ), as we prove in Theorem 10. The number
of steps in every phase is O(logN) w.h.p., as proved in Theorem 11. Hence, the schedule
achieves a last-entry-time O(T logN) w.h.p.

5.2.1 The ranking subroutine
First, to every chain c ∈ Ĉ, independently assign a random initial rank γ(c) from the range
{1, 2, . . . T}. Then, to every entry and movement in chain c (except movements following
the entry of the terminal train, say p†, of c), assign a rank equal to the sum of γ(c) and the
number of previous movements and entries in the chain. Let γ(c, †) denote the rank of the
last entry, that of the terminal train p†, in chain c. Let Γ be the maximum among all ranks.

For every link (s− 1, s) on the path of a train p on the line, the extent of movement of p
across that link is defined as the interval (s− 1, s). For every external train p′ that enters a
station s′ filling a hole h either pre-existing or created at some station s < s′, the extent of
entry of p′ is defined as (s, s′); the hole h is also said to have the same extent.

5.2.2 The scheduling subroutine
For each i ∈ {1, . . . ,Γ}, in ith phase, all movements and entries having rank i are scheduled.
Since those with overlapping extents cannot be scheduled in same step, a minimal interval
colouring is first computed for the set of all extents with rank i. Movements and entries
(only those not already scheduled for an earlier step as incidental movements and entries)
whose extents have colour j are scheduled for the jth step of the ith phase; interval colouring
ensures that they do not conflict. Thus, if Ki is the number of colours used in the colouring,
then the ith phase has Ki steps. Hence, last-entry-time of the schedule is at most

∑Γ
i=1Ki.

All external trains have entered the line by the end of the Γth phase. Therefore, after that,
all trains not already vanished are trivially scheduled to move non-stop to their destinations.
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Note that for the jth step of ith phase, along with the designated movements and entries
(i.e., the ones having rank i and colour j), those movements (with higher value of rank
or colour) are also scheduled which do not conflict with the designated ones. Similarly,
those non-conflicting entries (with higher rank or colour) also take place in the same step
whose holes-to-be-filled happen to move to the respective entry stations in this step. These
additional movements and entries are what we earlier qualified as incidental.

5.2.3 Analysis
I Theorem 10. Γ < 7T

Proof. By definition, rank γ(c, †) assigned to the last entry of a chain c is one unit less than
the sum of the age of c and its initial rank γ(c) ≤ T . From Theorem 9, the age of every chain
in Ĉ is less than 6T . Hence, γ(c, †) < 7T for every chain c, and Γ = maxc γ(c, †) < 7T . J

I Theorem 11. For each i ∈ {1, . . . ,Γ}, number of steps in the ith phase is O(logN) w.h.p.

Proof. Let Ĉ be the set of chains returned by the partitioning procedure for target time
T . Let r ≤ Γ be any rank, and l be any link. From Theorem 9, the congestion produced
by Ĉ in l is at most 9T . For each of at most 9T chains which cross l, extent of exactly one
movement or entry of the chain includes l. Let El be the set of all extents which include l.
Then |El| ≤ 9T , and the extents in El belong to distinct chains.

For every extent ε ∈ El, let Xε be a binary random variable which takes a value 1 if
the extent ε is assigned the rank r, and a value 0 otherwise. Note that the value of Xε

depends entirely on the random initial rank γ(cε) assigned to the chain, say cε, to which the
extent ε belongs. Moreover, recall that the random rank is assigned to cε independently of
other chains. Then, since the extents in El belong to different chains, Xε are independent
Bernoulli random variables. Furthermore, for any extent ε, at most one (if any) out of T
equally probable values for γ(cε) can lead to rank r be assigned to ε, i.e., P [Xε = 1] ≤ 1

T .
Let X :=

∑
ε∈El

Xε, i.e., X counts the extents which include l and have rank r. Then

µ := E[X] ≤ |El|
T ≤ 9. Applying the Chernoff bound P [X ≥ λ] ≤

(
λ
µe

)−λ
∀λ ≥ 0, we have :

P [X ≥ k lgN ] ≤
(
k lgN

9e

)−k lgN
=
(

9e
k lgN

)k lgN
≤ 1

4k lg N = N−2k ∀k ≥ 9e, ∀N ≥ 16
Thus, the probability that l is included in more than k lgN extents with rank r is less than
N−2k. Since there are only N links and only Γ different values for rank, and since Γ < 7T
from Theorem 10, the probability that any link is included in more than k lgN extents
having same rank is less than N ·7T

N2k < N−k. That is, the probability that no more than
k lgN extents of same rank include a common link is greater than (1 −N−k). Therefore,
with a probability greater than (1−N−k), for every i ∈ {1, . . . ,Γ}, the number Ki of colours
required in the minimal colouring of the extents with rank i is at most k lgN , and hence the
number of steps in the ith phase is at most k lgN . J

6 Conclusion

The most important open question is whether computing a constant factor approximation for
the Train Scheduling problem is NP-hard. Natural generalisations – like multiple platforms
at stations, unequal lengths of links, different speeds of trains, relative priorities of trains,
and multiple parallel links between stations – should also be studied to bring the model
closer to real-life problems.
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