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Abstract
This work provides a simplified proof of the statistical minimax optimality of (iterate averaged)
stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by
analyzing SGD as a stochastic process and by sharply characterizing the stationary covariance
matrix of this process. The finite rate optimality characterization captures the constant factors
and addresses model mis-specification.
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1 Introduction

Stochastic gradient descent is among the most commonly used practical algorithms for large
scale stochastic optimization. The seminal result of [9, 8] formalized this effectiveness,
showing that for certain (locally quadric) problems, asymptotically, stochastic gradient
descent is statistically minimax optimal (provided the iterates are averaged). There are
a number of more modern proofs [1, 3, 2, 5] of this fact, which provide finite rates of
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2:2 A Markov Chain Approach to Show Minimax Optimality of SGD for Least Squares

convergence. Other recent algorithms also achieve the statistically optimal minimax rate,
with finite convergence rates [4].

This work provides a short proof of this minimax optimality for SGD for the special case
of least squares through a characterization of SGD as a stochastic process. The proof builds
on ideas developed in [2, 5].

SGD for least squares. The expected square loss for w ∈ Rd over input-output pairs (x, y),
where x ∈ Rd and y ∈ R are sampled from a distribution D, is:

L(w) = 1
2 E(x,y)∼D[(y − w · x)2]

The optimal weight is denoted by:

w∗ := argmin
w

L(w) .

Assume the argmin in unique.
Stochastic gradient descent proceeds as follows: at each iteration t, using an i.i.d. sample

(xt, yt) ∼ D, the update of wt is:

wt = wt−1 + γ(yt − wt−1 · xt)xt

where γ is a fixed stepsize.

Notation. For a symmetric positive definite matrix A and a vector x, define:

‖x‖2
A := x>Ax.

For a symmetric matrix M , define the induced matrix norm under A as:

‖M‖A := max
‖v‖=1

v>Mv

v>Av
= ‖A−1/2MA−1/2‖ .

The statistically optimal rate. Using n samples (and for large enough n), the minimax
optimal rate is achieved by the maximum likelihood estimator (the MLE), or, equivalently,
the empirical risk minimizer. Given n i.i.d. samples {(xi, yi)}ni=1, define

ŵMLE
n := arg min

w

1
n

n∑
i=1

1
2 (yi − w · xi)2

where ŵMLE
n denotes the MLE estimator over the n samples.

This rate can be characterized as follows: define

σ2
MLE := 1

2E
[
(y − w∗x)2‖x‖2

H−1

]
,

and the (asymptotic) rate of the MLE is σ2
MLE/n [7, 10]. Precisely,

lim
n→∞

E[L(ŵMLE
n )]− L(w∗)
σ2

MLE/n
= 1,

The works of [9, 8] proved that a certain averaged stochastic gradient method achieves this
minimax rate, in the limit.



P. Jain, S.M.Kakade, R. Kidambi, P. Netrapalli, V. K. Pillutla, and A. Sidford 2:3

For the case of additive noise models (i.e. the “well-specified” case), the assumption is
that y = w∗ · x+ η, with η being independent of x). Here, it is straightforward to see that:

σ2
MLE
n

= 1
2
dσ2

n
.

The rate of σ2
MLE/n is still minimax optimal even among mis-specified models, where the

additive noise assumption may not hold [6, 7, 10].

Assumptions. Assume the fourth moment of x is finite. Denote the second moment matrix
of x as

H := E[xx>] ,

and suppose H is strictly positive definite with minimal eigenvalue:

µ := σmin(H) .

Define R2 as the smallest value which satisfies:

E[‖x‖2xx>] � R2E[xx>] .

This implies Tr(H) = E‖x‖2 ≤ R2.

2 Statistical Risk Bounds

Define:

Σ := E[(y − w∗x)2xx>] ,

and so the optimal constant in the rate can be written as:

σ2
MLE = 1

2Tr(H−1Σ) = 1
2E
[
(y − w∗x)2‖x‖2

H−1

]
,

For the mis-specified case, it is helpful to define:

ρmisspec := d‖Σ‖H
Tr(H−1Σ) ,

which can be viewed as a measure of how mis-specified the model is. Note if the model is
well-specified, then ρmisspec = 1.

Denote the average iterate, averaged from iteration t to T , by:

wt:T := 1
T − t

T−1∑
t′=t

wt′ .

I Theorem 1. Suppose γ < 1
R2 . The risk is bounded as:

E[L(wt:T )]− L(w∗)

≤
(√

1
2 exp

(
− γµt

)
R2‖w0 − w∗‖2 +

√(
1 + γR2

1− γR2 ρmisspec
)σ2

MLE
T − t

)2
.
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2:4 A Markov Chain Approach to Show Minimax Optimality of SGD for Least Squares

The bias term (the first term) decays at a geometric rate (one can set t = T/2 or maintain
multiple running averages if T is not known in advance). If γ = 1/(2R2) and the model is
well-specified (ρmisspec = 1), then the variance term is 2σMLE/

√
T − t, and the rate of the

bias contraction is µ/R2. If the model is not well specified, then using a smaller stepsize of
γ = 1/(2ρmisspecR

2), leads to the same minimax optimal rate (up to a constant factor of 2),
albeit at a slower bias contraction rate. In the mis-specified case, an example in [5] shows
that such a smaller stepsize is required in order to be within a constant factor of the minimax
rate. An even smaller stepsize leads to a constant even closer to that of the optimal rate.

3 Analysis

The analysis first characterizes a bias/variance decomposition, where the variance is bounded
in terms of properties of the stationary covariance of wt. Then this asymptotic covariance
matrix is analyzed.

Throughout assume:

γ <
1
R2 .

3.1 The Bias-Variance Decomposition
The gradient at w∗ in iteration t is:

ξt := −(yt − w∗ · xt)xt ,

which is a mean 0 quantity. Also define:

Bt := I− xtx>t .

The update rule can be written as:

wt − w∗ = wt−1 − w∗ + γ(yt − wt−1 · xt)xt
= (I− γxtx>t )(wt−1 − w∗)− γξt
= Bt(wt−1 − w∗)− γξt .

Roughly speaking, the above shows how the process on wt − w∗ consists of a contraction
along with an addition of a zero mean quantity.

From recursion,

wt − w∗ = Bt · · ·B1(w0 − w∗)− γ (ξt +Btξt−1 + · · ·+Bt · · ·B2ξ1) .

This immediately leads to the following lemma.

I Lemma 2. The error is bounded as:

E[L(wt:T )]− L(w∗) ≤ 1
2

(√
E[‖wt:T − w∗‖2

H |ξ0 = · · · = ξT = 0]+√
E[‖wt:T − w∗‖2

H |w0 = w∗]
)2
,

where

E[‖wt:T − w∗‖2
H |ξ0 = · · · = ξT = 0] = E‖Bt · · ·B1(w0 − w∗)‖2

H ,

E[‖wt:T − w∗‖2
H |w0 = w∗] = γ2E‖ξt +Btξt−1 + · · ·+Bt · · ·B2ξ1‖2

H .
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The first term can be interpreted as the bias. E[‖wt:T − w∗‖2
H |ξ0 = · · · = ξT = 0] is the

risk in a process without additive noise; the conditioning is a little misleading and is meant to
denote the error in a process without additive noise. The second term, when squared, gives
rise to the variance; it is the error under a process driven solely by noise where w0 = w∗.

Proof. First, for vector valued random variables u and v, the fact that (Eu>Hv)2 ≤
E[‖u‖2

H ]E[‖v‖2
H ] implies

E‖u+ v‖2
H ≤

(√
E‖u‖2

H +
√
E‖v‖2

H

)2
.

To complete the proof of the lemma, note EL(w)− L(w∗) = 1
2E‖w − w

∗‖2
H . J

Bias. The bias term is characterized as follows:

I Lemma 3. For all t,

E[‖wt:T − w∗‖2
H |ξ0 = · · · = ξT = 0] ≤ exp(−γµt)‖w0 − w∗‖2 .

Proof. Assume ξt = 0 for all t. Observe:

E‖wt − w∗‖2 = E‖wt−1 − w∗‖2 − 2γ(wt−1 − w∗)>E[xx>](wt−1 − w∗)
+γ2(wt−1 − w∗)>E[‖x‖2xx>](wt−1 − w∗)

≤ E‖wt−1 − w∗‖2 − 2γ(wt−1 − w∗)>H(wt−1 − w∗)
+γ2R2(wt−1 − w∗)>H(wt−1 − w∗)

≤ E‖wt−1 − w∗‖2 − γE‖wt−1 − w∗‖2
H

≤ (1− γµ)E‖wt−1 − w∗‖2 ,

which completes the proof. J

Variance. Now suppose w0 = w∗. Define the covariance matrix:

Ct := E[(wt − w∗)(wt − w∗)>|w0 = w∗]

Using the recursion, wt − w∗ = Bt(wt−1 − w∗) + γξt,

Ct+1 = Ct − γHCt − γCtH + γ2E[(x>Ctx)xx>] + γ2Σ (1)

which follows from:

E[(wt − w∗)ξ>t+1] = 0 , and E[(xt+1x
>
t+1)(wt − w∗)ξ>t+1] = 0

(these hold since wt − w∗ is mean 0 and both xt+1 and ξt+1 are independent of wt − w∗).

I Lemma 4. Suppose w0 = w∗. There exists a unique C∞ such that:

0 = C0 � C1 � · · · � C∞

where C∞ satisfies:

C∞ = C∞ − γHC∞ − γC∞H + γ2E[(x>C∞x)xx>] + γ2Σ . (2)

FSTTCS 2017
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Proof. By recursion,

wt − w∗ = Bt(wt−1 − w∗) + γξt

= γ (ξt +Btξt−1 + · · ·+Bt · · ·B2ξ1) .

Using that ξt is mean zero and independent of Bt′ and ξt′ for t < t′,

Ct = γ2 (E[ξtξ>t ] + E[Btξt−1ξ
>
t−1Bt] + · · ·+ E[Bt · · ·B2ξ1ξ

>
1 B
>
2 · · ·B>t ]

)
Now using that E[ξ1ξ

>
1 ] = Σ and that ξt and Bt′ are independent (for t 6= t′),

Ct = γ2 (Σ + E[B2ΣB2] + · · ·+ E[Bt · · ·B2ΣB>2 · · ·B>t ]
)

= Ct−1 + γ2E[Bt · · ·B2ΣB>2 · · ·B>t ]

which proves Ct−1 � Ct.
To prove the limit exists, it suffices to first argue the trace of Ct is uniformly bounded

from above, for all t. By taking the trace of update rule, Equation 1, for Ct,

Tr(Ct+1) = Tr(Ct)− 2γTr(HCt) + γ2Tr(E[(x>Ctx)xx>]) + γ2Tr(Σ) .

Observe:

Tr(E[(x>Ctx)xx>]) = Tr(E[(x>Ctx)‖x‖2]) = Tr(CtE[‖x‖2xx>]) ≤ R2Tr(CtH) (3)

and, using γ ≤ 1/R2,

Tr(Ct+1) ≤ Tr(Ct)− γTr(HCt) + γ2Tr(Σ) ≤ (1− γµ)Tr(Ct) + γ2Tr(Σ) ≤ γTr(Σ)
µ

.

proving the uniform boundedness of the trace of Ct. Now, for any fixed v, the limit of v>Ctv
exists, by the monotone convergence theorem. From this, it follows that every entry of the
matrix Ct converges. J

I Lemma 5. Define:

wT := 1
T

T−1∑
t=0

wt .

and so:

1
2E[‖wT − w∗‖2

H |w0 = w∗] ≤ Tr(C∞)
γT

Proof. Note

E[(wT − w∗)(wT − w∗)>|w0 = w∗]

= 1
T 2

T−1∑
t=0

T−1∑
t′=0

E[(wt − w∗)(wt′ − w∗)>|w0 = w∗]

� 1
T 2

T−1∑
t=0

T−1∑
t′=t

(
E[(wt − w∗)(wt′ − w∗)>|w0 = w∗]+

E[(wt′ − w∗)(wt − w∗)>|w0 = w∗]
)
,
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double counting the diagonal terms E[(wt − w∗)(wt − w∗)>|w0 = w∗] � 0. For t ≤ t′,
E[(wt′−w∗)|w0 = w∗] = (I−γH)t′−tE[(wt−w∗)|w0 = w∗]. To see why, consider the recursion
wt−w∗ = (I− γxtx>t )(wt−1−w∗)− γξt and take expectations to get E[wt−w∗|w0 = w∗] =
(I− γH)E[wt−1 − w∗|w0 = w∗] since the sample xt is is independent of the wt−1. From this,

E[(wT − w∗)(wT − w∗)>|w0 = w∗] � 1
T 2

T−1∑
t=0

T−t−1∑
τ=0

(I − γH)τCt + Ct(I− γH)τ ,

and so,

E[‖wT − w∗‖2
H |w0 = w∗] = Tr

(
HE[(wT − w∗)(wT − w∗)>|w0 = w∗]

)
≤ 1
T 2

T−1∑
t=0

T−t−1∑
τ=0

Tr
(
H(I− γH)τCt

)
+ Tr

(
Ct(I− γH)τH

)
.

Notice that H(I − γH)τ = (I − γH)τH for any non-negative integer τ . Since H � 0 and
I − γH � 0, H(I− γH)τ � 0 because the product of two commuting PSD matrices is PSD.
Also note that for PSD matrices A,B, TrAB ≥ 0. Hence,

E[‖wT − w∗‖2
H |w0 = w∗] ≤ 2

T 2

T−1∑
t=0

∞∑
τ=0

Tr
(
H(I− γH)τCt

)
= 2
T 2

T−1∑
t=0

Tr
(
H(

∞∑
τ=0

(I− γH)τ )Ct
)

= 2
T 2

T−1∑
t=0

Tr
(
H(γH)−1Ct

)
(∗)

= 2
γT 2

T−1∑
t=0

Tr(Ct)

≤ 2
γT
· Tr(C∞) ,

from lemma 4 where (∗) followed from

(γH)−1 = (I− (I− γH))−1 =
∞∑
τ=0

(I− γH)τ ,

and the series converges because I− γH ≺ I. J

3.2 Stationary Distribution Analysis
Define two linear operators on symmetric matrices, S and T — where S and T can be viewed
as matrices acting on

(
d+1

2
)
dimensions — as follows:

S ◦M := E[(x>Mx)xx>] , T ◦M := HM +MH .

With this, C∞ is the solution to:

T ◦ C∞ = γS ◦ C∞ + γΣ (4)

(due to Equation 2).

FSTTCS 2017
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I Lemma 6. (Crude C∞ bound) C∞ is bounded as:

C∞ �
γ‖Σ‖H
1− γR2 I .

Proof. Define one more linear operator as follows:

T̃ ◦M := T ◦M − γHMH = HM +MH − γHMH .

The inverse of this operator can be written as:

T̃ −1 ◦M = γ

∞∑
t=0

(I− γT̃ )t ◦M = γ

∞∑
t=0

(I− γH)tM(I− γH)t .

which exists since the sum converges due to that 0 � I− γH � I.
A few inequalities are helpful: If 0 �M �M ′, then

0 � T̃ −1 ◦M � T̃ −1 ◦M ′ , (5)

since

T̃ −1 ◦M = γ

∞∑
t=0

(I− γH)tM(I− γH)t � γ
∞∑
t=0

(I− γH)tM ′(I− γH)t = T̃ −1 ◦M ′ ,

(which follows since 0 � I− γH). Also, if 0 �M �M ′, then

0 � S ◦M � S ◦M ′ , (6)

which implies:

0 � T̃ −1 ◦ S ◦M � T̃ −1 ◦ S ◦M ′ . (7)

The following inequality is also of use:

Σ � ‖H−1/2ΣH−1/2‖H = ‖Σ‖HH .

By definition of T̃ ,

T̃ ◦ C∞ = γS ◦ C∞ + γΣ− γHC∞H .

Using this and Equation 5,

C∞ = γT̃ −1 ◦ S ◦ C∞ + γT̃ −1 ◦ Σ− γT̃ −1 ◦ (HC∞H)
� γT̃ −1 ◦ S ◦ C∞ + γT̃ −1 ◦ Σ
� γT̃ −1 ◦ S ◦ C∞ + γ‖Σ‖H T̃ −1 ◦H .

Proceeding recursively by using Equation 7,

C∞ � (γT̃ −1 ◦ S)2 ◦ C∞ + γ‖Σ‖H(γT̃ −1 ◦ S) ◦ T̃ −1 ◦H + γ‖Σ‖H T̃ −1 ◦H

� γ‖Σ‖H
∞∑
t=0

(γT̃ −1 ◦ S)t ◦ T̃ −1 ◦H .

Using

S ◦ I � R2H
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and

T̃ −1 ◦H

= γ

∞∑
t=0

(I− γH)2tH = γ

∞∑
t=0

(I− γ2H + γ2H)tH � γ
∞∑
t=0

(I− γH)tH = γ(γH)−1H = I

leads to

C∞ � γ‖Σ‖H
∞∑
t=0

(γR2)tI = γ‖Σ‖H
1− γR2 I ,

which completes the proof. J

I Lemma 7. (Refined C∞ bound) The Tr(C∞) is bounded as:

Tr(C∞) ≤ γ

2 Tr(H−1Σ) + 1
2

γ2R2

1− γR2 d‖Σ‖H

Proof. From Lemma 6 and Equation 6,

S ◦ C∞ �
γ‖Σ‖H
1− γR2 S ◦ I � γR2‖Σ‖H

1− γR2 H .

Also, from Equation 2, C∞ satisfies:

HC∞ + C∞H = γS ◦ C∞ + γΣ .

Multiplying this by H−1 and taking the trace leads to:

Tr(C∞) = γ

2 Tr(H−1 · (S ◦ C∞)) + γ

2 Tr(H−1Σ)

≤ 1
2

γ2R2

1− γR2 ‖Σ‖H Tr(H−1H) + γ

2 Tr(H−1Σ)

= 1
2

γ2R2

1− γR2 d‖Σ‖H + γ

2 Tr(H−1Σ)

which completes the proof. J

3.3 Completing the proof of Theorem 1
Proof. The proof of the theorem is completed by applying the developed lemmas. For the
bias term, using convexity leads to:

1
2E[‖wt:T − w∗‖2

H |ξ0 = · · · ξT = 0] ≤ 1
2R

2E[‖wt:T − w∗‖2|ξ0 = · · · ξT = 0]

≤ 1
2
R2

T − t

T−1∑
t′=t

E[‖wt′ − w∗‖2|ξ0 = · · · ξT = 0]

≤ 1
2 exp(−γµt)R2‖w0 − w∗‖2 .

For the variance term, observe that

1
2E[‖wt:T − w∗‖2

H |w0 = w∗] ≤ Tr(C∞)
γ(T − t) ≤

1
T − t

(
1
2Tr(H−1Σ) + 1

2
γR2

1− γR2 d‖Σ‖H
)
,

which completes the proof. J
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