
Popular Matchings with Lower Quotas∗

Meghana Nasre1 and Prajakta Nimbhorkar2

1 Indian Institute of Technology, Madras, India
meghana@cse.iitm.ac.in

2 Chennai Mathematical Institute, India
prajakta@cmi.ac.in

Abstract
We consider the well-studied Hospital Residents (HR) problem in the presence of lower quotas
(LQ). The input instance consists of a bipartite graph G = (R ∪ H, E) where R and H denote
sets of residents and hospitals, respectively. Every vertex has a preference list that imposes a
strict ordering on its neighbors. In addition, each hospital h has an associated upper-quota q+(h)
and a lower-quota q−(h). A matching M in G is an assignment of residents to hospitals, and
M is said to be feasible if every resident is assigned to at most one hospital and a hospital h is
assigned at least q−(h) and at most q+(h) residents.

Stability is a de-facto notion of optimality in a model where both sets of vertices have pref-
erences. A matching is stable if no unassigned pair has an incentive to deviate from it. It is
well-known that an instance of the HRLQ problem need not admit a feasible stable matching.
In this paper, we consider the notion of popularity for the HRLQ problem. A matching M is
popular if no other matching M ′ gets more votes than M when vertices vote between M and
M ′. When there are no lower quotas, there always exists a stable matching and it is known that
every stable matching is popular.

We show that in an HRLQ instance, although a feasible stable matching need not exist,
there is always a matching that is popular in the set of feasible matchings. We give an efficient
algorithm to compute a maximum cardinality matching that is popular amongst all the feasible
matchings in an HRLQ instance.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases bipartite matchings, preferences, hospital residents, lower-quota, popular
matchings

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.44

1 Introduction

In this paper we consider the Hospital Residents problem in the presence of Lower Quotas
(HRLQ). The input to our problem is a bipartite graph G = (R∪H, E) where R denotes the
set of residents, and H denotes the set of hospitals. Every resident as well as hospital has a
non-empty preference ordering over a subset of elements of the other set. Every hospital
h ∈ H has a non-zero upper-quota q+(h) denoting the maximum number of residents that
can be assigned to h. In addition, every hospital h also has a non-negative lower-quota q−(h)
denoting the minimum number of residents that have to be assigned to h. The goal is to
assign residents to hospitals such that the upper and lower quotas of all the hospitals are
respected (that is, it is feasible) as well as the assignment is optimal with respect to the
preferences of the participants.

∗ A full version of the paper is available at [14], https://arxiv.org/abs/1704.07546.

© Meghana Nasre and Prajakta Nimbhorkar;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.44
https://arxiv.org/abs/1704.07546
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Popular Matchings with Lower Quotas

I Definition 1. A feasible matching M in G = (R ∪ H, E) is a subset of E such that
|M(r)| ≤ 1 for each r ∈ R and q−(h) ≤ |M(h)| ≤ q+(h) for each h ∈ H, where M(v) is the
set of neighbors of v in M .

Stability is a de-facto notion of optimality in settings where both sides have preferences. A
matching M (not necessarily feasible) is said to be stable if there is no blocking pair with
respect to M . A resident-hospital pair (r, h) blocks M if r is unmatched in M or prefers h
over M(r), and either |M(h)| < q+(h) or h prefers r over at least one resident in M(h).

There are simple instances of the HRLQ problem where there is no feasible matching
that is stable. We give an example here: Let R = {r},H = {h1, h2}, q+(h1) = q+(h2) = 1,
q−(h1) = 0, and q−(h2) = 1. Let preference list of r be 〈h1, h2〉. That is, r prefers h1 over h2.
The only stable matching here is M1 = {(r, h1)} which is not feasible as |M1(h2)| < q−(h2).
On the other hand, the only feasible matching M2 = {(r, h2)} is not stable as (r, h1) is a
blocking pair with respect to M2. This raises the question: given an HRLQ instance G,
does G admit a feasible stable matching? This can be answered by constructing an HR
instance G+ by disregarding the lower quotas of all hospitals in G. It is well-known that the
Gale-Shapley algorithm [5] computes a stable matching M in G+. Furthermore, from the
“Rural Hospitals Theorem” it is known that, in every stable matching of G+, each hospital is
matched to the same capacity [6, 17]. Thus G admits a stable feasible matching if and only
if M is feasible for G.

The HRLQ problem is motivated by practical scenarios like assigning medical interns
(residents) to hospitals. While matching residents to hospitals, rural hospitals often face the
problem of being understaffed with residents, for example the National Resident Matching
Program in the US [3, 16, 17]. In such real-world applications declaring that there is no feasible
stable matching is simply not a solution. On the other hand, any feasible matching that
disregards the preference lists completely is socially unacceptable. We address this issue by
relaxing the requirement of stability by an alternative notion of optimality namely popularity.
Our output matching M has two desirable criteria – firstly, it is a feasible matching in the
instance, assuming one such exists, and hence no hospital remains understaffed. Secondly, the
matching respects preferences of the participants, in particular, no majority of participants
wishes to deviate to another feasible matching in the instance.

Our contribution: We consider the notion of popularity for the HRLQ problem. Popularity
is a relaxation of stability and can be interpreted as overall stability. We define it formally
in Section 2. In this work, we present an efficient algorithm for the following two problems
in an HRLQ instance.
1. Computing a maximum cardinality matching popular in the set of feasible matchings.

We give an O(|R| · (|R|+ |H|+ |E|)) time algorithm for this problem.
2. Computing a popular matching amongst maximum cardinality feasible matchings. We

give an O(|R|2 · (|R|+ |H|+ |E|)) time algorithm for this problem.
Our algorithms are based on ideas introduced in earlier works on stable marriage (SM) and
HR problems[11, 3, 15]. In SM and HR problem, a popular matching is guaranteed to exist
because a stable matching always exists and it is also popular. On the other hand, in the
HRLQ setting even a stable matching may not exist. Yet, we prove that a feasible matching
that is popular amongst all feasible matchings always exists and is efficiently computable.
We believe that this is not only surprising but also a useful result in practical scenarios.
Moreover, our notion of popularity subsumes the notions proposed in [3] and [15] and is more
general than both. In [3], popularity is proved using linear programming, but our proofs for
popularity are combinatorial.

M. Nasre and P. Nimbhorkar 44:3

Overview of the algorithm: Our algorithms are reductions, that is, given an HRLQ instance
G, both our algorithms construct instances G′ and G′′ of the HR problem such that there is
a natural way to map a stable matching in G′ (respectively, G′′) to a feasible matching in G.
Moreover, any stable matching in G′ (G′′) gets mapped to a maximum cardinality matching
that is popular amongst all the feasible matchings in G (respectively, a matching that is
popular amongst all maximum cardinality matchings in G).

Organization of the paper: We define the notion of popularity in Section 2. The reduction
for computing a maximum cardinality popular matching amongst feasible matchings is given
in Section 3 and its correctness is proved in Section 4. Finally, Section 5 gives an overview
of the algorithm for computing a feasible matching that is popular amongst maximum
cardinality feasible matchings.

Related work: The notion of popularity was first proposed by Gärdenfors [7] in the stable-
marriage (SM) setting, where each vertex has capacity 1. The notion of popularity has
been well-studied since then [2, 10, 11, 9, 4, 12]. A linear-time algorithm to compute a
maximum cardinality popular matching in an HR instance is given in [3] and [15] with
different notions of popularity. Furthermore, for the SM and HR problem, it is known that
a matching that is popular amongst the maximum cardinality matchings exists and can be
computed in O(|E|(|R|+ |H|)) time [11, 15]. The reductions in our paper are inspired by
the work of [3, 4, 11, 15]. In all these earlier works, the main idea is to execute Gale-Shapley
algorithm on the HR instance and then allow unmatched residents to propose with increased
priority [11] certain number of times. As mentioned in [11], this idea was first proposed by
Király [13] in the context of approximation algorithms for the SM problem with ties. The
HRLQ problem has been recently considered in [1] and [8] in different settings. Very recently,
Yokoi [18] considered the notion of envy free matchings for the HRLQ problem. Similar to
popularity, envy-freeness is also a relaxation of stability. However, unlike popular matchings,
every instance of the HRLQ problem need not admit an envy free matching.

2 Notion of popularity

The notion of popularity uses votes from vertices to compare two matchings. For r ∈ R, and
any matching M in G, if r is unmatched in M then, M(r) = ⊥. A vertex prefers any of its
neighbours over ⊥. For a vertex u ∈ R ∪H, let x, y ∈ N(u) ∪ {⊥}, where N(u) denotes the
neighbours of u in G. We define voteu(x, y) = 1 if u prefers x over y, −1 if u prefers y over
x and 0 if x = y. Given two matchings M1 and M2 in the instance, for a resident r ∈ R, we
define voter(M1,M2) = voter(M1(r),M2(r)).

Voting for a hospital: A hospital h is assigned q+(h)-many votes to compare M1 and M2;
this is one vote per position of the hospital. If a position is not filled in a matching, we put a
⊥ there, so that |M1(h)| = |M2(h)| = q+(h).

In our voting scheme, hospital h is indifferent between M1 and M2 as far as its |M1(h) ∩
M2(h)| positions are concerned. To compare between the two sets M1(h) \ M2(h) and
M2(h)\M1(h), a hospital can decide any pairing of the elements of these two sets. We denote
this correspondence by corrh and call it the correspondence function of h. Note that corrh

is dependent on M1 and M2. Under this correspondence, for a resident r ∈M1(h) \M2(h),

FSTTCS 2017

44:4 Popular Matchings with Lower Quotas

corrh(r,M1,M2) is the resident in M2(h) \M1(h) corresponding to r. We define

voteh(M1,M2, corrh) =
∑

r∈M1(h)\M2(h)

voteh(r, corrh(r,M1,M2))

A hospital h prefers M1 over M2 under corrh if voteh(M1,M2, corrh) > 0. There are several
ways for a hospital to define the corrh function. For example, a hospital h may decide to
order and compare the two sets in the decreasing order of preferences (as in [15]) or in the
most adversarial order (as in [3]). That is, the order due to which h gives the least votes to
M1 when comparing it with M2. We believe that our definition offers flexibility to hospitals
to compare residents inM1(h)\M2(h) andM2(h)\M1(h) according to their custom designed
criteria. To compare M1 and M2, each hospital h fixes corrh. The disjoint union of these
functions, corr =

⊎
h corrh, called the correspondence function from M1 to M2 is then used

to define the collective votes of M1 compared to M2

∆(M1,M2, corr) =
∑
r∈R

voter(M1,M2) +
∑
h∈H

voteh(M1,M2, corrh)

We can now define popularity.

I Definition 2. A matching M1 is more popular than M2 (denoted as M1 �corr M2) under
corr if ∆(M1,M2, corr) > 0. A matching M1 is popular if there is no matching M2 such
that M2 �corr M1 for any choice of corr from M2 to M1.

It is important to note that, between two matchings M1 and M2, matching M1 may get more
votes than M2 under one correspondence function, but not under another correspondence
function. For M1 to be popular, we require that any other matching M2 does not get more
votes than M1 under any choice of correspondence function. Surprisingly, such a matching
indeed exists, as shown in Sections 3 and 4. We also note that both our algorithms (in fact
reductions), do not need as an input the correspondence function corr.

Decomposing M1 ⊕M2: In the one-to-one setting, M1 ⊕M2 for any two matchings M1
and M2 is a collection of vertex-disjoint paths and cycles. Our setting is many-to-one and
hence M1 ⊕M2 has a more complex structure. Here, we recall a simple algorithm from [15]
which, given two matchings M1 and M2 and a correspondence function corr from M1 to M2,
decomposes the edges of M1 ⊕M2 into (possibly non-simple) alternating paths and cycles.
Consider the graph G̃ = (R ∪H,M1 ⊕M2), for any two feasible matchings of the HRLQ
instance. We note that the degree of every resident in G̃ is at most 2 and the degree of every
hospital in G̃ is at most 2 · q+(h). Consider any connected component C of G̃ and let e ∈M1
be any edge in C. We show how to construct a unique maximal M1-alternating path or cycle
ρ containing e: Start with ρ = 〈e〉. Use the following inductive procedure.
1. Let r ∈ R be one end-point of ρ, and let (r,M1(r)) ∈ ρ. We grow ρ by adding the edge

(r,M2(r)). Similarly if (r,M2(r)) ∈ ρ, add (r,M1(r)) to ρ.
2. Let h ∈ H be an end-point of ρ, and let the last edge (r, h) on ρ be in M1 \M2. We

extend ρ by adding corrh(r,M1,M2) if it is not equal to ⊥. A similar step is performed
if the last edge on ρ is (r, h) ∈M2 \M1.

3. We stop the procedure when we complete a cycle (ensuring that the two adjacent residents
of a hospital h are corrh for each other according to h), or the path can no longer be
extended. Otherwise we go to Step 1 or Step 2 as applicable and repeat.

M. Nasre and P. Nimbhorkar 44:5

r1 : h1, h3, h4, h5

r2 : h2, h1, h3

r3 : h2, h1

r4 : h2

(0, 1) h1 : r1, r2, r3

(0, 1) h2 : r2, r3, r4

(0, 1) h3 : r1, r2

(0, 1) h4 : r1

(1, 1) h5 : r1

Figure 1 Resident and hospital preferences in G. The (0, 1) beside h1 denote the lower and upper
quotas of h1 respectively. Preferences can be read as: r1 prefers h1 followed by h3 and so on.

Labels on edges: While comparing M1 with M2 using corr, the voting scheme induces a
label on edges of M2 with respect to M1. Let (r, h) ∈M2. The label of (r, h) is (a, b) where
a = voter(M1(r),M2(r)) and b = voteh(corrh(r,M2,M1), r). Thus a, b ∈ {−1, 1}. Here it is
important to note that corrh is a bijection between M1(h) \M2(h) and M2(h) \M1(h).

3 Maximum cardinality popular matching

We first give some intuition and an example which illustrates the overall idea of our algorithm.
We then present a reduction from HRLQ to HR which simulates the algorithm.

At the high-level, our algorithm has three phases. In Phase-0 we simply execute the
hospital-proposing Gale-Shapley algorithm on G by disregarding lower quotas of all hospitals.
Let M0 be a matching obtained. Phase-1 is the “second chance phase”. In this phase,
all hospitals that are under-subscribed in M0 (a hospital h is under-subscribed in M if
|M(h)| < q+(h)), propose to residents in their preference list with increased priority and
a new matching M1 is obtained. The priority is simulated by assigning levels to hospitals.
Phase-0 is executed with all the hospitals at level 0. The priority of a hospital is increased
by increasing its level. A resident prefers a higher level hospital to any lower level hospital
irrespective of the relative positions of the hospitals in the his preference list.

Finally, Phase-2 is the “feasibility phase”. If there are deficient hospitals in M1 (h is
deficient in M if |M(h)| < q−(h)), they again apply with an even higher priority. This
process is repeated until there is no deficient hospital (we prove that |R| repetitions are
sufficient) and every under-subscribed hospital has got a second chance.

Example: Let G = (R ∪ H, E) where R = {r1, . . . , r4} and H = {h1, . . . , h5}. Figure 1
shows the quotas and the preferences of vertices in G.

The first part of the algorithm is an execution of hospital-proposing Gale-Shapley al-
gorithm, with all hospitals at level-0. This results in a stable but infeasible matching
M0 = {(r1, h

0
1), (r2, h

0
2)}. As h3, h4, h5 are under-subscribed in M0, their level is increased,

and h1
3, h

1
4, h

1
5 propose from the beginning of the respective preference lists. The hospital

h1
3 proposes to r1 which is accepted. This leaves h1 under-subscribed. However, note

that h0
1 has not yet exhausted its preference list, so h0

1 proposes to r3 and this proposal
is accepted. Also note that h1

4 and h1
5 do not get matched, as the only resident in their

preference list, r1, prefers h1
3 over them. This results in a larger but infeasible matching

M1 = {(r1, h
1
3), (r2, h

0
2), (r3, h

0
1)}.

We further increase the level of the deficient hospital h5, thus h2
5 proposes to r1. This

triggers a series of proposals (see Figure 2(b) and Figure 2(c) in Appendix A for details)
and we finally obtain the feasible matching M2 = {(r1, h

2
5), (r2, h

1
1), (r3, h

0
2)}. As all the

FSTTCS 2017

44:6 Popular Matchings with Lower Quotas

under-subscribed hospitals have exhausted their preference lists at level-0 and level-1 and
there are no deficient hospitals, the algorithm terminates.

Note that all the hospitals are allowed to propose at level-0, any under-subscribed
hospital is allowed to propose at level-1 (all hospitals except h2, in the example), whereas
only deficient hospitals are allowed to propose at level-2 and higher (h5 in the example).

3.1 The reduced graph G′

To simulate the above algorithm on an HRLQ instance G, we convert G to an HR instance
G′ = (R′ ∪ H′, E′). The main idea is to have in G′ multiple copies of every hospital in G
– the first two copies have capacity equal to upper-quota and the rest of the copies have
capacity equal to lower-quota. Furthermore, we need a suitably large set of dummy residents
to ensure that a matching in G′ matches at most upper-quota many non-dummy residents
across all copies of a hospital. We describe our reduction – we begin with vertices in G′.

The set H′: For each hospital h ∈ H we have ` copies h0, . . . , h`−1 of h in H′. Here
` = 2 +

∑
h∈H q

−(h). We need to define the capacities of all hospitals h ∈ H′ (recall G′ is an
HR instance, so we do not have lower quotas for h ∈ H′). For the upper quota of a hospital,
we use the term “capacity” in an HR instance whereas “upper quota” in an HRLQ instance.
The hospitals in H′ and their capacities are as described below:

H′ = {h0, . . . , h`−1 | h ∈ H}
Capacities of h ∈ H′: q+(hs) = q+(h), s ∈ {0, 1}

q+(hs) = q−(h), s ∈ {2, . . . , `− 1}

We call hospital hs ∈ H′ a level-s copy of h. Note that, if h ∈ H has zero lower-quota, then
h2, . . . , h`−1 have zero capacity in H′. As will be seen later, a resident prefers a hospital at a
higher level to any hospital at a lower level. The following observation is immediate.

I Observation 1. For a hospital h ∈ H, the sum of capacities of all the copies of h in G′ is
qh = 2 · q+(h) + (`− 2) · q−(h).

The set R′: The set of residents R′ consists of the set R along with a set of dummy
residents Dh corresponding to every hospital h ∈ H. The sets R′ and Dh are as defined
below:

R′ = R∪

(⋃
h∈H

Dh

)
where Dh =

⋃
s∈{0,...,`−2}

Ds
h ∀h ∈ H

Here Ds
h = {ds

h,1, . . . , d
s
h,q+(h)}, s ∈ {0, 1}

and Ds
h = {ds

h,1, . . . , d
s
h,q−(h)}, s ∈ {2, . . . , `− 2}

We refer to Dh as dummy residents corresponding to h and Ds
h as s-th set of dummy residents

corresponding to h. Note that, for a hospital h, for any level s except the last level, we have
dummy residents in Ds

h exactly equal to the capacity of hs in G′. For h ∈ H, if q−(h) = 0,
then Ds

h = ∅ for each s ∈ {2, . . . , `− 2}.

I Observation 2. For a hospital h ∈ H, the total number of dummy residents corresponding
h in R′ is |Dh| = 2 · q+(h) + (`− 3) · q−(h).

M. Nasre and P. Nimbhorkar 44:7

Preference lists: We denote by 〈listr〉 and 〈listh〉 the preference lists of r and h in G,
respectively. Furthermore, 〈Ds

h〉 denotes the strict list consisting of elements of Ds
h in

increasing order of indices. Finally, ◦ denotes the concatenation of two lists. We now describe
the preferences of hospitals and residents in G′.
Hospitals’ preference lists: For a hospital h in H, the preference lists of its copies hs ∈ H′ for
s ∈ {0, 1, . . . , `− 1} are given by:

s = 0 : 〈listh〉 ◦ 〈D0
h〉

s = 1 : 〈D0
h〉 ◦ 〈listh〉 ◦ 〈D1

h〉
s = 2 : 〈d1

h,k(h), . . . , d
1
h,q+(h)〉 ◦ 〈listh〉 ◦ 〈D

2
h〉, k(h) = q+(h)− q−(h) + 1

s ∈ {3, 4, . . . , `− 2} : 〈Ds−1
h 〉 ◦ 〈listh〉 ◦ 〈Ds

h〉

s = `− 1 : 〈D(`−2)
h 〉 ◦ 〈listh〉

The preference list of the level-2 copy of h is slightly different. In D1
h we have q+(h) dummy

residents but we want only q−(h) many out of them to be in the preference list of h2.
Residents’ preference lists: For any s ∈ {0, . . . , ` − 1}, and any r ∈ R, let 〈listr〉s denote
the list obtained by replacing every hospital h in 〈listr〉 by its level-s copy hs. Then the
preference list of r in G′ is given by:

For r ∈ R : 〈listr〉`−1 ◦ 〈listr〉`−2 ◦ . . . ◦ 〈listr〉0

Thus r prefers any level-s hospital to any level-(s− 1) hospital. For two hospitals at the same
level s, r prefers hs over h′s in G′ iff r prefers h over h′ in G. We now give the preference
list of every dummy resident in Dh. Recall that for any h ∈ H, k(h) = q+(h)− q−(h).

For h ∈ H, ds
h,i ∈ Dh :
s = 0 : h0, h1

s = 1, i ∈ {1, . . . , k(h)} : h1

s = 1, i ∈ {k(h) + 1, . . . , q+(h)} : h1, h2

s ∈ {2, . . . , `− 2} : hs, hs+1

3.2 Properties of the stable matching M ′ in G′

Having described the reduction from an HRLQ instance G to an HR instance G′, we now
discuss some useful properties of a stable matching M ′ in G′. With respect to a stable
matching M ′ in G′ we introduce the following definitions.

I Definition 3. Level-s resident: A non-dummy resident r ∈ R′ is said to be at level-s
in M ′ if r is matched to a level-s hospital in M ′. Let R′s denote the set of level-s residents.

I Definition 4. Active hospital: A hospital hs is said to be active inM ′ ifM ′(hs) contains
at least one non-dummy resident. Otherwise, (when all positions of hs are matched to dummy
residents), hs is said to be inactive.

In Lemma 5, we prove some invariants for any stable matching M ′ in G′. These invariants
allow us to define a natural map from M ′ to a matching M in G, and to show that M is
feasible as well as popular among feasible matchings.

I Lemma 5. The following hold for any stable matching M ′ in G′:
1. For any h ∈ H, M ′ matches at most q+(h) non-dummy residents across all its level copies

in G′.

FSTTCS 2017

44:8 Popular Matchings with Lower Quotas

2. The matching M ′ in G′ leaves only the level-(` − 1) copy of any hospital (if it exists)
under-subscribed.

3. Let hs ∈ H′ be active in M ′. Then,
(a) M ′(hs−1) contains at least one resident from the (s− 1)-th set of dummy residents.
(b) For 0 ≤ j ≤ s− 2, hj is inactive in M ′ and all positions of hj are matched to the

j-th set of dummy residents.
(c) For s+ 2 ≤ j ≤ `− 1, hj is inactive in M ′ and all positions of hj are matched to

the (j − 1)-th set of dummy residents.
4. For any h ∈ H, at most two consecutive level copies hs and hs+1 are active in M ′.
5. A level-s resident r in M ′ does not have any hospital h in its preference list which is

active at level-(s+ 2) or more in M ′.

Proof.
Proof of 1: We first note that the total capacity of all the copies of h in G′ is qh =
2 · q+(h) + (`− 2) · q−(h). Furthermore, the total number of dummy residents for h is
given by |Dh| = 2 · q+(h) + (` − 3) · q−(h). We now show that at most q+(h) − q−(h)
dummy residents out of Dh can remain unmatched in a stable matching M ′. Assuming
this, it is immediate that the total number of non-dummy residents that can be matched
across all copies of h is at most qh − {|Dh| − (q+(h)− q−(h))} = q+(h).
We now argue that at most q+(h)− q−(h) dummy residents of Dh can remain unmatched
in M ′. Consider the set of dummy residents corresponding to a hospital h ∈ H i.e.⋃`−2

s=0Ds
h. With the exception of h2, for any hs, D(s−1)

h are the most preferred q+(hs)
dummy residents of hs. A dummy resident ds−1

h,j which is a top choice for hs cannot
remain unmatched in M ′, else (ds−1

h,j , h
s) blocks M ′. Thus, these dummy residents can

never remain unmatched in M ′. The only dummy residents that are not the first choice
of any hospital and hence can remain unmatched are the subset of D1

h consisting of the
first q+(h) − q−(h) dummy residents from D1

h. This is because, by construction of G′,
only the last q−(h) dummy residents from D1

h are present in the preference list of h2 as
its top q+(h2) top-choices. This establishes that the number of dummy residents of Dh

that can remain unmatched in M ′ is at most q+(h)− q−(h).
Proof of 2: Consider a hospital h ∈ H. For each copy hs of h in H′, where s < `− 1, the
s-th set of dummy residents have hs as their first choice. Further, their number is same
as q+(hs). Thus hs can not remain under-subscribed in any stable matching M ′ of G′,
otherwise these dummy residents will form a blocking pair with hs.
Proof of 3a: For the sake of contradiction, assume that hs−1 is not matched to any resident
from the (s − 1)-th set of dummy residents and still hs is matched to a non-dummy
resident. As there are exactly q+(hs) many dummy residents in the preference list of
hs from the (s − 1)-th set and each dummy resident from the (s − 1)-th set has only
hs−1 and hs in its preference list, this means that there is a dummy resident d from its
(s− 1)-th set of dummy residents unmatched in M ′. But hs prefers any dummy resident
in its (s− 1)-th set of dummy residents over any non-dummy resident. Thus (d, hs) forms
a blocking pair with respect to M ′, contradicting the stability of M ′.
Proof of 3b: If hs is active and hj is matched to a non-dummy resident r for some
0 ≤ j ≤ s − 2, then (r, h(s−1)) is a blocking pair with respect to M ′. This is because,
as proved above, h(s−1) must be matched to at least one resident in D(s−1)

h , and h(s−1)

prefers any non-dummy resident over any dummy resident in D(s−1)
h .

Proof of 3c: If hs is active then hj can not be active for s + 2 ≤ j ≤ ` − 1 else h(j−1)

must be matched to a resident from D(j−1)
h as proved above, and then each non-dummy

resident r in M ′(hs) forms a blocking pair with hj contradicting the stability of M ′. But

M. Nasre and P. Nimbhorkar 44:9

if hs is active, then hj can not be matched to a dummy resident from Dj
h either, otherwise

a resident in M ′(hs) forms a blocking pair with hj−1. The latter is true because any
resident in 〈listh〉 prefers hj over hs for j > s and hj prefers any resident in listh to any
dummy resident in Dj

h. Hence hj must be matched to only dummy residents in D(j−1)
h .

Proof of 4: Assume the contrary. Thus let h be a hospital such that there are two levels
i and j, j < i− 1, where hi and hj are active in M ′. Further, assume that hi is matched
to ri and hj be matched to rj . Then, by part 3a above, hi−1 must be matched to at
least one resident from the (i − 1)-th set of dummy resident. But, by the structure of
preference lists, hi−1 prefers a non-dummy resident, and hence rj , over any resident in
the (i− 1)-th set of dummy residents. Also, rj prefers hi−1 over hj since j < i− 1. Thus
(rj , h

i−1) forms a blocking pair in G′ w.r.t. M ′, contradicting the stability of M ′.
Proof of 5: Let there be an edge (r, ht) in G′ such that r is a level-s resident and t ≥ s+ 2
and ht is active in M ′. Then, by part 3a above, ht−1 has at least one resident from
its (t − 1)-th set of dummy residents in M ′(hs+1). As r has edge to ht, r also has an
edge to ht−1 by construction of G′. Also, again by construction of G′, r prefers any
level-(t− 1) hospital over any level-s hospital and ht−1 prefers any non-dummy resident
in its preference list over any dummy resident in its (t− 1)-th set of dummy residents.
Thus (r, ht−1) forms a blocking pair with respect to M ′ in G′, contradicting its stability.

This completes the proof of all invariants. J

4 Proof of popularity

In this section, we show how to use the reduction in the previous section to compute a
maximum cardinality matching that is popular amongst all feasible matchings. Thus, amongst
all feasible matchings, our algorithm outputs the largest popular matching. We call such a
matching a maximum cardinality popular matching.

Our algorithm reduces the HRLQ instance G to an HR instance G′ as described in
Section 3. We then compute a stable matching M ′ in G′. Finally, to obtain a matching M
in G we describe a simple map function. For every h ∈ H, let M(h) = R∩

(⋃`−1
s=0 M

′(hs)
)
.

Note that M(h) denotes the set of non-dummy residents matched to any copy hs of h in M ′.
Thus, a resident r is matched to a hospital h in M if and only if r is matched to a level-s
copy of h in M ′ for some s ∈ {0, . . . , `− 1}. We say that M = map(M ′).

Division of R and H into subsets: We divide the residents and hospitals in G into subsets
depending upon a matching M ′ in G′. Let Ri be the set of non-dummy residents matched
to a level-i hospital hi in M ′. We define the same set Ri in G as well. Further, define Hj

to be the set of hospitals h ∈ H such that R∩M ′(hj) 6= ∅, that is, level-j copy hj of h is
active in M ′. Define the unmatched residents to be in R0. Also, a non-lower-quota hospital
h such that M(h) = ∅ is defined to be in H1, and a lower-quota hospital h with M(h) = ∅ is
defined to be in H`−1. The following lemma summarizes the properties of the sets Ri and
Hj . See full-version [14] for proof.

I Lemma 6. For a stable matching M ′ in G′, let M = map(M ′). The following hold:
1. Each hospital is present in at most two sets Hj , Hj+1 for some j. We say that h ∈

Hj ∩Hj+1.
2. If h ∈ Hj ∩Hj+1, then there is no edge from h to any r ∈ Ri where i ≤ j − 1.
3. All the non-lower-quota hospitals that are under-subscribed in M are in H1.
4. All the deficient lower-quota hospitals from M are in H`−1.

FSTTCS 2017

44:10 Popular Matchings with Lower Quotas

5. If a non-lower-quota hospital is under-subscribed, it has no edge to any resident in R0.
If a lower-quota hospital is deficient, it does not have an edge to any resident in Ri for
i < ` − 1. Similarly an unmatched resident does not have an edge to any hospital in
H1 ∪ . . . ∪H`−1.

6. Let h ∈ H be such that |M(h)| > q−(h). Then h /∈ H2 ∪ . . . ∪H`−1.

Throughout the following discussion, assume that M is a matching which is a map of a stable
matching M ′ in G′ and N is any feasible matching in G. Additionally, whenever we consider
the decomposition of M ⊕ N into paths and cycles, we use an arbitrary correspondence
function corr. Using Theorem 7 we prove that M is feasible in G.

I Theorem 7. If G admits a feasible matching, then M = map(M ′) is feasible for G.

Proof. Suppose M is not feasible. Thus, there is a deficient lower-quota hospital h inM . Let
N be a feasible matching in G. Consider decomposition of M ⊕N into (possibly non-simple)
paths and cycles using an arbitrary correspondence function corr (recall decomposition from
Section 2). As h is deficient in M and not deficient in N , there must be a path ρ in M ⊕N
ending in h. Moreover, if the other end of ρ is a hospital h′ then |M(h′)| − |N(h′)| > 0. Note
that in this case, ρ has even-length and hence ends with a M -edge. The other case is where
ρ ends in a resident r and hence ends with a N -edge. We consider the two cases below:
ρ ends in a hospital h′: As h is deficient in M , h ∈ H`−1 by part 4 of Lemma 6.
Also, since |M(h′)| > |N(h′)| ≥ q−(h′), by part 6 of Lemma 6, h′ ∈ H0 ∪H1. Thus ρ
starts at H`−1 and ends in H0 or H1. Let ρ = 〈h, r1, h1, r2, h2, . . . , rt, ht, r

′, h′〉, where
(ri, hi) ∈M and (r′, h′) ∈M . We show below that such a path ρ can not exist and hence
M must be feasible.
By part 5 of Lemma 6, h has edges only to residents in R`−1. Hence r1 ∈ R`−1 and
hence h1 ∈ H`−1. By part 2 of Lemma 6, h1 has no edges to residents in R0 ∪ . . . ∪R`−3.
Therefore r2 ∈ R`−1∪R`−2 and h2 ∈ H`−1∪H`−2. Thus each hi ∈ ρ can not be in Hj , for
any j < `− i. But h′ ∈ H0 ∪H1 and hence r′ ∈ R0 ∪R1. Therefore ht /∈ H3 ∪ . . .∪H`−1
by part 2 of Lemma 6, otherwise (ht, r

′) edge can not exist in G. In other words, ρ has to
contain at least one hospital from each level i, 1 ≤ i ≤ `− 1. Thus t ≥ `− 2. Moreover,
all the hospitals in ρ which are in H`−1 ∪ . . . ∪H2 are lower-quota hospitals. Thus ρ has
at least t+ 1 = `− 1 lower-quota hospitals. Note that this count includes repetitions, as
a hospital can appear multiple times in ρ. However, any hospital in H2 ∪ . . . ∪H`−1 can
not be matched to more than q−(h) residents in M by part 6 and hence can appear at
most q−(h) times on ρ. But then the sum of lower quotas of all the hospitals is ` − 2,
contradicting that ρ has a total of `− 1 occurrences of lower-quota hospitals. Thus such
a path ρ can not exist and M must be feasible.
ρ ends in a resident r: Now consider the case where ρ ends at a resident r. Then the
last edge on ρ must be a N -edge and hence r is unmatched in M . Therefore r ∈ R0.
Let ρ = 〈h, r1, h1, r2, h2, . . . , rt, ht, r〉 where (ri, hi) ∈M for 1 ≤ i ≤ t and the remaining
edges are in N . Consider the first hospital, say hj on ρ such that hj ∈ H2 and for each
hi, i < j, hi ∈ H3 ∪ . . . ∪H`−1. Such an hj has to exist by the argument given for the
previous case. Moreover, j ≥ `− 2 as ρ has to contain at least one hospital from each
level as described in the previous case. Thus the number of occurrences of lower-quota
hospitals on ρ exceeds the sum of lower quotas and hence such a ρ can not exist.

This completes the proof of the lemma. J

In Lemma 8 and Theorem 9 below, we give crucial properties of the division of R and H that
will be helpful in proving popularity of the matching M which is a map of a stable matching

M. Nasre and P. Nimbhorkar 44:11

M ′ in G′. For both of them, assume that corr is an arbitrary correspondence function from
N to M . The proofs appear in the full-version [14].

I Lemma 8. Let N be any feasible matching. Let (r, h) ∈ M and (r′, h) ∈ N such that
r′ = corrh(r,M,N). Further let h ∈ Hj ∩Hj+1 and r ∈ Rj+1. Further, let r′ ∈ Rj. Then
the label on (r′, h) edge is (−1,−1).

Let ρ = 〈h0, r1, h1, r2, h2, . . . , ht, rt+1〉 be a path in M ⊕ N where M = map(M ′) and
N is any feasible matching in G. Also, label the edges of N \M . See Section 2 for the
decomposition and labeling of edges.

I Theorem 9. Let ρ = 〈h0, r1, h1, r2, h2, . . . , ht, rt+1〉 be a path in M ⊕N as described above.
Here (rk, hk) ∈M for all k and (hk, rk+1) ∈ N with rk+1 = corrhk

(rk,M,N). Moreover, let
h0 ∈ Hp ∩Hp+1 and rt+1 ∈ Rq. Then the number of (1, 1) edges in ρ is at most the number
of (−1,−1) edges plus q − p.

Proof. We prove this by induction on the number of (−1,−1) edges. Note that, except h0,
all the his are matched in M ′, and hence we can consider them at the same level as their
matched residents.

Base case: Let ρ have no (−1,−1) edges. As ρ starts at h ∈ Hp ∩Hp+1, r1 has to be in
level-(p+1) or above. This is because there is no edge from h to a resident in R0∪ . . .∪Rp−1,
and if r1 ∈ Rp then by Lemma 8 the label on (h0, r1) must be (−1,−1). By assumption,
there is no (−1,−1) edge in ρ. So r1 ∈ Rj for some j, p+ 1 ≤ j ≤ `. Therefore h1 ∈ Hj .

Thus the path can only use edges from a hospital at a lower level to a resident at the
same or higher level. Further, there is no (1, 1) edge in Hk × Rk for any k; otherwise the
same edge blocks M ′ in G′ contradicting the stability of M ′. So (1, 1) edges can appear in ρ
only when it goes from a hospital in a lower level to a resident in a higher level. So there can
be at most q − p many (1, 1) edges on ρ.

Induction step: Let the theorem hold for at most i− 1 many (−1,−1) edges. Let (hk, rk+1)
be one such edge. Further, let hk ∈ Ha and rk+1 ∈ Rb. Consider the two subpaths
ρ1 = 〈h0, . . . , rk〉 and ρ2 = 〈hk+1 . . . , rt+1〉. As the number of (−1,−1) edges in each of ρ1
and ρ2 is less than i, the induction hypothesis holds. Therefore, the number of (1, 1) edges in
ρ1 is at most a− p plus the number of (−1,−1) edges in ρ1. Similarly, the number of (1, 1)
edges in ρ2 is q − b plus the number of (−1,−1) edges in ρ2. The number of (−1,−1) edges
in ρ is one more than the total number of (−1,−1) edges in ρ1 and ρ2. Hence the number of
(1, 1) edges in ρ is at most the number of (−1,−1) edges in ρ plus a− p+ q− b− 1. As there
is an edge between hk and rk+1, b ≥ a− 1 by Lemma 6 part 2. Thus a− p+ q− b− 1 ≤ q− p,
which completes the proof. J

Theorem 10 shows that M is a popular matching amongst all the feasible matchings in G.

I Theorem 10. Let N be any feasible matching in G and corr be an arbitrary correspondence
function from N to M .
1. If ρ is an alternating cycle in the decomposition of M ⊕N , then ∆(M ⊕ ρ,M, corr)1≤ 0.
2. If ρ is an alternating path in the decomposition of M ⊕ N with exactly one end-point

matched in M , then ∆(M ⊕ ρ,M, corr) ≤ 0.

1 Note that when comparing M ⊕ ρ with M , we use the restriction of the correspondence function corr
used to compare N with M . With the abuse of notation we refer to the restriction also as corr.

FSTTCS 2017

44:12 Popular Matchings with Lower Quotas

3. If ρ is an alternating path in the decomposition of M⊕N with both the end-points matched
in M then ∆(M ⊕ ρ,M, corr) ≤ 0.

Proof. We prove the three cases below.
1. Let ρ be an alternating cycle in M ⊕N . Further, let (r, h) ∈M . Consider ρ′ = ρ\{(r, h)}

which is an alternating path from h to r. The path ρ′ starts and ends at the same level.
Hence the number of (1, 1) edges on ρ′ is at most the number of (−1,−1) edges on ρ′.
The same holds for ρ.

2. Let ρ be an alternating path in M ⊕N with exactly one end-point matched in M . Thus
ρ has even length, and both its end-points are either hospitals or both are residents.
Consider the first case. So let ρ = 〈h0, r1, h1, . . . , rt, ht〉 where (ri, hi) ∈M for all i. Thus
|M(h0)| < |N(h0)| ≤ q+(h0), and hence h0 is under-subscribed. Then by part 3 of Lemma
6 and feasibility of M , h0 /∈ H0. By feasibility of N , ht ∈ H0 ∪ H1. As (rt, ht) ∈ M ,
r ∈ R0 ∪R1 by the definition of levels. Consider the subpath ρ′ = ρ \ {(rt, ht)} i.e. the
path obtained by removing the edge (rt, ht) from ρ. Applying Theorem 9 to ρ′ with p ≥ 1
and q = 0 or q = 1, we get the number of (1, 1) edges on ρ′ to be at most the number of
(−1,−1) edges on ρ′.
Consider the case when both the end-points of ρ are residents. Thus ρ =
〈r0, h1, r1, . . . , ht, rt〉 where (hi, ri) ∈ M for all i. Again consider ρ′ = ρ \ {(ht, rt)}.
As r0 is unmatched in M , r0 ∈ R0 by the definition of levels. Applying Theorem 9 to
ρ′ with q = 0, we get that the number of (1, 1) edges on ρ′ is at most the number of
(−1,−1) edges on ρ′.

3. Consider the case when both the end-points of the alternating path ρ are matched in
M . Thus one end-point of ρ is a hospital whereas the other end-point is a resident. Let
ρ = 〈r0, h0, . . . , rt, ht〉 where (ri, hi) ∈ M for all i. Hence |M(ht)| > |N(ht)| ≥ q−(ht)
by feasibility of N . Therefore ht ∈ H0 ∪H1 by part 6 of Lemma 6 which implies that
rt ∈ R0 ∪R1. Consider the subpath ρ′ = ρ \ {(r0, h0), (rt, ht)}. Thus ρ′ begins at h0 and
ends at rt. Applying Theorem 9 with q = 1 and 0 ≤ p ≤ ` gives that the number of (1, 1)
edges on ρ′, and hence on ρ, is at most one more than the number of (−1,−1) edges
on ρ. These votes in favor of N are compensated by the end-points r0 and ht as r0 is
unmatched in N and |M(ht)| > |N(ht)|.

This completes the proof of the theorem. J

The following lemma proves that M is a maximum cardinality popular matching in G.
The proof appears in the full-version [14].

I Lemma 11. Let N be any feasible matching in G such that |N | > |M |. For any arbitrary
correspondence function corr from N to M , ∆(N,M, corr) < 0.

Size of G′: Note that |H′| = ` · |H|. Furthermore, |R′| = |R|+(`−1) · |H|. The second term
in |R′| accounts for the number of dummy residents in G′. Finally, |E′| ≤ ` · |E|+2(`−1) · |H|.
The first term in |E′| is because the preference list of every hospital in G appears ` times in
G′. The second term is because every dummy resident in G′ appears on the preference list
of at most two hospitals in G′. Since, ` is upper bounded by |R|, the size of our HR instance
G′ is O(|R| · (|R|+ |H|+ |E|)). This is the same as the running time of our algorithm to
compute a maximum cardinality popular matching in G.

M. Nasre and P. Nimbhorkar 44:13

5 Popular matching amongst maximum cardinality feasible matchings

In this section our goal is to compute a maximum cardinality feasible matching that is
popular amongst the set of maximum cardinality feasible matchings. Our algorithm is similar
to the one described in Section 3. We give an overview of our algorithm and illustrate the
execution of the same on the example instance in Figure 1.

As in Section 3, the algorithm here is a three phase algorithm. Phase-0 and Phase-2 are
exactly as in Section 3. The modification is in Phase-1. In Section 3, we gave every hospital
a second chance to propose if it was under-subscribed in the output of Phase-0. Here, we give
(|R| − 1) chances for every hospital to propose if it is under-subscribed at the end of Phase-0.
To see this, recall the example instance in Figure 1. The output of hospital-proposing
Gale-Shapley algorithm with all hospitals at level-0 is the matching M0 = {(r1, h

0
1), (r2, h

0
2)}.

When all the under-subscribed hospitals are allowed to propose at level-1, the matching
obtained is M1 = {(r3, h

0
1), (r2, h

0
2), (r1, h

1
3)}. Note that h1

4 and h1
5 are still under-subscribed.

The execution continues with under-subscribed hospitals being allowed to propose at level-2
and then at level-3 (see Figure 2 (d), Appendix A for a detailed proposal sequence). The
matching obtained is M3 = {(r1, h

3
4), (r2, h

2
3), (r3, h

1
1), (r4, h

0
2)}. Note that this is a maximum

cardinality matching but it is infeasible as h5 is deficient.
Subsequently, the only deficient hospital h5 is allowed to propose at level-4. This results

in h4
5 applying to r1, and thus M3 gets changed to a feasible matching with maximum

cardinality, which is M4 = {(r1, h
4
5), (r2, h

2
3), (r3, h

1
1), (r4, h

0
2)}. A possible proposal sequence

can be found in table in Figure 2 (b) followed by Figure 2 (d) in Appendix A.
To simulate this algorithm, we again reduce the HRLQ instance G to an HR instance G′′

where every hospital has ` = |R|+
∑

h∈H q
−(h) many copies. In the interest of space, we

give the details of the reduction and proof of correctness in the full-version [14]. A similar
calculation for size of G′′ as in Section 4 and the fact that ` ≤ |R|2 gives us the size of G′′ as
O(|R|2 · (|R|+ |H|+ |E|)). This matches the running time of our algorithm in this section.

References
1 Péter Biró, Tamás Fleiner, Robert W. Irving, and David F. Manlove. The College Admis-

sions Problem with Lower and Common Quotas. Theoretical Computer Science, 411(34-
36):3136–3153, 2010.

2 Péter Biró, Robert W. Irving, and David Manlove. Popular Matchings in the Marriage and
Roommates Problems. In Proceedings of 7th International Conference on Algorithms anc
Complexity, pages 97–108, 2010.

3 Florian Brandl and Telikepalli Kavitha. Popular Matchings with Multiple Partners. CoRR,
abs/1609.07531 (To appear in Proceedings of the 37th IARCS Annual Conference on Found-
ations of Software Technology and Theoretical Computer Science), 2016.

4 Ágnes Cseh and Telikepalli Kavitha. Popular Edges and Dominant Matchings. In Pro-
ceedings of the 18th Conference on Integer Programming and Combinatorial Optimization,
pages 138–151, 2016.

5 David Gale and Llyod Shapley. College Admissions and the Stability of Marriage. American
Mathematical Monthly, 69:9–14, 1962.

6 David Gale and Marilda Sotomayor. Some Remarks on the Stable Matching Problem.
Discrete Applied Mathematics, 11(3):223–232, 1985.

7 Peter Gärdenfors. Match making: Assignments based on bilateral preferences. Behavioral
Science, 20(3):166–173, 1975.

8 Koki Hamada, Kazuo Iwama, and Shuichi Miyazaki. The Hospitals/Residents Problem
with Lower Quotas. Algorithmica, 74(1):440–465, 2016.

FSTTCS 2017

44:14 Popular Matchings with Lower Quotas

9 M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita. On The Structure of Popular
Matchings in The Stable Marriage Problem – Who Can Join a Popular Matching? In
Proceedings of the 3rd International Workshop on Matching Under Preferences, 2015.

10 Chien-Chung Huang and Telikepalli Kavitha. Popular Matchings in the Stable Marriage
Problem . Information and Computation, 222:180–194, 2013.

11 Telikepalli Kavitha. A Size-Popularity Tradeoff in the Stable Marriage Problem. SIAM
Journal on Computing, 43(1):52–71, 2014.

12 Telikepalli Kavitha. Popular Half-Integral Matchings. In Proceedings of the 43rd Interna-
tional Colloquium on Automata, Languages, and Programming, pages 22:1–22:13, 2016.

13 Zoltán Király. Better and simpler approximation algorithms for the stable marriage prob-
lem. Algorithmica, 60(1):3–20, 2011. doi:10.1007/s00453-009-9371-7.

14 Meghana Nasre and Prajakta Nimbhorkar. Popular Matching with Lower Quotas. CoRR,
abs/1704.07546, 2017. URL: http://arxiv.org/abs/1704.07546.

15 Meghana Nasre and Amit Rawat. Popularity in the Generalized Hospital Residents Setting.
In Proceedings of the 12th International Computer Science Symposium in Russia, pages
245–259, 2017.

16 Alvin E. Roth. The Evolution of the Labor Market for Medical Interns and Residents: A
Case Study in Game Theory. Journal of Political Economy, 92(6):991–1016, 1984.

17 Alvin E. Roth. On the Allocation of Residents to Rural Hospitals: A General Property of
Two-Sided Matching Markets. Econometrica, 54(2):425–427, 1986.

18 Yu Yokoi. Envy-Free Matchings with Lower Quotas. CoRR, abs/1704.04888 (To appear in
Proceedings of the 28th International Symposium on Algorithms and Computation), 2017.
URL: http://arxiv.org/abs/1704.04888.

http://dx.doi.org/10.1007/s00453-009-9371-7
http://arxiv.org/abs/1704.07546
http://arxiv.org/abs/1704.04888

M. Nasre and P. Nimbhorkar 44:15

A Execution Sequence of Algorithm in Section 3

r1 : h1, h3, h4, h5

r2 : h2, h1, h3

r3 : h2, h1

r4 : h2

(0, 1) h1 : r1, r2, r3

(0, 1) h2 : r2, r3, r4

(0, 1) h3 : r1, r2

(0, 1) h4 : r1

(1, 1) h5 : r1

(a)

Proposal A/R mMatching

h0
1 → r1 X m{(r1, h

0
1)}

h0
2 → r2 X m{(r1, h

0
1), (r2, h

0
2)}

h0
3 → r1 × m{(r1, h

0
1), (r2, h

0
2)}

h0
4 → r1 × m{(r1, h

0
1), (r2, h

0
2)}

h0
5 → r1 × m{(r1, h

0
1), (r2, h

0
2)}

= M0

h1
3 → r1 X m{(r1, h

1
3), (r2, h

0
2)}

h1
4 → r1 × m{(r1, h

1
3), (r2, h

0
2)}

h1
5 → r1 × m{(r1, h

1
3), (r2, h

0
2)}

h0
1 → r2 × m{(r1, h

1
3), (r2, h

0
2)}

h0
1 → r3 X m{(r1, h

1
3), (r2, h

0
2), (r3, h

0
1)}

= M1

(b)

Proposal A/R mMatching

h2
5 → r1 X m{(r1, h

2
5), (r2, h

0
2), (r3, h

0
1)}

h1
3 → r2 X m{(r1, h

2
5), (r2, h

1
3), (r3, h

0
1)}

h0
2 → r3 X m{(r1, h

2
5), (r2, h

1
3), (r3, h

0
2)}

h1
1 → r1 × m{(r1, h

2
5), (r2, h

1
3), (r3, h

0
2)}

h1
1 → r2 X m{(r1, h

2
5), (r2, h

1
1), (r3, h

0
2)}

= M2

(c)

Proposal A/R mMatching

h2
4 → r1 X m{(r1, h

2
4), (r2, h

0
2), (r3, h

0
1)}

h2
5 → r1 × m{(r1, h

2
4), (r2, h

0
2), (r3, h

0
1)}

h1
3 → r2 X m{(r1, h

2
4), (r2, h

1
3), (r3, h

0
1)}

h0
2 → r3 X m{(r1, h

2
4), (r2, h

1
3), (r3, h

0
2)}

h1
1 → r1 × m{(r1, h

2
4), (r2, h

1
3), (r3, h

0
2)}

h1
1 → r2 X m{(r1, h

2
4), (r2, h

1
1), (r3, h

0
2)}

h2
3 → r1 X m{(r1, h

2
3), (r2, h

1
1), (r3, h

0
2)}

h3
4 → r1 X m{(r1, h

3
4), (r2, h

1
1), (r3, h

0
2)}

h2
3 → r2 X m{(r1, h

3
4), (r2, h

2
3), (r3, h

0
2)}

h1
1 → r3 X m{(r1, h

3
4), (r2, h

2
3), (r3, h

1
1)}

h0
2 → r4 X m{(r1, h

3
4), (r2, h

2
3), (r3, h

1
1), (r4, h

0
2)}

= M3

h3
5 → r1 X m{(r1, h

3
5), (r2, h

2
3), (r3, h

1
1), (r4, h

0
2)}

= M4

(d)

Figure 2 (a) Preference lists of residents and hospitals are recalled from Figure 1. Tables (b) (c)
and (d) above show the proposal sequence for the instance in Figure 1. In each of the tables, the X
denotes that the proposal is accepted and the × denotes that the proposal is rejected. A possible
proposal sequence for algorithm in Section 3 can be obtained by using table (b) followed by the
sequence in table (c). A possible proposal sequence for algorithm in Section 5 can be obtained by
using Table (b) followed by the sequence in Table (d).

FSTTCS 2017

	Introduction
	Notion of popularity
	Maximum cardinality popular matching
	 The reduced graph G'
	Properties of the stable matching M' in G'

	Proof of popularity
	Popular matching amongst maximum cardinality feasible matchings
	Execution Sequence of Algorithm in Section 3

