
Complexity of Model Checking MDPs against LTL
Specifications
Dileep Kini∗1 and Mahesh Viswanathan†2

1 Akuna Capital LLC, Chicago, USA
dileeprkini@gmail.com

2 University of Illinois, Urbana-Champaign, USA
vmahesh@illinois.edu

Abstract
Given a Markov Decision Process (MDP)M, an LTL formula ϕ, and a threshold θ ∈ [0, 1], the
verification question is to determine if there is a scheduler with respect to which the executions
ofM satisfying ϕ have probability greater than (or ≥) θ. When θ = 0, we call it the qualitative
verification problem, and when θ ∈ (0, 1], we call it the quantitative verification problem. In this
paper we study the precise complexity of these problems when the specification is constrained to
be in different fragments of LTL.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Markov Decision Processes, Linear Temporal Logic, model checking,
complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.35

1 Introduction

Systems exhibiting both non-deterministic and probabilistic behaviors are semantically
interpreted using Markov Decision Processes (MDPs) [9, 11, 4]. Markov Decision Processes
are interpreted with respect to a scheduler who resolves the non-determinism at each step
– a single step of the MDP has two phases, where the scheduler first picks a probabilistic
transition out of the current state based on the sequence of states visited in the computation,
and then a dice is rolled to stochastically choose the next state according to the transition
chosen by the scheduler. The verification problem for MDPs with respect to specifications
in LTL is as follows. Given an MDP M, a formula ϕ, a threshold θ ∈ [0, 1], determine if
there is a scheduler with respect to which the measure of executions satisfying ϕ is greater
than (or greater than or equal to) the threshold θ. A special case of this problem is when
θ = 0 which is called the qualitative verification problem. When θ 6= 0, this is called the
quantitative verification problem.

The standard approach to solving the verification problem is using the automata theoretic
method [11, 4]. Here one translates the specification ϕ into a deterministic automaton A,
takes the cross product of A with the MDP M to construct a new MDP M′, and then
analyzesM′ to check the desired property. The complexity of this procedure is polynomial in
the size of the final MDPM′. Since any LTL formula can be translated into a deterministic
automaton of doubly exponential size, this approach shows that the verification problem

∗ This work was partly carried out while Dileep Kini was at the University of Illinois, Urbana-Champaign.
Dileep Kini was partly supported by NSF award CNS-1314485.

† Mahesh Viswanathan was partly supported by NSF awards CNS-1329991 and CCF-1422798.

© Dileep Kini and Mahesh Viswanathan;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 35; pp. 35:1–35:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 MDP model checking against LTL

Table 1 Summary of results for quantitative and qualitative model checking of MDPs against
various fragments. The upper bounds for results marked a follow from the standard translation of
LTL to deterministic automata. Upper bounds for results marked b follow from the translation of
LTL to limit deterministic automata in [6]. Finally, upper bounds for the result marked c follow
from the translation of this fragment to deterministic automata presented in [1].

Quantitative Qualitative
B(L♦,∧) PSPACE-complete

NP-completeB(L♦,∧,∨) EXPSPACE-complete
B(L♦,�,∧,∨) 2EXPTIME-completea

B(L♦,©,∧) EXPTIME-completec

EXPTIME-completebB(L♦,©,∧,∨) EXPSPACE-complete
B(L♦,�,©,∧,∨) 2EXPTIME-completea

for MDPs is in 2EXPTIME [11, 4]. One can prove a matching lower bound [4] which
establishes the problem to be 2EXPTIME-complete.

In a series of recent papers [5, 10, 6], the qualitative verification problem for MDPs
has been investigated carefully. In particular, it has been shown that for an expressive
fragment of LTL called LTLD, the qualitative model checking problem is in EXPTIME (as
opposed 2EXPTIME). The basis of this result is an improved translation from LTL to a
special class of automata called limit deterministic automata which are then used in the
automata theoretic approach to verify the MDP. It is shown in [6], that the translation yields
exponential sized automata for the fragment LTLD which gives the improved upper bound.

In this paper, we continue this line of research to obtain a more complete picture about
quantitative and qualitative verification of MDPs against fragments of LTL. In this endeavour,
we are also inspired by [1, 7, 2] that characterize the complexity of solving 2-player games
against objectives described using fragments of LTL. Consider LTL to be formulae in
negation normal form built using Boolean operations ∨,∧ and temporal operators © (next),
♦ (eventually), � (always), and U (until). Taking Lop1,...,opk

to denote the LTL fragment
consisting of formulae built only using the operators op1, . . . , opk, and B(Lop1,...,opk

) to be
all boolean combinations of formulae in Lop1,...,opk

, our results are summarized in Table 1.
We begin by discussing our results for quantitative model checking. The upper bounds

that pertain to time complexity classes (namely those marked a or c in Table 1) are obtained
simply from the fact that these fragments can be translated into deterministic automata of
exponential (for the result marked c) or doubly-exponential (for results marked a) size. For
the other upper bounds in Table 1, we present a new space efficient algorithm to compute
the probability of repeatedly visiting a set of states in Markov chains of small diameter ; this
result mimics a similar result in [1] for solving games on graphs with small diameter. The
upper bounds are then obtained by translating the LTL fragment into deterministic Büchi
automata of small diameter (using observations in [1]), taking the cross product with the
MDP, guessing an optimal scheduler, and computing the probability of repeated reachability
in the resulting Markov chain using the space efficient algorithm. The lower bounds are
obtained by observing that the reductions in [1, 2] work in this case, when the universal
player is replaced by a stochastic player. It is worth noting that our lower bounds apply to
the special case when the threshold θ = 1; thus, the difficulty in solving the quantitative
verification problem does not stem from the numbers involved.

For qualitative verification, the upper bound of EXPTIME (marked b) follows from the
results in [6]. The improved upper bound of NP for the fragment B(L♦,�,∧,∨) is obtained

D. Kini and M. Viswanathan 35:3

by refining the translation given in [5]. The new modified translation constructs a limit
deterministic automata that is a disjoint union of exponentially many, polynomial sized
deterministic automata. The NP algorithm then guesses one of these disjoint automata and
analyzes the MDP relative to the guessed deterministic automaton.

2 Preliminaries

2.1 Strings and Prefixes
Given a set S, we use S∗ denote the set of all finite sequences (finite words) of elements from
S, and S+ to denote all non-empty finite sequences over S. The length of a finite word u is
denoted by |u|. We use Sω to denote all infinite sequences over S. Given a (finite or infinite)
word, we use ui to denote ith symbol in the sequence u (we assume indices start at 0), u[0,i] to
denote the prefix u0u1 . . . ui−1 of length i, and u[i,∞] to denote the suffix uiui+1 . . . starting
at index i. For u ∈ S+, we use 〈u〉 to denote the last element in the sequence u. Given an
infinite word u, we use inf(u) to denote elements of S that appear infinitely often in u. We
use S! to denote words in S+ with distinct elements. The binary relations <,≤ on S∗ denote
the prefix relations: u < v iff u is a proper prefix of v. We have u ≤ v iff u < v or u = v. We
use l to denote the covering relation of prefixes, i.e., ul v iff v = ua for some a ∈ S. A set
U ⊆ S+ is said to be closed under prefixes iff every non-empty prefix of a word in U is also
in U .

I Definition 1. A prefix tree on a set S is a pair (V, r), such that V ⊆ S+, the set of vertices,
is closed under prefixes, and r is the unique element in V of length 1. A vertex v ∈ V is
called a leaf if there is no u ∈ V for which v < u. The set of all leaf vertices of V is denoted
by Leaf(V) and the set of all non-leaf vertices are called inner vertices, denoted by Inner(V).
A prefix tree is infinite if V is infinite.

2.2 Linear Temporal Logic
We recall definitions related to LTL and its fragments. Let AP be a set of atomic propositions,
and let Π denote state predicates which represent boolean formulae over AP . LTL formulae are
constructed using state predicates from Π, boolean connectives conjunction (∧), disjunction
(∨), negation (¬), temporal connectives always (�), eventually (♦), until (U) and next (©).

I Definition 2 (LTL Syntax). Formulae in LTL are given by the following syntax:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | ♦ϕ | �ϕ | ϕU ϕ p ∈ Π

We consider the usual semantics for LTL as given by [8]. In this paper we will be interested
in different fragments of LTL. We denote by Lop1,...,opk

the set of formulae built using (only)
the operators op1, . . . , opk. For a collection of formulae Γ, we use B(Γ) to denote all possible
boolean combinations of formulae in Γ.

2.3 Markov Chains
A Markov chain M is a tuple (Q, δ, q0) where Q is the set of states, q0 ∈ Q is the initial state
and δ : Q×Q→ [0, 1] is the probabilistic transition function where

∑
s′∈Q δ(s, s′) = 1 for all

s ∈ Q. A labeling of a Markov chain is a function L : Q→ 2AP that maps each state to an
assignment over the propositions AP .

FSTTCS 2017

35:4 MDP model checking against LTL

AMarkov chain (Q, δ, q0) induces an underlying graph where each state inQ is a vertex and
there is an edge from s to s′ iff δ(s, s′) > 0. A (finite/infinite) path in the Markov chain is an
finite/infinite path π = q0q1q2 . . . in the underlying graph starting at q0. For such a path π, its
trace under labeling L is defined as the sequence of assignments tr(π) = L(q0)L(q1)L(q2) · · · .
Let Paths(M) denote the set of all infinite paths and Pathsf(M) the set of all finite paths
in M starting from q0. A Markov chain M induces a probability distribution PrM on the
infinite paths of the Markov chain. We refer the reader to [3] for detailed definitions. For an
LTL formula ϕ over propositions AP and labeling L : Q→ 2AP , the set of paths of M that
yield a trace in [[ϕ]] is measurable, i.e., the quantity PrM ({π ∈ Paths(M) | tr(π) ∈ [[ϕ]]}) is
well defined. We abuse notation and simply write the above quantity as PrM ([[ϕ]]).

A temporal property of particular interest is what is called repeated reachability. For a
set of states B ⊆ Q we use the LTL-like notation �♦B to denote paths that visit some state
in B infinitely often, i.e., {π ∈ Paths(M) | inf(π) ∩B 6= ∅}. The computation of PrM (�♦B)
requires familiarity with the structure of the underlying graph of M . A set of vertices of
a directed graph are called strongly connected if every pair of vertices have paths to each
other. A Strongly Connected Component (SCC) is a set of vertices S that is maximally
strongly connected, i.e., no superset of S is strongly connected. The SCCs of a graph induces
a directed acyclic graph where the vertices are the SCCs and there is an edge from one SCC
to another if there is an edge going from a vertex in the first to a vertex in the second. A
SCC is called bottom (BSCC) if there is no other SCC that can be reached from it. It is
well known (see Chapter 10 of [3]) that a (infinite) path of a Markov chain almost certainly
(i.e. with probability 1) ends up in one of the BSCCs and visits each of the vertices in that
BSCC infinitely often. In order to compute PrM (�♦B) it suffices to compute the probability
of reaching BSCCs that have at least one state from B. We will build upon these ideas in
our proofs.

2.4 Markov Decision Processes
A Markov decision process (MDP)M is a tuple (Q,Act,∆, q0) where Q is the set of states,
Act is the set of actions, and q0 is the initial state and ∆ : Q × Act × Q → [0, 1] is the
probabilistic transition function where

∑
q′∈Q ∆(q, a, q′) = 1 for every q ∈ Q and a ∈ Act. A

labeling of a MDP is a function L : Q→ 2AP that maps each state to an assignment over
the propositions AP .

A MDP executes as follows: it begins at state q0 and non-deterministically picks an
action a0 ∈ Act. This is followed by stochastically choosing a state q1 with probability
∆(q0, a0, q1). This process is now continued with q1 which gives us an infinite run of the
form q0a0q1a1q2 Note that an MDP includes non-determinism in the form of the action
to be picked which is absent in Markov chains. Markov chains are special cases of MDPs,
which are devoid of non-determinism. In order to define the probability measure in an MDP,
one requires a scheduler (or adversary) that resolves this non-determinism. A scheduler
S : Q+ → Dist(Act) is a function that maps a sequence of states (states visited until a
certain point) to a distribution on actions. The action is picked stochastically according to
the distribution. Pure strategies S : Q+ → Act are those where the distribution corresponds
to picking a single action with probability 1. For the problems studied here pure schedulers
suffice and therefore we restrict our attention to them. A scheduler S induces a Markov
chain MS = (Q+, δ, q0) where δ(u, v) = ∆(〈u〉,S(u), 〈v〉) if u l v and 0 otherwise. The
Markov chainMS is then used to define the measure on sets of paths ofM. The probability
measure of an event E under scheduler S for MDPM, denoted by PrSM(E) is defined as the
measure PrMS

(E) associated with event E in Markov chainMS. A labeling L : Q→ 2AP

D. Kini and M. Viswanathan 35:5

forM can be extended to a labeling L′ : Q+ → 2AP forMS where L′(u) = L(〈u〉), which
can then be used to define PrSM([[ϕ]]) for LTL formula ϕ over propositions AP .

I Definition 3. The quantitative model checking problem for LTL is to decide if there exists
a scheduler S such that PrSM([[ϕ]]) ≥ θ given MDPM, ϕ ∈ LTL, and θ ∈ [0, 1] as inputs.

Two schedulersS1,S2 for MDPM are said to be equivalent, denoted byS1 ∼M S2, when
Pathsf(MS1) = Pathsf(MS2) and S1(u) = S2(u) for every u ∈ Pathsf(MS1). Equivalent
schedulers yield Markov chains whose reachable portions are isomorphic. All equivalent
schedulers for a MDP can be viewed as tree which is obtained from “unfolding” the MDP
under the scheduler. We define prefix trees associated with an MDP and then see how they
are related to schedulers.

I Definition 4. Given a MDP M = (Q,Act,∆, q0), a M-labeled prefix tree (V, q0, λ), is
one where (V, q0) is a prefix tree on Q, and λ : Inner(V) → Act is a labeling such that
∀u ∈ Inner(V), q ∈ Q : uq ∈ V iff ∆(〈u〉, λ(u), q) > 0.

Let S denote the set of all schedulers, and S/∼M denote the equivalence classes induced by
the ∼M relation. The proposition below captures the observation that equivalent schedulers
ofM can be identified by their the infiniteM-labeled prefix tree obtained by unfoldingM
on those schedulers.

I Proposition 5. Given MDP M = (Q,Act,∆, q0) there is a one to one correspondence
between S/∼M and infiniteM-labeled prefix trees (V, q0, λ).

3 Quantitative Model Checking

3.1 Upper Bounds
We will present upper bounds on the complexity of quantitative verification of MDPs against
formulae from different LTL fragments. In the automata theoretic approach, if the LTL
specification can be translated to a deterministic Büchi automaton, then the complexity is
intrinsically tied to solving the problem of computing the optimal probability for repeatedly
reaching a set of states. One of the contributions of this paper is a new space efficient
algorithm for the repeated reachability problem in MDPs which is presented in Section 3.1.1.
Before presenting this algorithm and using it to get the results in Table 1, we need to
introduce two special classes of schedulers – memoryless and depth-bounded schedulers – and
some simple observations about them.

I Definition 6. A memoryless scheduler S is one where S(u) = S(v) if 〈u〉 = 〈v〉.

A memoryless scheduler uses only knowledge about the latest state to decide which action
it is going to pick. For a finite execution u, 〈u〉 represents the latest state and hence the
action S(u) is only dependent on 〈u〉.

Next we define depth-bounded schedulers that generalize memoryless schedulers. Depth-
bounded schedulers can make decisions based on the current history. However, they only
consider the portion of history from which “loops” have been removed. For example, consider
a history u = q1, q2, q3, q4, q2, q5. The sequence q2, q3, q4, q2 is a loop, and removing it from u

gives the history v = q1, q2, q5. The action chosen by a depth-bounded scheduler on history
u is the same as the one chosen on history v. This is formally defined next.

I Definition 7. A depth-bounded scheduler S : Q+ → Act is one such that

∀v ∈ Q∗, u ∈ Q!,m ∈ {1, . . . , |u|} : S(uumv) = S(u[0,m]v).

FSTTCS 2017

35:6 MDP model checking against LTL

A depth-bounded scheduler removes loops from the current history as soon as they form,
and makes its decision based on the truncated history. Note that the process of loop removal
leaves the last state in the history unchanged. From this it follows that a memoryless
scheduler is a special case of the depth-bounded scheduler where the decision depends only
on 〈u〉.

I Proposition 8. Every memoryless scheduler is a depth-bounded scheduler.

Next, we define special kinds of prefix trees that correspond to depth-bounded schedulers.
Let D denote all depth-bounded schedulers.

I Definition 9. A prefix tree (V, r) on S is called depth-bounded if V is finite, Inner(V) ⊆ S!

and Leaf(V) ∩ S! = ∅.

Next, analogous to Proposition 5, we observe that there is a 1-to-1 onto correspondence
between equivalence classes of depth-bounded scheduler forM andM-labeled depth-bounded
prefix trees. Let D denote all depth-bounded schedulers, and D/∼M denote the equivalence
classes induced by the ∼M relation.

I Proposition 10. Given MDP M = (Q,Act,∆, q0) there is a one to one correspondence
between D/∼M andM-labeled depth-bounded prefix trees.

3.1.1 Space efficient algorithm for repeated reachability
In the section, we present one of our core technical results, that gives a space-bounded
algorithm for solving the quantitative repeated reachability problem for MDPs. The salient
feature of the algorithm is that its space requirements are polynomial in the diameter of the
underlying graph of the MDP and logarithmic in its size; here, by diameter we refer to the
length of the longest simple path in the graph. Thus, this algorithm is space efficient for
MDPs whose diameter is small when compared to its size.

I Theorem 11. Consider MDP M = (Q,Act,∆, q0) with diameter d, graph size n, and
for any q, q′ ∈ Q and a ∈ Act, ∆(q, a, q′) is a rational number of size at most k. Given
a set of states B ⊆ Q, the problem of deciding if ∃S : PrSM(�♦B) ≥ θ can be solved in
non-deterministic space O(d2 · (log(n) + k)).

The proof of the theorem relies on an algorithm that guesses a scheduler S, computes
PrSM(�♦B) and compares it to θ. Recall that memoryless schedulers suffice for attaining
the maximum probability of repeatedly reaching a set of states. Guessing a memoryless
scheduler requires n bits of space, which does not meet our space requirements. But we
know every memoryless scheduler is also a depth-bounded scheduler (Proposition 8), so it
is suffices to look for a depth-bounded scheduler S. We use Proposition 10 to guess the
M-labeled depth-bounded prefix tree T (S) = (V, q0, λ). Storing the entire tree would use too
much space; instead we guess the tree in a path-by-path manner using a depth first strategy
(DFS). In this approach, at any given time, we only store a single path in the tree T (S).
Observe that any single path in the depth-bounded tree has to be a path inM and hence
bounded by the diameter d. Therefore storing a path and its labels requires only d· log(n)
bits of space. To complete the proof of Theorem 11, we need to describe how to compute the
probability PrSM(�♦B) as we guess and explore the tree. The Markov chainMS induced by
a depth-bounded scheduler S can be shown to be (probabilistic) bisimulation [3] equivalent
to Markov chainMT (S), which is obtained from T (S) as follows: MT (S) = (Inner(V), δ, q0)

D. Kini and M. Viswanathan 35:7

where

δ(u, v) def=
{

∆(〈u〉, λ(u), 〈v〉) if (ul v) OR (v ≤ u and u〈v〉 ∈ Leaf(V))
0 otherwise.

We classify the edges of the above Markov chain as: (i) forward edges (u, v) where ul v, (ii)
back edges (u, v) where v ≤ u.

The probability of repeatedly reaching B in MS equals the probability of repeatedly
reaching B′ inMT (S) where B′ = {v ∈ Inner(V) | 〈v〉 ∈ B}. Computing repeated reachability
in Markov chains boils down to computing probability of reaching BSCCs that contain at
least one of the states in B′. In the remainder of this section we see how to do this during
the DFS that explores the tree T (S).

Index Vertex of a SCC. For a SCC ofMT (S) define an index vertex w as one for which
there is no other vertex w′ in the SCC such that w′ < w. The first observation is that there
is a unique index vertex for a SCC. For contradiction assume there are two indices u 6= v

for a SCC. By definition of SCC, there is a simple path from u to v. If this path does not
contain any back edges then clearly u < v contradicting the fact that v is an index. If the
path contains back edges, consider the first back edge in the path, say (u′, v′). Now v′ cannot
be on the path from u to u′, due to the fact that nodes cannot be repeated on a simple path
(otherwise v′ would be visited twice from u to v). Now, v′ < u′ (because back edges lead
to a prefix/ancestor), and u ≮ v′. This means v′ < u because two ancestors of any node in
a tree are always directly related. Since there is a path from u to v′ (as observed), and a
path from v′ to u owing to the fact that v′ < u, we get that v′ is included in the SCC. This
contradicts u being an index. This proves the uniqueness of an index node. In our algorithm
we guess which nodes in the tree are index nodes and compute the probability of reaching
every index node. The probability of reaching a BSCC is simply the probability of reaching
the index vertex of that BSCC.

Parent-Child relationship between index vertices. In order to compute the probability of
reaching an index node in an inductive fashion, we identify the parent-child relationship
between index vertices. An index node v is called the child of an index node u if u < v and
there is no index node w such that u < w < v. Similarly u is called the parent of v, if v is
the child of u. Note that every index has a unique parent except for the root which has no
parent. For an index node u let C(u) denote all the children index nodes of u. Given a node
u, let pu denote the probability of reaching u. Given a node uv with u, v 6= ε, let qu,v denote
the probability of moving from u to uv along the unique path of forward edges from u to uv
inMT (S). qu,v is given by

qu,v
def=
|v|−1∏
i=0

δ(u.v[0,i], u.v[0,i+1]) (1)

The Proposition below formulates how we can calculate the probability of reaching an
index by using the reachability probability of its parent.

I Proposition 12. For a node uv ∈ C(u), the probability puv of reaching uv is given by
(pu · qu,v)/su, where su

def=
∑
w∈C(u) qu,w is called the normalizing factor of u.

In order to use the above formula for the computation of puv we need to know the
normalizing factor su of the parent node u. We guess this quantity su associated with each

FSTTCS 2017

35:8 MDP model checking against LTL

node u that is an index, and store it along with u on the depth-first stack. Now, let us
see how these can be used to compute reachability probabilities. For an index node uv
whose parent is u, assume pu is already computed and stored. The parent of a node can be
identified by looking at the latest node before u in the stack that is an index node. For the
root node r, pr = 1. Now puv can be computed according to Proposition 12 using:

pu which is already computed and stored on the stack when u was first encountered
su which is guessed and stored on the stack when u was first encountered
qu,v which can be computed by looking at the path from u to uv on the depth-first stack.

Next, to compute the probabilities of reaching the BSCCs that have a state from B′ in
them, we observe that an index node u corresponds to a BSCC iff the normalizing factor
su = 0, implying that it has no children. For such a state u we mark it as final as soon as a
descendant uv is encountered where 〈uv〉 ∈ B. Once all the descendants of u are explored
we check if it is final, and if so we add the probability of reaching it, pu, to a running total.
The total value at the end of the DFS exploration is the required probability PrSM(�♦B).

Confirming guesses. In the computation described above we have guessed two things for
every node u: (a) if u is an index or not; (b) the normalizing factor su, whenever u is an
index. In order to check that our guess regarding u being an index is correct we use the
following:

I Proposition 13. For T (S) = (V, q0, λ), a node u ∈ Inner(V) is an index node of some
SCC inMT (S) iff every uv ∈ Leaf(V) is such that 〈uv〉 = 〈uv′〉 for some uv′ ∈ Inner(V).

So, when u is guessed as an index node we make sure that every leaf descendant of u points
to a repetition of a state that is no earlier than u, and when u is guessed as non-index we
ensure there is a leaf descendant of u pointing to a repetition of a state earlier than u. In
order to check that the guess for su is correct, we maintain a running sum for each index
node u on the stack. When a uv ∈ C(u) is encountered we add the computed quantity qu,v
to the running sum associated with u. When the DFS exploration for u is complete we check
that the running sum equals the guess su.

Size of numerical quantities. So far we have not accounted for the space requirements
of the quantities we calculate. Let us begin by looking at qu,v for parent-child indices u, v.
Equation 1 tells us that qu,v is a product of transition probabilities from u to v of which there
are at most d. Therefore qu,v requires d·k bits to store since each transition probability has
no more than k bits. Next, the normalizing factor su for an index u is the sum of qu,v where
uv is a child of u. Note that the number of children for any index is bounded by the total
number of nodes in the tree which is at most nd. So each su, the sum of nd quantities (qu,v)
each of size d·k requires only d·(log(n) + k) bits. By Proposition 12, pu is pu′ · qu′,v′/su′ ,
where u′ is the parent of u and u = u′v′. By induction on the number of ancestors of u,
we can argue that pu has at most O(d2 · (log(n) + k)) bits, since the maximum number of
ancestors for any index node is d. The sum of pu for u that are final BSCCs of which there
are no more than nd, will increase the bits required by d· log(n). So the total space required
remains O(d2 · (log(n) + k)).

3.1.2 Upper Bounds for LTL-fragments
We are now ready to present all our upper bounds for the quantitative verification problem
for different LTL fragments. Our results rely on the automata theoretic approach that solves

D. Kini and M. Viswanathan 35:9

the quantitative verification problem by constructing a deterministic automaton for the given
LTL specification. We, therefore, begin by recalling results on translations of fragments of
LTL to deterministic automata.

I Theorem 14 (Alur-LaTorre [1]). The following fragments of LTL can be translated into
deterministic Büchi automata with the following space and diameter bounds.

L♦,∧ has automata of exponential size and linear diameter.
L♦,©,∧ has automata of exponential size and exponential diameter.
L♦,∧,∨ has automata of double exponential size and exponential diameter.
L♦,©,∧,∨ has automata of double exponential size and exponential diameter.
L♦,�,∧,∨ has automata of double exponential size and double exponential diameter.

These bounds on size and diameter are also tight.

We now present our upper bound results for quantitative verification shown in Table 1.

I Theorem 15. The quantitative verification problem for MDPs against LTL specifications
has the following complexity bounds – for B(L♦,∧) it is in PSPACE; for B(L♦,∧,∨) it is in
EXPSPACE; for B(L♦,�,∧,∨) it is in 2EXPTIME; for B(L♦,©,∧) it is in EXPTIME;
for B(L♦,©,∧,∨) it is in EXPSPACE; for B(L♦,�,©,∧,∨) it is in 2EXPTIME.

Proof Sketch. Recall that in the automata theoretic approach to quantitative verification
of MDPs, the LTL specification ϕ is translated into a deterministic automaton A, and then
the cross product of A with the MDPM is analyzed. When the automaton A is Büchi ,
the analysis involves solving the repeated reachability problem on the cross product MDP.
The algorithm of [11, 4] runs in time that is polynomial in the size of the cross product.
Given the results on the size of deterministic Büchi automata mentioned in Theorem 14, we
immediately get the complexity bounds for B(L♦,�,∧,∨), B(L♦,©,∧), and B(L♦,�,©,∧,∨).

For the other upper bounds, we follow a similar approach, but we construct the product
ofM and A on the fly. We exploit the fact that the Büchi automata constructions for LTL
formulae have a representation that allows one to guess its states and check the transition
relation just from knowing the formula. This allows us to apply Theorem 11 to the implicit
product whose diameter is the product of the diameters of M and A. Given the bounds
on the diameter of the deterministic Büchi automata mentioned in Theorem 14, and using
Theorem 11, we obtain the complexity bounds for the remaining fragments. J

3.2 Lower Bounds
In this section we prove matching lower bounds for the upper bounds established in The-
orem 15. The lower bounds essentially follow from lower bounds established in [1, 2] for
2-player games. The reason for this observation is that games constructed in the lower
bound reductions in [1, 2] have a special property that enable their lifting to the quantitative
verification problem for MDPs. We begin this section by identifying this property, and
showing how it helps transfer complexity bounds to the quantitative verification case.

Recall that a two player game is played on a graph G = (V,E), where the set of vertices
V is partitioned into two sets – V∃ which belong to ∃-player, and V∀ which belong to ∀-player.
At any given time, the play is at some vertex u of graph G. Player P (P ∈ {∃,∀}) plays
from u if u ∈ VP , by picking the target of some outgoing edge from u. Starting from an
initial vertex u0, a play is the infinite sequence of vertices visited as the players choose edges
on their turn. Given an objective described by LTL formula ϕ, we say a play π is winning
for ∃-player if π satisfies ϕ; otherwise the play is said to be winning for the ∀-player. We
now identify a special class of games that we call finitely winnable.

FSTTCS 2017

35:10 MDP model checking against LTL

I Definition 16. A game (G, u0, ϕ) is said to be finitely-winnable for a player P (P ∈ {∃,∀})
iff for any play π of (G,ϕ) that P wins, there is a prefix of π, say π′, such that every play
(according to game graph G) that is an extension of π′ is also winning for P .

The main observation about games that are finitely winnable for the ∀-player is that if the
∀-player is replaced by a stochastic player that uniformly chooses among the available choices,
then in the resulting MDP, there is a scheduler that meets objective ϕ with probability 1 if
and only if the ∃-player has a winning strategy in the game.

I Proposition 17. Given a game (G, u0, ϕ) which is finitely-winnable for the ∀-player, the
MDPMG obtained by replacing the ∀-player with stochastic choices is such that the ∃-player
has a winning strategy for (G, u0, ϕ) if and only if there exists a scheduler S such that
PrSMG

([[ϕ]]) = 1.

Proof. If the ∃-player has a winning strategy for (G, u0, ϕ), then the strategy interpreted as
scheduler forMG is going to be such that all runs of that scheduler are going to satisfy ϕ,
which implies PrSMG

([[ϕ]]) = 1. Now consider the case the where the ∀-player has a winning
strategy for (G, u0, ϕ). Here, for any strategy for the ∃-player, there is going to be a play that
is won by the ∀-player. Since the game is finitely-winnable for the ∀-player, we know there is
a prefix of the play whose every extension is winning for the ∀-player. What this means in
the MDP setting, is that for any strategy there is a finite run ρ whose every extension results
in ϕ not being met. Since the measure associated with all extensions of ρ is non-zero (since
ρ is finite), we get that any strategy loses with non-zero probability, i.e., PrSMG

([[ϕ]]) < 1 for
any scheduler S. J

We use the above observations to obtain matching lower bounds for the quantitative
verification problem.

I Theorem 18. The quantitative verification problem for MDPs against LTL specifica-
tion has the following complexity lower bounds – for B(L♦,∧) it is PSPACE-hard; for
B(L♦,∧,∨) it is EXPSPACE-hard; for B(L♦,�,∧,∨) it is 2EXPTIME-hard; for B(L♦,©,∧)
it is EXPTIME-hard; for B(L♦,©,∧,∨) it is EXPSPACE-hard; for B(L♦,�,©,∧,∨) it is
2EXPTIME-hard.

Proof Sketch. All the lower bounds follow from similar lower bounds established for solving
2-player games for the same LTL fragments in [1, 2]. All reductions for games essentially
reduce the membership problem of a space/time bounded Alternating Turing machine (ATM)
– given an ATM A and an input w they construct a game graph G, initial state u0, and a
specification ϕ such that w ∈ L(A) iff there exists a winning strategy for the ∃-player in the
game (G, u0, ϕ). In each of these reductions, the game (G, u0, ϕ) is finitely winnable for the
∀-player. Thus, we can use the same reduction and Proposition 17 to obtain a lower bound
for the quantitative verification problem for MDPs when the threshold is θ = 1. J

4 Qualitative Model Checking

The qualitative model checking problem is the following: given MDPM and LTL formula
ϕ, check if there exists a scheduler S under which the probability of paths satisfying ϕ is
non-zero. In this section, we present results that refine our understanding of the complexity
of qualitative verification for LTL fragments.

D. Kini and M. Viswanathan 35:11

4.1 Upper Bounds
The qualitative problem for MDPs against LTL can be solved using an automata-theoretic
approach described by [11, 4] in which the LTL formula is translated into a limit-deterministic
automata. An automaton is said to be limit-deterministic (or deterministic in the limit) if
every state reachable from a final state is deterministic. The result proved by [4] is as follows:

I Proposition 19. Given an MDP M and a limit-deterministic Büchi automaton A, the
problem of checking if there exists S such that PrSM([[A]]) > 0, can be solved by taking a
cross-product ofM and A and checking if this product has a reachable BSCC containing a
state (s, q) where q is a final state of A.

Checking for the existence of such a final BSCC boils down to analyzing the product
graph which runs in linear time. We have recently shown how to transform LTL to limit-
deterministic Büchi automata (LDBA) such that the construction is of exponential size for a
large class of properties, namely LTLD [6]. This allows us to prove an EXPTIME upper
bound for qualitative model checking against that fragment using the result above. In this
section we see that the problem is in NP for the fragment B(L♦,�,∧,∨). The construction
in [5] for ϕ ∈ B(L♦,�,∧,∨) produces an exponential sized LDBA Aϕ, so it would seem
Proposition 19 is not useful for proving our desired upper bound. The key idea we introduce
here is the following: the automaton Aϕ can be split into a disjoint union of exponentially
many LDBAs each of which is polynomially large in the size of ϕ. In Proposition 19, if A is
a disjoint union of multiple LDBAs, then the product ofM and A has reachable final BSCC
if and only if the product ofM and some individual component of A has a final BSCC. The
NP-algorithm guesses this individual component of A (of polynomial size) and analyzes the
product graph ofM and the individual component in time polynomial in bothM and ϕ.

In order to understand the splitting of Aϕ we recall the core idea behind the construction
of Aϕ for ϕ ∈ B(L♦,�,∧,∨). For each ♦ or � subformula ψ of ϕ, the automaton keeps track
of how often ψ is true, which is one of three things: (a) ψ is always true; (b) ψ is true at
some point but not always; (c) ψ is never true. This yields a tri-partition, π = 〈α |β | γ 〉, of
all the ♦,� subformulae of ϕ. If a ♦ subformula is in α, β or γ we take it to mean that it
is never true, true at some point but not always, or always true, respectively. Dually, if �
subformula is in α, β or γ we take it to mean that it is always true, true at some point but
not always, or never true, respectively. With this semantics in mind we see that a subformula
in α or γ should remain in α or γ respectively in the future, and a subformula in β can
remain in β only for a finite time before moving to α. It turns out that, for a given input
word w, correctly guessing (a) the triple π at the beginning of w and (b) the points along w
at which subformulae move from β to α, enables us to check if w satisfies the original formula
ϕ. A key observation here is that a triple at a certain point not only tells us how often a
♦,� subformula is true from that point onwards in the future, but also whether or not the
subformula is true at that point. In other words, a triple refines the truth of ♦,� formulae.
This observation is used to inductively check that the guessed triple is correct at every point.
We encourage the reader to refer to [5, 6] for a detailed account of the construction. For the
purposes of this paper it suffices to know that the state of the automaton for ϕ is of the form
(π, k) where:

π is a triple reflecting how often the ♦,� subformulae are true on the remaining input.
k is an integer counter no larger than |ϕ|, which is updated deterministically.

The transitions of the automaton allow moving from a state with π = 〈α |β | γ 〉 to a state
with π′ = 〈α′ |β′ | γ′ 〉 only if α ⊆ α′, β′ ⊆ β and γ = γ′ (π v π′ for short) in accordance
with the semantics we associate with the triple. That is π v π′ is a necessary condition for

FSTTCS 2017

35:12 MDP model checking against LTL

a transition to move from π to π′, i.e., subformulae in β are allowed to move α while the
remaining stay put. In order to split this automaton into smaller components as anticipated
earlier, we add restrictions to the order in which the formulae in β are moved to α. First, let
us fix an initial triple π = 〈α0 |β0 | γ0 〉. Given π, consider a ranking function ρ : β0 → N
whose range is allowed to be any consecutive set of positive integers starting from 1, i.e.
{1, . . . , n}. Given π and ρ we are going to define a component A(π,ρ) of the original automaton
Aϕ. We define the space of possible triples πi = 〈αi |βi | γi 〉 for i ∈ {0, 1, . . . , n} as follows:
αi = {ψ ∈ β0 | f(ψ) ≤ i} ∪ α0; βi = {ψ ∈ β0 | f(ψ) > i}; γi = γ0 The states of A(π,ρ) are
those states of Aϕ where the triple is restricted to be some πi as defined above. A transition
τ , say (πi,m) σ−→ (πj , n), is allowed in A(π,ρ) iff τ is a valid transition in Aϕ and either j = i

or j = i + 1. In A(π,ρ) a transition is allowed to either keep the triple unchanged (when
j = i), or move only the formulae mapped to i + 1 from β to α (when j = i + 1). Thus
the ranking function ρ restricts the order in which the subformulae move from β to α. A
subformula with smaller rank is moved earlier compared to one with a larger rank. Note that
two or more formulae can be mapped to the same number, which means those formulae are
moved simultaneously. The initial state of A(π,ρ) is defined to be (π0, 0) and the state (πn, 0)
is marked as the only final state. Note that the size of the automaton A(π,ρ) is n + |γ0|
which is linear in |ϕ|. The number of different (π, ρ) is exponential in ϕ, hence there can be
exponentially many different individual components.

What remains to be seen is that the disjoint union of these components
⊎
A(π,ρ) accepts

exactly the same language as Aϕ. Since A(π,ρ) is a projection of Aϕ it is the case that
[[A(π,ρ)]] ⊆ [[Aϕ]] and so [[]A(π,ρ)]] ⊆ [[Aϕ]]. To see the other direction consider any word
w accepted by Aϕ, and let (π0, k0), (π1, k1), . . . be an accepting run for w on Aϕ with
πi = 〈αi |βi | γi 〉. From the construction of Aϕ we know that π0 v π1 v π2 · · · . Identify all
the positions j1 < j2 < · · · < jn where the triple changes, i.e.,

(π0 = π1 · · · = πj1) @ (πj1+1 = · · · = πj2) @ (πj2+1 = · · · = πj3) @ (· · ·) @ (πjn
= · · ·

Here ji is the ith time the triple changes, n being the last. Now we consider the automaton
A(π0,ρ) where ρ(ψ) def= i if ψ moves from β to α at position ji, i.e., ψ ∈ βji

and ψ ∈ αji+1.
Observe that the above accepting run is also an accepting run of A(π,ρ) on the word w. This
gives us [[Aϕ]] ⊆ [[]A(π,ρ)]].

Thus we have successfully split Aϕ into exponentially many individual components of
linear size. The index (π, ρ) for any component requires only polynomially many bits to
represent. This combined with our earlier observation of using Proposition 19 for the disjoint
union gives us the NP-algorithm for qualitative model checking against B(L♦,�,∧,∨). We
end this section by summarizing the upper bound results for qualitative model checking.

I Theorem 20. The qualitative verification problem for MDPs against specifications in
B(L♦,�,∧,∨) is in NP and against specifications in B(L♦,�,©,∧,∨) is in EXPTIME.

Proof. The argument for qualitative model checking of B(L♦,�,∧,∨) being in NP has been
spelt out above. The qualitative model checking problem of B(L♦,�,©,∧,∨) is in EXPTIME
because B(L♦,�,©,∧,∨)-formulae can be translated into exponential sized limit deterministic
automata [5, 6] and the observation in Proposition 19. J

4.2 Lower Bounds
In this section, we show that the upper bounds proved in Theorem 20 are tight.

I Theorem 21. The qualitative verification problem for MDPs against specifications in
B(L♦,∧) is NP-hard and against specifications in B(L♦,©,∧) is in EXPTIME-hard.

D. Kini and M. Viswanathan 35:13

We note that the EXPTIME-hardness for the fragment B(L♦,©,∧) strengthens the result
in [5] that establishes the hardness for the larger fragment B(L♦,�,©,∧,∨).

5 Conclusions

In this paper, we presented results for the quantitative and qualitative verification problems
for MDPs against fragments of LTL studied in [1, 2]. In doing so we refined the upper and
lower bounds for qualitative verification that were obtained in [5, 10, 6].

Acknowledgements. We’d like to thank annonymous referees for their comments which
improved the draft.

References
1 R. Alur and S. La Torre. Deterministic generators and games for LTL fragments. ACM

Trans. Comput. Logic, 5(1):1–25, 2004.
2 R. Alur, S. La Torre, and P. Madhusudan. Playing games with boxes and diamonds. In

Proceedings of the International Conference on Concurrency Theory, pages 128–143, 2003.
3 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification.

Journal of the ACM (JACM), 42(4):857–907, 1995.
5 Dileep Kini and Mahesh Viswanathan. Limit deterministic and probabilistic automata for

LTL \GU. In Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 628–642, 2015.

6 Dileep Kini and Mahesh Viswanathan. Optimal translation of LTL to limit deterministic
automata. In Proceedings of the 23rd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 113–129, 2017.

7 J. Marcinkowski and T. Truderung. Optimal complexity bounds for positive LTL games.
In Proceedings of the International Conference on Computer Science Logic, pages 262–275,
2002.

8 A. Pnueli. The temporal logic of programs. In Proceedings of the Annual Symposium on
Foundations of Computer Science, pages 46–57, 1977.

9 M.L. Puterman. Markov Decision Processes. Wiley, 1994.
10 Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínskỳ. Limit-deterministic

Büchi automata for linear temporal logic. In Proceedings of the International Conference
on Computer-Aided Verification, pages 312–332, 2016.

11 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pages
327–338. IEEE Computer Society, 1985.

FSTTCS 2017

	Introduction
	Preliminaries
	Strings and Prefixes
	Linear Temporal Logic
	Markov Chains
	Markov Decision Processes

	Quantitative Model Checking
	Upper Bounds
	Space efficient algorithm for repeated reachability
	Upper Bounds for LTL-fragments

	Lower Bounds

	Qualitative Model Checking
	Upper Bounds
	Lower Bounds

	Conclusions

