
Vertex Deletion Problems on Chordal Graphs∗†

Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong,
China
yixin.cao@polyu.edu.hk

2 Department of Computing, Hong Kong Polytechnic University, Hong Kong,
China
yu.ke@polyu.edu.hk

3 Faculty of Advanced Science and Technology, Kumamoto University,
Kumamoto, Japan
otachi@cs.kumamoto-u.ac.jp

4 School of Information Science and Engineering, Central South University and
Department of Computing, Hong Kong Polytechnic University, Hong Kong,
China
jie.you@polyu.edu.hk

Abstract
Containing many classic optimization problems, the family of vertex deletion problems has an
important position in algorithm and complexity study. The celebrated result of Lewis and Yan-
nakakis gives a complete dichotomy of their complexity. It however has nothing to say about
the case when the input graph is also special. This paper initiates a systematic study of vertex
deletion problems from one subclass of chordal graphs to another. We give polynomial-time
algorithms or proofs of NP-completeness for most of the problems. In particular, we show that
the vertex deletion problem from chordal graphs to interval graphs is NP-complete.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2
Graph Theory

Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in-
terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22

1 Introduction

Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in
a certain class by deleting a minimum number of vertices. Many classic optimization problems
belong to the family of vertex deletion problems, and their algorithms and complexity have
been intensively studied. For example, the clique problem and the independent set problem
are nothing but the vertex deletion problems to complete graphs and to edgeless graphs
respectively. Most interesting graph properties are hereditary: If a graph satisfies this
property, then so does every induced subgraph of it. For all the vertex deletion problems to
hereditary graph classes, Lewis and Yannakakis [26] have settled their complexity once and for
all with a dichotomy result: They are either NP-hard or trivial. Thereafter algorithmic efforts

∗ A full version of the paper is available at https://arxiv.org/abs/1707.08690.
† Supported in part by the Hong Kong Research Grants Council (RGC) under grants 252026/15E and
152261/16E, and the National Natural Science Foundation of China (NSFC) under grant 61572414.

© Yixin Cao, Yuping Ke, Yota Otachi, and Jie You;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699160?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.22
https://arxiv.org/abs/1707.08690
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Vertex Deletion Problems on Chordal Graphs

were mostly focused on the nontrivial ones, and the major approaches include approximation
algorithms [27], parameterized algorithms [6], and exact algorithms [15].

Chordal graphs make one of the most important graph classes. Together with many of
its subclasses, it has played important roles in the development of structural graph theory.
(We defer their definitions to the next section.) Many algorithms have been developed for
vertex deletion problems to chordal graphs and its subclasses,—most notably (unit) interval
graphs, cluster graphs, and split graphs; see, e.g., [17, 4, 10, 9, 8, 33, 12, 25, 1] for a partial
list. After the long progress of algorithmic achievements, some natural questions arise: What
is the complexity of transforming a chordal graph to a (unit) interval graph, a cluster graph,
a split graph, or a member of some other subclass of chordal graphs? It is quite surprising
that this type of problems has not been systematically studied, save few concrete results,
e.g., the polynomial-time algorithms for the clique problem, the independent set problem,
and the feedback vertex set problem (the object class being forests) [21, 32].

The same question can be asked for other pair of source and object graph classes. The
most important source classes include planar graphs [20, 18, 16], bipartite graphs [31],
and degree-bounded graphs [19]. As one may expect, with special properties imposed on
input graphs, the problems become easier, and some of them may not remain NP-hard.
Unfortunately, a clear-cut answer to them seems very unlikely, since their complexity would
depend upon both the source class and the object class. Indeed, some are trivial (e.g., vertex
cover on split graphs), some remain NP-hard (e.g., vertex cover on planar graphs), while
some others are in P but can only be solved by very nontrivial polynomial-time algorithms
(e.g., vertex cover on bipartite graphs).

Throughout the paper we write the names of graph classes in small capitals; e.g., CHORDAL

and BIPARTITE stand for the class of chordal graphs and the class of bipartite graphs respectively.
We use C, commonly with subscripts, to denote an unspecified hereditary graph class, and
use C1 → C2 to denote the vertex deletion problem from class C1 to class C2:

Given a graph G in C1, find a minimum set V− ⊆ V (G) such that G− V− is in C2.

It is worth noting that C2 may or may not be a subclass of C1, and when it is not, the problem
is equivalent to C1 → C1 ∩ C2: Since C1 is hereditary, G− V− is necessarily in C1. For almost
all classes C, the complexity of problems PLANAR → C and BIPARTITE → C has been answered
in a systematical manner [26, 31], while for most graph classes C, the complexity of problem
DEGREE-BOUNDED → C has been satisfactorily determined [19].

Apart from CHORDAL, we would also consider vertex deletion problems on its subclasses.
Therefore, our purpose in this paper is a focused study on the algorithms and complexity of
C1 → C2 with both C1 and C2 being subclasses of CHORDAL. Since it is generally acknowledged
that the study of chordal graphs motivated the theory of perfect graphs [24, 2], the importance
of chordal graphs merits such a study from the aspect of structural graph theory. However,
our main motivation is from the recent algorithmic progress in vertex deletion problems. It
has come to our attention that to transform a graph to class C1, it is frequently convenient
to first make it a member of another class C2 that contains C1 as a proper subclass, followed
by an algorithm for the C2 → C1 problem [29, 9, 7, 33].

There being many subclasses of CHORDAL, the number of problems fitting in our scope is
quite prohibitive. The following simple observations would save us a lot of efforts.

I Proposition 1. Let C1 and C2 be two graph classes.
(1.) If the C1 → C2 problem is in P, then so is C → C2 for any subclass C of C1.
(2.) If the C1 → C2 problem is NP-complete, then so is C → C2 for any superclass C of C1.

Y. Cao, Y. Ke, Y. Otachi, and J. You 22:3

Figure 1 Small subgraphs: 2K2, C4, claw (K1,3), diamond, net, tent, rising sun.

For example, the majority of our hardness results for problems CHORDAL → C are obtained
by proving the hardness of SPLIT → C. Indeed, this is very natural as in literature, most
(NP-)hardness of problems on chordal graphs is proved on split graphs, e.g., dominating
set [3], Hamiltonian path [28], and maximum cut [5]. The most famous exception is probably
the pathwidth problem, which can be solved in polynomial time on split graphs but becomes
NP-complete on chordal graphs [23]. No problem like this surfaces during our study, though
we do have the following hardness result proved directly on chordal graphs, for which we
have no conclusion on split graphs.

I Theorem 2. Let F be a biconnected chordal graph. If F is not complete, then the CHORDAL

→ F -FREE problem is NP-complete.

Another simple observation of common use to us is about complement graph classes. The
complement G of graph G is defined on the same vertex set V (G), where a pair of distinct
vertices u and v is adjacent in G if uv 6∈ E(G). It is easy to see that the complement of
G is G. In Figure 1, for example, the net and the tent are the complements of each other.
The complement of a graph class C, denoted by C, comprises all graphs whose complements
are in C; e.g., the complement of COMPLETE SPLIT is {2K2, P3}-FREE. A graph class C is self-
complementary if it is its own complement, i.e., a graph G ∈ C if and only if G ∈ C. For
example, both SPLIT and THRESHOLD are self-complementary. As usual, n denotes the number
of vertices in the input graph. Note that we need an n2 item because it takes O(n2) time to
compute the complement of a graph.

I Proposition 3. Let C1 and C2 be two graph classes. If the C1 → C2 problem can be solved
in f(n) time, then the C1 → C2 problem can be solved in O(f(n) + n2) time.

Our results (besides Theorem 2) are summarize in Figure 2. Unfortunately, we have to
leave the complexity of some problems open, particularly CHORDAL → CLUSTER, CHORDAL →
UNIT INTERVAL, and INTERVAL → UNIT INTERVAL.

Let us also mention the approximation algorithms. All the problems have constant-
ratio approximations, which follow from either [7, 8] or the general observation of Lund
and Yannakakis [27]. On the other hand, none of the NP-complete problems admits a
polynomial-time approximation scheme.

2 Preliminaries

All graphs discussed in this paper are undirected and simple. A graph G is given by its vertex
set V (G) and edge set E(G), whose cardinalities will be denoted by n and m respectively.

For a subset X ⊆ V (G), denote by G[X] the subgraph induced by X, and by G − X
the subgraph G[V (G) \X]; we use E(X) as a shorthand for E(G[X]), i.e., all edges among
vertices in X. For a subset E− ⊆ E(G) of edges, we use G − E− to denote the subgraph
with vertex set V (G) and edge set E(G) \E−. We write G− v and G− e instead of G−{v}
and G− {e} for v ∈ V (G) and e ∈ E(G) respectively.

For ` ≥ 2, we use P`, K`, and I` to denote an induced path, a clique, and an independent
set, respectively, on ` vertices. For ` ≥ 4, we use C` to denote an induced cycle on ` vertices;

FSTTCS 2017

22:4 Vertex Deletion Problems on Chordal Graphs

CHORDAL

SPLIT INTERVAL

THRESHOLD

TRIVIALLY
PERFECT

UNIT INTERVAL

BLOCK

CLUSTER

COMPLETE SPLIT {2K2, P3}-FREE CO-CHAIN

NPC

NPC

NPC

PP

P

P

Figure 2 A summary of major graph classes studied by this paper and our results. Two classes
are connected by a solid edge when the lower one is a subclass of the higher one. A directed dashed
edge from C1 to C2 is used when C2 is not an immediate subclass of C1. We omit here results implied
by Proposition 1; e.g., C → CO-CHAIN is in P for all C, and CHORDAL → C is NP-complete when C is
THRESHOLD, BLOCK, or INTERVAL. The cyan, violet, and black edges indicate that the complexity of
the representing problems is in P, NP-complete, and unknown, respectively.

such a cycle is also called a hole. Some small graphs that will be used in this paper are
depicted in Figure 1. Note that C4 and 2K2 are complements to each other, while the
complements of P4 and C5 are themselves.

We say that a graph G contains a subgraph F if F is isomorphic to some induced subgraph
of G. A graph is F -free if it does not contain F ; for a set F of graphs, a graph G is F-free if it
is F -free for every F ∈ F . Each set F defines a hereditary graph class, and every hereditary
graph class can be defined as such; in other words, for any hereditary graph class C, there is
a (possibly infinite) set F of subgraphs such that a graph G ∈ C if and only if it is F-free.
Each graph F in F is usually assumed to be minimal, in the sense that F is not in C but
every proper induced subgraph of F is; they are called the minimal obstructions of C. One
should note that a minimal obstruction of a graph class may not be a minimal obstruction
of its subclass; e.g., the minimal obstruction C5 of SPLIT is not a minimal obstruction of
THRESHOLD, because C5 contains the non-threshold graph P4 as a proper induced subgraph.

The vertex deletion problem with object class C can also be defined as finding a maximum
subgraph in the class C. For example, both vertex cover and independent set refer to the
vertex deletion problem to the class EDGELESS, which is exactly the K2-free graphs. Although
these formulations may behave different with respect to approximation, they are the same
for our purpose. We may use both formulations interchangeably, dependent on which is
more convenient in the context. Yet another way to view the vertex deletion problem toward
property F-free is to find a minimum set of vertices from a graph to hit all its induced
subgraphs in F .

We now define the graph classes we are going to study. Although the containment
relationships of all the graph classes to be studied can be readily checked with their obstruction
characterizations, sometimes it would be far more informative and inspiring if we look at
them from the lens of the definitions and/or geometric representations of these graph classes.

Y. Cao, Y. Ke, Y. Otachi, and J. You 22:5

A graph is chordal if every cycle of length larger than three has a chord, i.e., an edge
between two non-consecutive vertices of the cycle. A graph is an interval graph if its vertices
can be assigned to intervals on the real line such that there is an edge between two vertices if
and only if their corresponding intervals intersect, and a unit interval graph if all the intervals
have the same length. A graph G is a trivially perfect graph if for every induced subgraph of
G, the size of the largest independent set is equivalent to the number of all maximal cliques
[22]. Chordal graphs are precisely graphs that are intersection graphs of subtrees of a tree,
while interval graphs are intersection graphs of sub-paths of a path. Therefore, INTERVAL ⊂
CHORDAL. A trivially perfect graph can be represented by a set of non-overlapping intervals; in
other words, if two intervals intersect, then one is contained in the other. Therefore, TRIVIALLY

PERFECT ⊂ INTERVAL.
A graph is a cluster graph if every component is a clique. A graph is a block graph if the

deletion of all cut vertices leaves a cluster graph. It is known that a graph is {2K2, P3}-free
if it is a cluster graph of which at most one clique is nontrivial, i.e., having more than one
vertex. It is immediate from their definitions that {2K2, P3}-FREE ⊂ CLUSTER ⊂ BLOCK. Moreover,
block graphs are precisely those chordal graph of which any two maximal cliques share at
most one vertex.

A graph is a split graph if its vertices can be partitioned into a clique C and an independent
set I, and a complete split graph if every vertex in C is adjacent to all vertices in I; we
use C] I to denote the split partition. Note that either of the two sets may be empty. A
graph G is a threshold graph if there is a real number t, the so-called threshold, and an
assignment f : V (G) → R such that uv ∈ E(G) if and only if f(u) + f(v) ≥ t [11]. It is
easy to verify that COMPLETE SPLIT ⊂ THRESHOLD ⊂ SPLIT: The first can be witnessed by t = 1
and assignment f(v) = 1 if v ∈ C and 0 otherwise; and the second by the clique partition
{v : f(v) ≥ t/2}] {v : f(v) < t/2}. Further, if we order the vertices in the independent set
I of a threshold graph such that f(v1) ≤ · · · ≤ f(v|I|) < t/2, then N(v1) ⊆ · · · ⊆ N(v|I|).
Likewise, there is an ordering of vertices u1, . . ., u|C| in C such that N [u1] ⊆ · · · ⊆ N [u|C|].

The reader may have noticed the striking resemblance between split graphs and bipartite
graphs. Indeed, if we add edges to make one side of a bipartite graph into a clique, we end
with a split graph; or equivalently, given a split graph G with split partition C] I, the
subgraph G−E(C) is bipartite. Clearly, G−E(C) is a complete bipartite graph if and only
if G is a complete split graph. If G is a threshold graph, then G − E(C) is a chain graph
[31, 30]. Finally, CO-CHAIN denotes the complement of CHAIN.

Recall that Yannakakis [31] has given a dichotomy on the vertex deletion problem from
bipartite graphs. Inspired by this and the aforementioned connection between bipartite
graphs and split graphs, a natural attempt at problems SPLIT → C would be reducing them
to the corresponding problem on bipartite graphs (for algorithms) or the other way (for
hardness results). This approach however turns out to be less straightforward as one may
expect. See the full version for discussions.

3 Algorithmic results

This section gives the polynomial-time algorithms. Our focus would be laid on the use of
structural properties, and if possible, we would present the simplest algorithms without
elaborating on the implementation details. These problems may have more efficient algorithms,
and with more complex data structures and algorithmic finesses, some of them may even be
solved in linear time.

Our first two results are on split graphs, for which we need to put split partitions under

FSTTCS 2017

22:6 Vertex Deletion Problems on Chordal Graphs

0. S ← ∅;
1. build a bipartite graph G′ by removing all edges among C from G;
2. find a minimum vertex cover of G′, and add it to S;
3. for each v ∈ I do

find a minimum vertex cover X of G′ − (C \N(v))− v;
add X ∪ (C \N(v)) to S;

4. return a set in S with the minimum cardinality.

Figure 3 Algorithm for SPLIT → {2K2, P3}-FREE.

scrutiny. Let C] I be a split partition of a split graph G. If some vertex in I is completely
adjacent to C, then we can move such a vertex v to C to make another split partition
C ′ = C ∪ {v} and I ′ = I \ {v}. Note that the vertex v may not be unique, and the resulting
graphs by moving them would be isomorphic. Moreover, after such a move, no vertex of I ′
can be completely adjacent to C ′. The following proposition fully characterizes split graphs
with more than one different split partition.

I Proposition 4. Let G be a split graph with at least two split partitions, and let C] I and
C ′] I ′ be two different split partitions of G.
(i) The difference between |C| and |C ′| is at most 1.
(ii) If |C| = |C ′|+ 1, then C is a maximum clique, and I ′ is a maximum independent set of

G; moreover, C ′ ⊂ C.
(iii) If |C| = |C ′|, then G− E(C) and G− E(C ′) are isomorphic.

As a result, a split graph has either one or two essentially distinct split partitions. On the
other hand, of all split partitions of a complete bipartite graph, only one, whose independent
set is the largest, satisfies the definition of complete bipartite graphs, and we will exclusively
refer to it when we are discussing a complete split graph.

Let G be a split graph with split partition C] I and let G be a {2K2, P3}-free subgraph
of G. If G has edges, all of them must be in the same nontrivial clique. At most one vertex
of this clique can be from I; therefore, all other vertices of I either are deleted or become
isolated in G. In other words, for each other vertex v in I, either v or all its neighbors have
to be deleted.

I Theorem 5. The SPLIT → {2K2, P3}-FREE problem is in P.

Proof. Let G be the input graph to the SPLIT → {2K2, P3}-FREE problem and let C] I be a
split partition of G. We use the algorithm in Figure 3 to find a minimum solution to G. To
argue its correctness, we show that (i) every set in S, added in step 2 or 3, is a solution to G,
and (ii) at least one of them is minimum. For (i), it is easy to verify that any vertex cover
of G′ = G− E(C) is a solution: There is no edge between C and I after its deletion. The
situation in step 3 is similar; note that N [v]] (I \ {v}) is a split partition of G−

(
C \N(v)

)
.

Let V− be a minimum solution to G. In the first case, every vertex v ∈ I \ V− is isolated
in G − V−. In other words, V− contains a vertex cover of G′ = G − E(C), and then the
solution found by step 2 is already the minimum. Henceforth we assume that there exists a
vertex v ∈ I \ V− such that N(v) 6⊆ V−. Since any vertex u ∈ N(v) and w ∈ C \N(v) induce
a P3 with v, in this case all vertices in C \N(v) must be in V−. Note that the vertex v is
unique: If two vertices in I \ V− have neighbors in C \ V−, then they are in a non-clique
component. Therefore, after removing C \N(v) and v from the graph, it reduces to the first
case. This justifies step 3.

Y. Cao, Y. Ke, Y. Otachi, and J. You 22:7

u`

ur

v1

v2

v

Figure 4 A connected split graph with split partition C] I that is also a unit interval graph.
Violet intervals are for vertices in C and cyan for I. Note that the vertex v from I is completely
adjacent to C.

The algorithm makes O(n) calls to an algorithm for the bipartite vertex cover problem,
each taking O(m

√
n) time, and hence the whole algorithm runs in O(mn

√
n) time. J

Noting that SPLIT ∩ CLUSTER is precisely {2K2, P3}-FREE, we can apply the algorithm of
Theorem 5 to the SPLIT → CLUSTER problem. Moreover, since SPLIT is self-complementary,
while the complement of {2K2, P3}-FREE is COMPLETE SPLIT, it follows from Proposition 3 that
the SPLIT → COMPLETE SPLIT problem is also in P.

I Corollary 6. Problems SPLIT → CLUSTER and SPLIT → COMPLETE SPLIT are in P .

A similar observation can be used to solve the SPLIT → UNIT INTERVAL problem. We start
from a simple property of connected graphs in SPLIT ∩ UNIT INTERVAL.

I Proposition 7. Let G be a connected split graph and let C] I be a split partition of G. If
G is a unit interval graph, then |I| ≤ 3, and the equality holds only when there is a vertex
v ∈ I adjacent to all vertices in C.

Proof. We prove |I| ≤ 2 if C is a maximum clique of G, and then the proposition follows
from Proposition 4(i). Let u` and ur be the vertices in C with respectively the leftmost and
rightmost intervals. Suppose for contradiction |I| > 2. Let v1 and v2 be the vertices in I
with respectively the leftmost and rightmost intervals. Then lp(u`) < rp(v1) < lp(ur) <
rp(u`) < lp(v2) < rp(ur), where the second and the fourth inequalities follow from that
C is a maximum clique, and the others from the selections of the four vertices. Since G
is connected, the interval for any other vertex v in I \ {v1, v2}, which is nonempty, has to
lie in (rp(v1), lp(v2)). But then it has to contain [lp(ur), rp(u`)], and {v} ∪ C is a clique,
contradicting that C is a maximum clique of G. J

Similar as Theorem 5, our algorithm for SPLIT → UNIT INTERVAL separates into two cases,
based on whether there is a vertex of I \ V− adjacent to all vertices in C \ V−.

I Theorem 8. The SPLIT → UNIT INTERVAL problem is in P .

Proof. Let G be the input graph to the SPLIT → UNIT INTERVAL problem and let C] I be
a split partition of G. We use the algorithm in Figure 5 to find a solution. To argue its
correctness, we show that all sets put into S in steps 1–4 are solutions to G, and at least one
of them is minimum. It is clear for step 1. After the deletion of a solution found in step 2,
only v in I remains adjacent to the remaining vertices of C. In step 3, only v1 and v2 from I

can remain adjacent to vertices in C. In step 3.2, no vertex in C is adjacent to both v1 and
v2; in step 3.3, every vertex in C is adjacent to at least one of v1 and v2. In either case, it
is easy to verify that the graph is a unit interval graph by building a unit interval model
directly. Step 4 follows from the same argument as above: After the deletion of C \N(v), it
reduces to one of the three previous steps.

FSTTCS 2017

22:8 Vertex Deletion Problems on Chordal Graphs

0. S ← ∅;
1. solve the SPLIT → {2K2, P3}-FREE problem on G; add the solution to S;

\\ case 1:
2. for each v ∈ I do

find a minimum vertex cover of G− v − E(C), and add it to S;
3. for each v1, v2 ∈ I do
3.1. G′ ← G− {v1, v2} − E(C);
3.2. find a minimum vertex cover of G′ −N(v1) ∩N(v2),

and add its union with N(v1) ∩N(v2) to S;
3.3. find a minimum vertex cover of G′ − C \

(
N(v1) ∪N(v2)

)
,

and add its union with C \
(
N(v1) ∪N(v2)

)
to S;

\\ case 2:
4. for each v ∈ I do

G′′ ← G−
(
C \N(v)

)
with split partition N [v] and I \ {v};

solve G′′ as case 1, but append C \N(v) to each solution found;
5. return a set in S with the minimum cardinality.

Figure 5 Algorithm for SPLIT → UNIT INTERVAL.

Let V− be a minimum solution to G. If G − V− is {2K2, P3}-free, then the solution
found by step 1 is the minimum. Henceforth we assume that G− V− contains a non-clique
component U ; note that such a component contains all vertices in C \V− and hence is unique.

In the first case, every vertex v ∈ U ∩ I has at least one non-neighbor in C \ V−, i.e.,
N(v) \ V− ⊂ C \ V−. According to Proposition 7, |U ∩ I| ≤ 2. If U ∩ I = {v}, then
G − (V− ∪ {v}) is {2K2, P3}-free and the only nontrivial clique U \ {v} is a subset of C;
hence step 2 always find a minimum solution. In the rest of this case, U ∩ I has two different
vertices; let them be v1 and v2. Since any u1 ∈ N(v1)∩N(v2) and u2 ∈ C \

(
N(v1)∪N(v2)

)
induce a claw with {v1, v2}, at least one of the two sets needs to be empty or completely
contained in V−. Steps 3.2 and 3.3 take care of these two situations separately.

We are now in the second case, where C \ V− ⊆ N(v) for some vertex v ∈ I \ V−; in
other words, V− contains all vertices in C \N(v). There might be two of such vertices, when
we can take v to be either of them. Clearly, N [v] and I \ {v} is then a split partition of
G′′ = G−

(
C \N(v)

)
, which has a solution V− \

(
C \N(v)

)
. Moreover, under this new split

partition, we reduce it to the first case.
The algorithm makes O(n3) calls to the algorithm for the bipartite vertex cover problem,

each taking O(m
√
n) time, and hence the whole algorithm runs in O(mn3.5) time. J

We now turn to problems whose inputs are interval graphs, for which we rely on interval
models. Recall that an interval model for an interval graph is a set of intervals representing
its vertices. In this paper, all intervals are closed. An interval model can be specified by the
2n endpoints for the n intervals, the interval for vertex v being by [lp(v), rp(v)].

For the UNIT INTERVAL → COMPLETE SPLIT problem, the clique is from some maximal clique
of the input graph G and can be enumerated. On the other hand, according to Proposition 7,
there are at most three vertices in the independent set, which can be easily found. However,
for interval graphs, it can be more complicated.

I Theorem 9. Problems INTERVAL → COMPLETE SPLIT and INTERVAL → CLUSTER are in P.

Proof. We solve both problems by finding the maximum subgraphs, for which we work on
interval models. Let us fix an interval model for the input graph G; we may assume without
loss of generality that no distinct intervals can share an endpoint.

Y. Cao, Y. Ke, Y. Otachi, and J. You 22:9

v` vr

α1 β1 α2 β2 α3 β3 α4 β4 α5 β5

α β

Figure 6 Given is an interval model for an interval graph G.
The top line is for the INTERVAL → CLUSTER problem. A maximum cluster subgraph of G has five
cliques, each specified by a pair of αi and βi. (In this example, the maximum clique in each range
[αi, βi] comprises all intervals in this range.)
The bottom line is for the INTERVAL→ COMPLETE SPLIT problem. A maximum complete split subgraph
of G contains 12 vertices. The clique contains the vertices represented by the lowest five intervals,
and the independent set contains v` and vr, together with a maximum independent set of all intervals
completely lying in [α, β].

For the INTERVAL → COMPLETE SPLIT problem, we consider a maximum complete split
subgraph G[U]. It is trivial if G[U] is a clique; hence we assume otherwise. Let C] I be the
split partition of G[U], and let

α = rp(v`) = min
v∈I

rp(v) and β = lp(vr) = max
v∈I

lp(v).

Note that |I| ≥ 2, as otherwise G[U] is a clique; hence v` 6= vr and α < β. See Figure 6. It
is easy to see that a vertex is in C if and only if its interval fully contains [α, β]; on the other
hand, the maximality of U requires us to take all such vertices. The independent set I would
then consists of v`, vr, and a maximum independent set of the subgraph induced by intervals
satisfying α < lp(v) < rp(v) < β. There are O(n2) pairs of indices to enumerate, and for
each pair, both the clique and a maximum independent set can be found in O(n) time. The
whole algorithm runs in O(n3) time.

We now consider the INTERVAL → CLUSTER problem. Suppose that G[U] is a maximum
cluster subgraph of G and that it has k cliques. For the ith clique Bi, we can find two
endpoints

αi = min
v∈Bi

lp(v) and βi = max
v∈Bi

rp(v).

Then all intervals for vertices in Bi are completely contained in the interval [αi, βi]. The
k intervals defined as such are pairwise disjoint: There cannot be edges between two
cliques in G[U]. Therefore, Bi must be a maximum clique in the subgraphs induced by
{v : αi ≤ lp(v) < rp(v) ≤ βi}, which can be found easily. See Figure 6. The problem can
thus be reduced to find the k pairs of endpoints αi and βi.

We build another weighted interval model as follows. For each lp(v`) and each rp(vr)
with lp(v`) < rp(vr), possibly v` = vr, we add an interval [lp(v`), rp(vr)], whose weight is
set to be the size of maximum cliques in the subgraphs induced by {v : lp(v`) ≤ lp(v) <
rp(v) ≤ rp(vr)}. We then find a set of pairwise disjoint intervals with the maximum weight
sum (or equivalently, a maximum-weight independent set of the weighted interval graph
represented by the new interval model). All the steps can be done in polynomial time. J

It is easy to verify the following greedy algorithm solves the TREE → CLUSTER problem.
We root the input graph at an arbitrary vertex, and work on any leaf at the lowest level: If it

FSTTCS 2017

22:10 Vertex Deletion Problems on Chordal Graphs

has siblings (i.e., its parent has degree larger than 2), then delete its parent and put it into
the solution; otherwise the parent of its parent. As we see below, a similar idea would enable
us to solve the BLOCK → CLUSTER problem. Recall that a block (also known as biconnected
component) of a graph G is a maximal biconnected subgraph of G. The block-cut tree of a
block graph has a vertex for each block and for each cut vertex, and an edge for each pair of
a block and a cut vertex that belongs to that block. Note that every block of a block graph
is a clique.

I Theorem 10. The BLOCK → CLUSTER problem can be solved in polynomial time.

Proof. We construct the block-cut tree T of the input graph G. A cut vertex v of G is
denoted by the same label in T , while for a block vertex u of T , we use B(u) to denote the
vertices in the block of G. We arbitrarily root T at some block vertex. Note that all leaves
of T are block vertices, and their neighbors are not; this invariant will be maintained during
our algorithm. Until the tree becomes empty, the algorithm always picks a leaf vertex u at
the lowest level. Let v be its parent. If v has other children, we remove v and its children
from T and put v in the solution V−. In the rest u is the only child of v; let u′ be the parent
of v, and let v′ be the parent of u′. If at least one vertex in the clique B(u′) is not a cut
vertex, then we remove v, u from T and put v in V−. Otherwise, we remove the subtree
rooted at v′ from T ; we put B(u′) \ {v} into the solution, and for each other child ui of v′
that is not a leaf, we solve the subgraph induced by B(ui) and its children. The correctness
is quite straightforward, so we omit here. J

The proofs of the following results are left in the full version.

I Theorem 11. The CHORDAL → CO-CHAIN problem is in P.

I Theorem 12. For any p > 1, the CHORDAL → KP -FREE problem is in P.

I Theorem 13 ([14]). The CHORDAL → SPLIT problem is in P.

4 Hardness

We now turn to hardness results. Here the problems should be understood to be their
decision versions: The input includes, apart from a graph G from C1, a positive integer k,
and the problem is to decide whether G can be made a graph in C2 by deleting at most k
vertices. All of them are in NP because all the concerned graph classes can be recognized in
polynomial time. Our first hardness result, on SPLIT → THRESHOLD, follows easily from the
results of Yannakakis [31] on bipartite graphs. Recall that a bipartite graph is not a chain
graph if and only if it contains some 2K2, and a split graph is not a threshold graph if and
only if it contains some P4.

I Lemma 14. The SPLIT → THRESHOLD problem is NP-complete.

Proof. Let G be a bipartite graph with partition C and I. We add all possible edges among
C to make it a clique. Let G′ be the resulting graph, which is clearly a split graph, witnessed
by the split partition C] I. We argue for every vertex set U that G[U] is a chain graph, i.e.,
being 2K2-free, if and only if G′[U] is a threshold graph, i.e., being P4-free. Let X be any
set of four vertices. If G[X] is 2K2, then |X ∩ C| = |X ∩ I| = 2, but then G′[X] would be
a P4. The other direction can be argued similarly. Since the BIPARTITE → CHAIN problem is
NP-hard [31], the lemma follows. J

Y. Cao, Y. Ke, Y. Otachi, and J. You 22:11

v1

1

v2

2

v3

3

v4

4

v5

5

· · · · · ·
v|I|−2

|I| − 2

v|I|−1

|I| − 1

v|I|

|I| |I|+ 1 |I|+ 2

··
·

Figure 7 The interval model for a threshold graph given by (1).

1 2 3 4 5

· · ·

|I| − 2 |I| |I|+ 2
··
·

|I|+ |I′|+ 2

· · ·

··
·

Figure 8 The interval model for G1 ./ G2.

Recall that every threshold graph is an interval graph, and this can be generalized as
follows. Let G1 and G2 be two threshold graphs with split partitions C] I and C ′] I ′
respectively. We let G1 ./(C,C′) G2, or simply G1 ./ G′ as in the rest of the paper the
partitions are always clear from context, denote the graph obtained from them by adding
all possible edges between C and C ′—i.e., its vertex set and edge set are V (G1) ∪ V (G2)
and E(G1) ∪E(G2) ∪ (C × C ′) respectively. This is clearly a split graph with split partition
C∪C ′ and I ∪I ′. One can verify that G1 ./ G2 is also an interval graph by their obstructions
as follows. A split graph that is not an interval graph has to contain a tent, a net, or a
rising sun (see Figure 1). Each of them has three independent vertices, which have to be
from I ∪ I ′, but a quick inspection of these three graphs will convince us that this cannot be
possible.

I Proposition 15. For any threshold graphs G1, G2, the graph G1 ./ G2 is an interval graph.

A better way to look at Proposition 15 is probably through interval models. Let G be a
threshold graph with split partition C] I, and let vertices in I be ordered in a way that
N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(v|I|). We can build an interval model for G by setting intervals

[i, i+ 0.5] for every vi ∈ I,[
min{i : vi ∈ N(v)}, |I|+ 2

]
for every v ∈ N(I), and (1)[

|I|+ 1, |I|+ 2
]

otherwise (i.e., v ∈ C \N(I)).

See Figure 7 for illustration.
An interval model for G1 ./ G2 can be built from the interval models for G1 and G2 by

(i) keeping the intervals for G1, and (ii) setting the interval to be
[
|I|+ |I ′|+ 3− rp(v), |I|+

|I ′|+ 3− lp(v)
]
for each v ∈ V (G2). See Figure 8.

I Theorem 16. The SPLIT → INTERVAL problem is NP-complete.

Proof. It is clear that the problem is in NP. Let G be a split graph with split partition C] I.
We take a complete split graph G′ with split partition C ′] I ′, where |C ′| = |I ′| = |C|, and

FSTTCS 2017

22:12 Vertex Deletion Problems on Chordal Graphs

let H = G ./ G′. We argue that (G, k) is a yes-instance of the SPLIT → THRESHOLD problem if
and only if (H, k) is a yes-instance of the SPLIT → INTERVAL problem. Since both problems
are trivial yes-instances when k ≥ |C|, we may assume henceforth k < |C|.

Suppose that G− V−, where |V−| ≤ k, is a threshold graph. According to Proposition 15,
(G − V−) ./ G′ is an interval graph. It is the same graph as H − V−. Therefore, V− is a
solution of (H, k). This verifies the only if direction.

Now suppose that H−V−, where |V−| ≤ k, is an interval graph. Suppose for contradiction
that G = G−

(
V− ∩ V (G)

)
is not a threshold graph. Then G must contain some P4; let it

be v1u1u2v2. Since G is a split graph, we must have u1, u2 ∈ C and v1, v2 ∈ I. On the other
hand, by the assumption k < |C|, neither C ′ \ V− nor I ′ \ V− can be empty. Let u ∈ C ′ \ V−
and v ∈ I ′ \ V−. By the construction, the only edges between {u, v} and {v1, u1, u2, v2} are
uu1 and uu2, but then these six vertices together induce a net in H−V−, a contradiction. J

I Corollary 17. The CHORDAL → INTERVAL problem is NP-complete.

The last result is on the deletion of any biconnected subgraph from chordal graphs. Recall
that a vertex v is simplicial in G if N [v] is a clique. A graph is chordal if and only if we can
make it empty by deleting simplicial vertices in the remaining graph [13].

I Theorem 18. Let F be a biconnected chordal graph. If F is not complete, then the CHORDAL

→ F -FREE problem is NP-complete. Moreover, if F is a complete split graph with |C| = 2 and
|I| ≥ 2, then the SPLIT → F -FREE problem is NP-complete.

Proof. We use the following reduction from the vertex cover problem. Let G be an input
graph to the vertex cover problem, we conduct the following operations.
1. For each edge uv ∈ E(G), add a distinct copy of F such that each of them uses uv as

one of its edges. We say that u, v are the attachments for this copy of F .
2. Add all possible edges among V (G) to make it complete.
Let G′ be the obtained graph. To see that G′ is chordal, we give an explicit way of eliminating
simplicial vertices to make G′ empty. A chordal graph either is a clique or contains two
nonadjacent simplicial vertices; all vertices are simplicial when it is a clique. For each copy
of F , we can find a simplicial vertex in V (F) \ {u, v}. We keep doing this, and then only
vertices in V (G) remain. They have been made a clique, and thus all of them simplicial.

We argue that G has a vertex cover of size k if and only if we can delete k vertices from
G′ to make it F -free. The following fact would be essential. We consider any copy X of F
with attachments u and v. If we delete u or v, then the other becomes a cut vertex, and
X \ {u, v} are in different blocks from other vertices of V (G′). But any other copy of F , if it
exists, must be completely contained in a block, and thus it cannot contains any vertex in X.

Suppose that V− is a vertex cover of size k in G. We claim that G = G′ − V− has no
copy of F . For each copy of F with attachments u and v. Therefore, a copy of F in G, if
one exists, has all its vertices from V (G). But this is not possible because F is not a clique.

Suppose now that V− is a solution to G′ of size k. We may assume that V− contains
no new vertex: If it contains a vertex from a copy of F with attachments u and v, we can
replace it by u. (Note that the new set remains a solution to G′ because the aforementioned
fact.) Since G′ − V− does not contain F , each copy of it has at least one of the attachments
in V−. Therefore, each edge of G, at lest one end is in V−, which means that V− is a vertex
cover of G. J

I Corollary 19. Problems SPLIT → BLOCK and CHORDAL → BLOCK are NP-complete.

Y. Cao, Y. Ke, Y. Otachi, and J. You 22:13

v1v2

v3 v4

Figure 9 Reduction for Theorem 18, with F being a tent. The original graph G, drawn with blue
vertices and thick edges, is a C4. The new vertices are gray and new edges thin. The set {v1, v3} is
a solution to both problems.

References
1 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav

Zehavi. Feedback vertex set inspired kernel for chordal vertex deletion. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1383–
1398. SIAM, 2017.

2 Claude Berge. Some classes of perfect graphs. Internat. Computation Centre, 1966.
3 Alan A. Bertossi. Dominating sets for split and bipartite graphs. Information processing

letters, 19(1):37–40, 1984.
4 Ivan Bliznets, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Largest chordal and

interval subgraphs faster than 2n. In European Symposium on Algorithms, pages 193–204.
Springer, 2013.

5 Hans L. Bodlaender and Klaus Jansen. On the complexity of the maximum cut problem. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 769–780. Springer,
1994.

6 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

7 Yixin Cao. Linear recognition of almost interval graphs. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1096–1115. Society
for Industrial and Applied Mathematics, 2016.

8 Yixin Cao. Unit interval editing is fixed-parameter tractable. Information and Computation,
253:109–126, 2017.

9 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Transac-
tions on Algorithms (TALG), 11(3):21, 2015.

10 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, 2016.

11 Václav Chvátal and Peter L. Hammer. Aggregation of inequalities in integer programming.
Annals of discrete mathematics, 1:145–162, 1977.

12 Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: new
fixed-parameter and exact exponential-time algorithms. Information Processing Letters,
113(5):179–182, 2013.

13 Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 25, pages 71–76. Springer, 1961.

14 Tinaz Ekim and Dominique deWerra. On split-coloring problems. Journal of Combinatorial
Optimization, 10(3):211–225, 2005.

FSTTCS 2017

22:14 Vertex Deletion Problems on Chordal Graphs

15 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms
via monotone local search. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pages 764–775. ACM, 2016.

16 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
deletion: Approximation and optimal FPT algorithms. FOCS’12, pages 470–479, 2012.

17 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangu-
lations and CMSO. SIAM Journal on Computing, 44(1):54–87, 2015.

18 Michael R. Garey and David S. Johnson. The rectilinear steiner tree problem is NP-
complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

19 Michael R. Garey and David S. Johnson. Computers and intractability: a guide to the
theory of NP-completeness. WH Free. Co., San Fr, pages 90–91, 1979.

20 Michael R. Garey, David S. Johnson, and Larry Stockmeyer. Some simplified NP-complete
graph problems. Theoretical computer science, 1(3):237–267, 1976.

21 Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972.

22 Martin Charles Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105–107,
1978.

23 Jens Gusted. On the pathwidth of chordal graphs. Discrete Applied Mathematics, 45(3):233–
248, 1993.

24 András Hajnal and János Surányi. Über die auflösung von graphen in vollständige teil-
graphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113–121, 1958.

25 Bart M.P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal
vertex deletion. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1399–1418. SIAM, 2017.

26 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-
ties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

27 Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems.
Automata, Languages and Programming, pages 40–51, 1993.

28 Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics,
156(1-3):291–298, 1996.

29 René Van Bevern, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Measuring
indifference: Unit interval vertex deletion. In WG, pages 232–243. Springer, 2010.

30 Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 2(1):77–79, 1981.

31 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Com-
puting, 10(2):310–327, 1981.

32 Mihalis Yannakakis and Fănică Gavril. The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters, 24(2):133–137, 1987.

33 Jie You, Jianxin Wang, and Yixin Cao. Approximate association via dissociation. Discrete
Applied Mathematics, 219:202–209, 2017.

	Introduction
	Preliminaries
	Algorithmic results
	Hardness

