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Abstract 

 

Automated segmentation of hippocampal (HC) subfields from magnetic resonance imaging 

(MRI) is gaining popularity, but automated procedures that afford high speed and reproducibility 

have yet to be extensively validated against the standard - manual morphometry. We evaluated 

the concurrent validity of an automated method for hippocampal subfields segmentation 

(Automated Segmentation of Hippocampal Subfields, ASHS; Yushkevich et al., 2015b) using a 

customized atlas of the HC body, with manual morphometry as a standard. We built a series of 

customized atlases comprising the entorhinal cortex (ERC) and subfields of the HC body from 

manually segmented images, and evaluated the correspondence of automated segmentations with 

manual morphometry. In samples with age ranges of 6–24 and 62–79 years, 20 participants each, 

we obtained validity coefficients (intra-class correlations, ICC) and spatial overlap measures 

(Dice Similarity Coefficient) that varied substantially across subfields. Anterior and posterior HC 

body evidenced the greatest discrepancies between automated and manual segmentations. 

Adding anterior and posterior slices for atlas creation and truncating automated output to 

the ranges manually defined by multiple neuroanatomical landmarks substantially improved the 

validity of automated segmentation, yielding ICC above .90 for all subfields and alleviating 

systematic bias. We cross-validated the developed atlas on an independent sample of 30 healthy 

adults (age 31-84) and obtained good to excellent agreement: ICC (2) = .70-.92. Thus, with 

described customization steps implemented by experts trained in MRI neuroanatomy, ASHS 

shows excellent concurrent validity, and can become a promising method for studying age-

related changes in HC subfield volumes. 

Word count: 248 

Keywords: MRI, hippocampus, morphometry, aging, development, validation  
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Introduction 

The hippocampus (HC) is a common target of investigations into the neural correlates of 

cognition in aging (Raz, 2000), child development (Ofen & Shing, 2013), and neurodegenerative 

diseases (Small et al., 2011). Although many studies have examined the hippocampus in toto, 

advances in high-resolution magnetic resonance imaging (MRI) have spurred development of in 

vivo morphometry of cytoarchitectonically and functionally distinct HC subfields. Early work on 

HC subfields volumetry by Mueller and colleagues (2007) used boundary definitions based on 

common HC atlases (i.e., Duvernoy, 2005), and limited analysis to the three most anterior slices 

of the HC body. Subsequent work (e.g., Daugherty et al., 2015) extended the range to include a 

greater extent in the HC body, which facilitated comparison with automated computerized 

segmentation methods (Yushkevich et al., 2010). However, segmentation protocols used in 

manual morphometric approaches vary considerably in the placement of boundaries, and 

particularly in separating subiculum and cornu ammonis area 1 (CA1; Mueller et al., 2007; 

Bender et al., 2013; Raz et al., 2015; Iglesias et al., 2015; Yushkevich et al., 2015a). Moreover, 

automated approaches vary according to manual segmentation procedures used for atlas creation.  

As in vivo methods of assessing HC subfields volumes gain popularity, and the desire to 

evaluate datasets with large samples of participants spurs development of automated 

segmentation methods, the question of validity comes to the fore. However, validation of 

computerized methods is not a simple matter. Psychometric theory distinguishes at least four 

types of validity (Cronbach & Meehl, 1954; Crocker & Algina, 1986). Unfortunately, these 

useful distinctions have not yet been widely acknowledged and applied to method development 

in neuroscience. In the context of estimating HC subfield volumes, the importance of the most 

basic type of validity, face validity, or agreement that MRI images indeed appear to show HC 
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anatomy and allow its evaluation, seems beyond doubt, and provides the basis for all further 

inquiry. Validating MRI-based methods, manual or automated, against histologically defined 

subfield boundaries would constitute content validity. Establishing content validity would 

require evidence indicating that the method in question segments the entities (subfields) using 

borders that reflect the true content, that is, subfields as defined by tissue cytoarchitectonic 

appearance. As reliability imposes an upper limit on validity, this attempt would run into a 

problem: the lack of perfect reliability estimated for agreement among expert neuroanatomists. 

We are unaware of any formal reliability study of subfield demarcation on histological slides, 

and anecdotal evidence leads us to believe that in many instances the degree of agreement, even 

among highly trained experts, is far from perfect. Moreover, histologically defined borders 

between HC subfields are not clearly visible on 3T MRI, a staple instrument of in vivo 

neuroanatomy. Thus, evaluation of content validity of HC subfield segmentation has not been 

achieved to date. 

Another important type of validation currently attainable in the in-vivo neuroimaging 

field is criterion validity. This type of validity pertains to the question whether the measure 

correlates with an external criterion or diagnostic entity. The relationship between CA1 volume 

and vascular risk (Shing et al., 2011), genetic markers of inflammation (Raz et al., 2016) or 

Alzheimer’s disease (Mueller et al., 2009) – all in agreement with animal model and histological 

studies – exemplify this type of validity. Notably, these studies validate highly reliable manual 

morphometry methods that are currently taken as the gold standard, although they also evidence 

some disagreements among research groups that are working on harmonizing HC subfields 

segmentation methods (Yushkevich et al., 2015; Wisse et al., 2017). 

In this study, we examine yet another type of validity - concurrent validity, that is, the 
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agreement between a new measurement (automated segmentation) and the established standard 

(manual morphometry). Concurrent validity of automated procedures is not clearly established 

because direct comparisons between automated and reliable manual measurements are scarce. 

Furthermore, attempts to validate segmentation protocols using more specific definitions to 

demarcate smaller HC subregions revealed differential reliability across subfields, with smaller 

regions yielding lower reliability than the larger ones or labels aggregated across regions 

(Marizzoni et al., 2015; Yushkevich et al., 2015b).  

For example, the correspondence between manual measurements and automated 

segmentation of seven hippocampal regions has been examined by the authors of the ASHS 

software (Yushkevich et al., 2015b). The atlas used for automated segmentation was built from 

manual segmentation of all seven HC subregions along the longitudinal axis of the HC 

(including head, body, and tail), and is now part of the default atlas packages provided by ASHS 

for segmentation of new datasets. Agreement between manual and computer-derived volume 

estimates for subfields within the HC body varied considerably across regions (ICC = 0.431 - 

0.892), with many values corresponding to over 50% of error variance and falling well below 

inter- or intra-rater reliability obtained with manual HC subfield morphometry (ICC above 0.90, 

or less than 10% of error variance; Bender et al., 2013; Daugherty et al., 2016; Shing et al., 2011). 

The relatively poorer correspondence between automated and manual methods reported by 

Yushkevich and colleagues (2015b) seems to reflect the low intra-rater reliability of manually 

segmented smaller HC regions, including separate measurement of three CA sectors and the 

dentate gyrus. Despite an understandable desire for increased specificity, unreliably estimated 

smaller regional volumes have questionable utility (Marizzoni et al., 2015). Furthermore, related 

to concurrent validity are the effects of bias in measurements, including fixed bias, or systematic 
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differences between methods, and proportional bias that reflects the tendency of a measurement 

to vary proportionally according to its level. Such potential discrepancies between the methods 

need to be examined as well, as they constitute a threat to concurrent validity.  

Importantly, although histologically informed validity of manual segmentations in the HC 

body has been difficult to establish, current standard manual protocols are widely considered a 

good approximation of real subfield organization (Wisse et al., 2017). Nonetheless, primarily due 

to the less uniform distributions of subfields in the head and tail (Wisse et al., 2017) validity of 

segmentations in these regions is not yet established. Crucially, without subfield atlases of 

hippocampal head and tail, derived from reliable and valid manual morphometry, testing the 

concurrent validity of automated segmentation methods in these regions remains elusive.  

Although manual morphometry of HC subfields remains the standard, automated 

methods have clear advantages, such as greater speed, lesser operator training investment, and 

virtually perfect repeatability. As manual segmentation protocols continue to evolve, it is 

paramount that automated methods utilizing the same segmentation schemes show the same high 

standards of correspondence. The development of valid automated procedures for measuring HC 

subfield volumes is therefore highly desirable. A key challenge to manual and automated 

methods alike is establishing the neuroanatomical basis for boundaries and labels defined in the 

MRI-based segmentation protocols (Wisse et al., 2017). Meeting this challenge is highly 

facilitated by a key feature of ASHS that allows the creation of customized atlases for 

subsequent segmentation of new datasets. Thus, concurrent validity of ASHS can be evaluated 

based on atlases of different levels of anatomical specificity. 

A recent survey of 21 distinct protocols for segmentation of HC subfields (Yushkevich et 

al., 2015a) emphasized the need for harmonizing methods across laboratories and facilitating 
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inter-study comparisons. One challenging aspect of harmonization is a possible dependence of 

the protocol validity on participants’ ages and the atlas used for automated segmentation. 

Accordingly, the primary objective of the present study was to investigate the concurrent validity 

of automatic segmentations by ASHS based on customized atlases built from highly reliable 

manual segmentations. Because validation of ASHS was previously performed in older adults, 

including those with amnestic mild cognitive impairment and normal controls, an additional aim 

was to extend this validation across the lifespan by including children as well as adults covering 

a wide age range. 

The automated protocol selected here, ASHS, employs a multi-atlas segmentation and 

voting (MASV; Rohlfing et al., 2004; Klein and Hirsch, 2005) algorithm. Unlike many 

automated segmentation procedures that use a single atlas and a ‘one size fits all’ approach, the 

MASV algorithm combines the information from multiple template images (atlases) following 

diffeomorphic normalization of the atlases to each co-registered pair of T1-weighted (T1) and 

high-resolution T2-weighted (T2) hippocampal imaging data using a weighted label fusion 

method. This atlas combination is then followed by a corrective learning function, which uses a 

machine learning approach to improve manual-automatic segmentation similarity based on a 

given number of manually demarcated atlas datasets. In the absence of histologically validated 

and reliable methods for segmenting subfields in the HC head, the present study included 

manually demarcated high-resolution HC subfield data, limited to the HC body. In subfields 

segmentation in the HC body, we employed a segmentation protocol developed from a well-

established and highly reliable method (Bender et al., 2013; Daugherty et al., 2016; Mueller et al., 

2007; Shing et al., 2011). A subset of the manually demarcated data was used to build 

customized atlases to test the concurrent validity of ASHS against manual segmentation.  
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To accomplish these goals, we built multiple customized HC subfield atlases that 

included single subfields or aggregations thereof, i.e., subiculum (SUB), combined cornu 

ammonis fields 1 and 2 (CA1/2), and cornu ammonis field 3 combined with the dentate gyrus 

(CA3/DG) – all within the HC body. We also measured an extra-hippocampal medial-temporal 

structure – entorhinal cortex (ERC). The customized atlases were used to automatically segment 

independent samples of brain images drawn from various segments of the lifespan continuum 

including children, adolescents, young adults, and the elderly. After segmentation, we evaluated 

the correspondence between the automated segmentations and manually traced data using 

customary statistical indices: Intraclass Correlation (ICC, Shrout & Fleiss, 1979) and Dice 

Similarity Coefficient (DSC, Dice, 1945), and evaluated measurement bias using Bland-Altman 

(BA) plots (Bland & Altman, 1986). After identifying and evaluating the discrepancies between 

ASHS and manual segmentation, we devised a semi-automated optimization procedure and 

evaluated it for improvements in correspondence. 

Methods 

Data from two independent studies were used in the present analyses to create an early 

lifespan (EL) sample composed of children, adolescents and young adults, and a late lifespan 

sample (LL) composed of older adults. In accord with the Declaration of Helsinki, all adult 

participants provided written informed consent, which was also signed by the primary caregiver 

for all children. Participant characteristics and details of image acquisition are reported 

separately for each sample.  

Participants 

Early lifespan sample. Fifty participants, including children and adolescents (n = 33; age 

range = 6–14 years; mean age = 10.18, SD = 2.19 years; 17 female) and young adults (n = 17; 
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age range = 18–26 years; mean age = 24.14, SD = 2.41 years; 9 females; the combined range 6–

26 years, mean age = 14 SD = 7.0 years, 50% female) were drawn from ongoing studies of 

neural correlates of memory development conducted at the Max Planck Institute for Human 

Development, Berlin, Germany. 

Late lifespan sample. Fifty older adults (age range = 62–79 years; mean age = 69.91, SD 

= 4.60 years; 50% female) were drawn from the Berlin Aging Study II (BASE-II; Bertram et al., 

2014), an ongoing longitudinal study of aging.  

Image Acquisition and Preprocessing 

All MRI data were acquired on a 3T Siemens Magnetom Tim Trio scanner. All EL 

sample data was acquired using a 12-channel head coil. Data acquisition for the EL sample 

included two repetitions of a high-resolution, proton density (PD)-weighted 2D turbo spin echo 

(TSE) sequence, oriented perpendicular to the long axis of the left hippocampus, with in-plain 

resolution = 0.4 mm × 0.4 mm, slice thickness = 2 mm, 30 coronal slices, image matrix 408 × 

512, with TR = 6500 ms, TE = 16 ms, flip angle = 120º, turbo factor 11 applying hyperechoes, 

bandwidth 96 Hz/pixel, 1 average per acquisition. A T1-weighted 3D magnetization-prepared 

rapid gradient echo (MPRAGE) sequence was acquired parallel to the genu-splenium axis of the 

corpus callosum in the sagittal plane, TR = 2500 ms, TE = 3.69 ms, TI = 1100 ms, flip angle 7°, 

with an isotropic voxel size of 1  1  1 mm
3
, using a 3D distortion correction filter and pre-scan 

normalization, with a matrix size of 192 × 256 × 256, GRAPPA acceleration factor = 2, no 

partial Fourier acquisition and bandwidth 140 Hz/pixel. Acquisition of the LL sample data used 

similar procedures with some modifications. For the LL sample, we acquired a single high-

resolution, T2-weighted 2D TSE sequence, oriented perpendicular to the long axis of the 

hippocampus, with in-plain resolution = 0.4 mm × 0.4 mm, slice thickness = 2 mm, 31 slices, 
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image matrix 384 ×384, with TR = 8150 ms, TE = 50 ms, flip angle = 120°, turbo factor 15 

applying hyperechoes, bandwidth 99 Hz/pixel, 1 average per acquisition. As with the EL sample, 

we also acquired a T1-weighted 3D MPRAGE sequence parallel to the genu-splenium axis of the 

corpus callosum in the sagittal plane, TR = 2500 ms, TE = 4.77 ms, TI = 1100 ms, flip angle 7° 

with an isotropic voxel size of 1  1  1 mm, using a 3D distortion correction filter and pre-scan 

normalization with a matrix size of 192 ×256 × 256, no parallel imaging, 7/8 partial Fourier 

acquisition and bandwidth 140 Hz/pixel. For most participants, a 32-channel head coil was used, 

although in two cases a 12-channel coil was used as the 32-channel coil provided an 

uncomfortable fit. 

The two successive T2-weighted, high resolution TSE acquisitions in the EL sample were 

co-registered and averaged with FMRIB’s Linear Image Registration Tool (FLIRT) in FSL v5.0 

(Analysis Group, FMRIB, Oxford, UK) with six degrees of freedom, nearest neighbor 

interpolation, and a normalized correlation cost function (Jenkinson, Bannister, Brady, & Smith, 

2002; Jenkinson & Smith, 2001).  

Manual Demarcation 

Data from both samples were manually demarcated and traced by two expert operators 

(ARB, AK) using a 17-inch digitizing LCD tablet (Wacom DT-710, Vancouver, WA), with 

Analyze 11 software (Mayo Clinic, Rochester, MN) on an Apple Macintosh Pro workstation. 

Regions included in the manual tracing protocol were similar to those reported in prior 

publications (Bender et al., 2013; Daugherty et al., 2016; Raz et al. 2015; Mueller, et al., 2007, 

2011; Shing et al., 2011), and included separate regions for ERC, and SUB, and aggregations of 

CA1 and 2 (CA1/2), and an aggregation of CA3, CA4 and the DG (CA3/DG).  

Ranging. The ranges of slices for inclusion in each HC subfield region of interest (ROI) 
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were determined separately for left and right hemisphere. For each hemisphere, the anterior limit 

of the HC subfields was identified as the first slice following the uncal apex, and on which the 

uncus or tissue belonging to the HC head was no longer visible and did not exhibit partial 

volume artifacts. The posterior limit was identified as the final slice on which the lamina 

quadrigemina (LQ) was visible, allowing for hemispheric differences in range if only left or right 

LQ was visible, even if a partial volume effect was noted. Thus, in cases where only one of the 

four colliculi was visible, the posterior range of HC body would include that slice in the 

corresponding hemisphere. 

Manual demarcation protocol. A modification was introduced into the demarcation and 

tracing rules described in Bender et al. (2013; modified from Shing et al., 2011, which were in 

turn modified from Mueller et al., 2007). In the current protocol placement of boundaries 

separating CA1/2 from SUB and CA3/DG were altered. Briefly, during initial training efforts, 

instead of drawing a free-hand curve around the hippocampal area, the operators drew a rigid 

ellipse extending from the most medial aspect of CA3/DG to the most lateral part of CA1, with 

the upper extent covering the superior aspect of visible HC body and the inferior edge of the 

ellipse bisecting the visible stratum radiatum lacunosum moleculare (SRLM; Figure 1). This 

ellipse was then perpendicularly bisected along the short and long axes and the short bisector 

served as the boundary separating the inferior aspect of CA1/2 from SUB, and the superior 

aspect of CA1/2 from CA3/DG. The modified protocol includes a more lateral placement of the 

SUB-CA1/2 boundary than in the protocols on which the present method was based, and was 

intended as a compromise between the more disparate placement of that boundary in other 

reports (Iglesias et al., 2015; Yushkevich et al., 2015a). After initial training, raters visualized the 

ellipse and bisectors without drawing them, and used the visualized criteria to establish the 
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boundaries for manual demarcation of data. The same procedure was used both for establishing 

inter-rater reliability and subsequent demarcation of study data. Other aspects of manual 

demarcation procedures were consistent with previously published methods (Bender et al., 2013; 

Daugherty et al. 2016; Raz et al., 2015; Shing et al., 2011). 

Following training, two separate operators manually traced the same sample of 12 cases 

(independent from the EL and LL samples but pooled from data acquired with identical 

acquisition properties) to assess inter-rater agreement by computing intra-class correlation 

coefficients (ICC[2], for random raters; Shrout & Fleiss, 1979). For all regions, ICC(2) values of 

at least 0.85 for left and right hemispheres, separately, and at least 0.90 bilaterally were set as a 

benchmark for desired inter-rater agreement. The same raters ranged slices, although one (AK) 

determined the ranges for the EL sample, whereas the other (ARB) determined the ranges for LL 

sample. The same two expert operators manually demarcated all images using these procedures, 

with randomized assignment of each slice to a given rater. Following a previously described 

procedure (Raz et al., 2004), the goal of slice assignment randomization between raters was to 

reduce the error of measurement.  

Automated Hippocampal Segmentations 

Atlas-building. ASHS software (Yushkevich et al., 2015b) was used for atlas building 

following published procedures (https://sites.google.com/site/hipposubfields/building-an-atlas), 

without slice heuristics or cross-validation procedures, as preliminary attempts to include slice 

heuristics produced multiple errors that diminished correspondence with manually demarcated 

data. These errors included partial or inaccurate segmentation of anterior and posterior regions, 

exclusion of multiple anterior and posterior slices, or spurious inclusion of regions on slices. 

Atlas building specified inclusion of four ROIs, consistent with the segmentation protocol. ROIs 
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were exported from Analyze software to NIfTI format, and associated required MPRAGE data 

were converted to NIfTI from DICOM format. We initially created two separate, sample-specific 

atlases for the EL and LL samples, respectively, as well as a lifespan atlas including manually 

demarcated data from both groups. Procedures published on the ASHS website 

(https://sites.google.com/site/hipposubfields/building-an-atlas; accessed December 16, 2016) 

recommend 20 to 30 cases for atlas building, and suggest that variations on this number still 

require additional validation to test any benefit of including additional data. Atlas building in 

ASHS was performed on a cluster-computing environment running on Intel Xeon CPU ES-2670 

CPU cores running on Dell M620 blade servers, using the portable batch system for job 

scheduling. 

Atlas building samples. ERC and HC subfields were ranged and manually demarcated on 

100 participants, including 50 EL, and 50 LL. From each group, segmentations from 30 

participants were assigned for atlas building, and the remaining 20 cases were used for ASHS 

segmentation and comparison with automated output. Assignment for atlas vs. segmentations 

was pseudorandomized to include similar age distributions in both atlas building and 

segmentation. No cases were used for both atlas building and procedure comparison. 

The EL sample-specific atlas included 30 children and adolescents (n = 20; age range = 

6–14 years; mean age = 9.93, SD = 2.53 years; 50% female), and young adults (n = 10; age range 

= 18–24 years; mean age = 22.20, SD = 2.35 years; 50% female). The sample-specific atlas for 

the LL sample included 28 older participants (age range = 62–79 years; mean age = 69.82, SD = 

4.40 years; n female = 13), following exclusion of two cases (1 female, 68 years old; 1 female 71 

years old) stemming from errors during atlas building due to these cases having an additional 

slice included during acquisition. We also used data from the EL and LL samples to build a third 
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atlas spanning the entire age-range of our sample. We designed the lifespan atlas to be composed 

of equal numbers of cases from the EL and LL samples. Because HC subfield volumes in young 

adults are more similar in size to older adults than to children (Daugherty et al., 2016), we 

weighted the EL cases more heavily for children and adolescents than for young adults. Thus, the 

lifespan atlas included data from 10 children and adolescents (age range = 7–13 years; mean age 

= 10.08, SD = 2.64 years; 50% female), four young adults (age range = 22–24 years; mean age = 

23.00, SD = 0.82 years; 50% female), and 14 older adults (age range = 62–78 years; mean age = 

69.64, SD = 4.63 years; 50% female). 

ASHS segmentation using customized atlases. ASHS segmentation was applied to each 

sample using the age-appropriate customized atlases as well as the combined lifespan atlas. The 

remaining 20 cases for each sample, whose ROIs were manually traced, but not used in atlas 

building, were used as validation cases. These were segmented using ASHS on the cluster-

computing environment described above. 

Optimization by Extending Range of Tracing 

Following initial segmentation in ASHS, we examined the results, quantitatively and 

visually. Discrepancies between automated and manually demarcated image maps appeared most 

prominent at the first and final slices of all regions. In multiple cases, ASHS excluded 

segmentations for one or more ROIs on the first or final slices, or included additional slices that 

were not part of the manually ranged data. These issues could have plausibly arisen from 

imperfect registration of the T1 and T2-weighted data, differences in angle of acquisition plane 

between the two, or a combination of these factors. Alternatively, it is possible that such 

differences arise because ASHS functions under an essentially different set of assumptions than 

manual raters (i.e., spatial and intensity values vs. anatomical landmarks) when determining the 
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longitudinal extent of segmentation.  

To address these discrepancies, we modified the ranging rules, extending the ranges 

beyond manually designated anatomical landmarks for segmentation procedures used for images 

included for atlas building (Fig. SI1). This step was intended to reduce the likelihood of 

excluding anterior or posterior slices output during ASHS segmentation by producing an atlas 

that extended beyond anatomical ranges for manual inclusion. In this modified procedure, we 

traced additional slices: one to two anterior and one to two posterior slices were added to the 

manually defined ranges, depending on visibility of subfields. In anterior slices, any visible 

tissue from the uncus or the HC head was not included and demarcation was limited to clearly 

apparent HC ‘body-like’ regions on slices anterior to the uncal apex. On additional posterior 

slices, tracing was not performed in two cases, which showed no visible separation between the 

subfields. The extended ROIs were used for atlas building in ASHS following the same 

published guidelines, producing two extended sample-specific atlases and one extended lifespan 

atlas. We then used the resultant extended, customized atlases in ASHS to segment the same 20 

validation cases. 

Initially, the extended demarcation was limited to the subfields in the HC body. However, 

this did not ameliorate problems in ERC measurements, with several cases showing pronounced 

ERC segmentation errors in more posterior slices of that structure. Therefore, an additional 

extended atlas that included expanded demarcation of that structure on additional posterior slices 

was generated. The final customized atlases in ASHS, with extended demarcation of both ERC 

and body subfields was again applied for segmentation of the 20 validation cases (see Fig. 2 for a 

list of all atlases generated). Following ASHS segmentation, the extended validation data were 

truncated using an automated Bourne shell script and utilities from FSL v5.0 (Jenkinson et al., 
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2012) to limit ROIs to only those slices included in the manually defined ranges employed in the 

manual demarcation. Thus, operator-determined ranges were preserved and ASHS propensity for 

segmentation problems at the anterior and posterior limits of the hippocampal body was kept in 

check. An additional inspection following the optimization determined whether the procedure 

successfully addressed the discrepancies. Following optimization, we observed three cases with 

minor segmentation errors on the most posterior HC body slice. However, following consultation 

between the operators responsible for ranging, demarcation, and optimization (ARB and AK), 

the additional error from those cases was deemed minimal and required no further correction. 

The raters noted, nonetheless, that in some cases it might have been preferable to use a more 

conservative criterion for the posterior HC body boundary, and adjust it to one slice anterior to 

the final slice on which LQ is visible. 

Post-optimization Correction 

Following optimization procedures, we roughly estimated automated segmentation 

accuracy by comparing the total number of voxels and visually inspecting the manual and 

automated segmentation output. For ERC in the LL sample, we noted systematic differences: 

manual morphometry produced smaller volumes than ASHS did; however, no such systematic 

differences were apparent for ERC in the EL sample. Visual comparison of automated and 

manual masks revealed inconsistencies between the methods in 13 out of 20 cases for left-only 

(n = 4), right-only (n = 4), or bilateral ERC (n = 5). Consultation between the expert operators 

suggested that the smaller manually segmented ERC resulted from tendencies toward 

exceedingly conservative estimation of ERC in morphologically ambiguous circumstances, in 

which inferior termination points of demarcation were prescribed based on the appearance of 

false sulci, rather than at true collateral sulci. Based on this comparison, one rater (AK) manually 
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corrected ERC for these 13 cases, blinded to automated output during correction procedures. 

Thus, corrections were only performed as indicated by apparent anatomical boundaries, and were 

not influenced by direct comparison with automated segmentations. 

Data Analysis 

Inter-rater Agreement. Two complimentary indices of inter-rater agreement and spatial 

overlap were used to evaluate the correspondence of manual and automated segmentations. The 

ICC(2) statistic (Shrout & Fleiss, 1979) is an analysis-of-variance-based statistic that separates 

true variability of raters and volume differences from error, and thereby provides an estimate of 

bias in ratings. ICC(2) is geared towards assessing reliability of the volumes, the target measure 

in all studies cited above. It is not meant, however, to assess spatial overlap between geometric 

objects. When such overlap is of interest, the Dice similarity coefficient (DSC; Dice, 1945) is a 

statistic of choice. Although it gauges the spatial similarity or overlap of regions, DSC does not 

account for error variance in agreement, as it relies on set theory to evaluate overlap and 

commonality. Because the range truncation frequently resulted in differential number of slices 

between left and right hemispheres, mean DSC values following optimization were computed 

separately for each hemisphere, and bilateral DSC values after optimization were calculated as a 

mean across the hemispheres. 

Bias estimation. ICC(2) is affected by the range of measured values, and a method less 

dependent on range is desirable. Therefore, we generated BA plots of agreement (Bland & 

Altman, 1986), which compare the differences between methods against their combined mean 

values. BA plots provide two useful indices: constant bias, which represents the departure of the 

differences between methods from zero, and proportional bias that indicates the association 

between bias and regional size, and are considered a standard in method comparison studies. 
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Results 

Ranging. The average number of slices used for manual demarcation of HC subfields 

differed between the samples. In the LL sample, the range contained one additional slice 

compared to the EL sample: mean (±SD) of the LL sample = 8.77±0.92 slices; mean (±SD) of 

the EL sample = 7.82±0.90 slices; t[98] = 5.24, p < .001.  

Initial validation attempt 

ICC(2). The results of all validation attempts are presented in Table 1, and are depicted in 

Figure 3. For the EL sample, both the sample-specific and Lifespan atlases showed low 

correspondence with manually demarcated data for ERC and SUB, and somewhat closer 

correspondence for CA1/2 and CA3/DG. The LL sample evidenced higher correspondence 

between manually traced and ASHS-segmented subfield volumes. As with the EL sample, ERC 

for the LL sample showed the lowest agreement between manual and automated methods among 

all ROIs, regardless of the atlas used.  

DSC. In contrast to the ICC(2) results, evaluation of DSC overlap between ASHS and 

manually demarcated data showed reasonable consistency between methods for both the EL and 

LL samples. However, the pattern of overlap loosely mirrored the ICC(2) results for both 

sample-specific and Lifespan atlases, with lowest correspondence for ERC compared to other 

ROIs.  

Visual inspection. In both the EL and LL samples, we observed consistent problems with 

ASHS segmentation, independent of the atlas used. These problems included a variety of 

segmentation errors that were primarily apparent at the most anterior and posterior aspects of 

ERC and the HC body. Segmentation errors were primarily defined by inclusion of extra voxels 

or mis-segmentation of subfields in anterior or posterior slices by over-, or under-inclusion of 
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relevant voxels (Fig. 4). We observed one or more of such errors in almost all cases in both EL 

and LL samples. For the EL sample, problems with the initial ASHS segmentation were 

observed in ERC and in both the anterior and posterior HC body segmentations. ERC 

segmentation errors from ASHS output were observed in all EL cases, with 90% of validation 

cases showing bilateral ERC segmentation errors, and 10% only showing problems in the left or 

right ERC.  Anterior HC body segmentation errors were also observed in 90% of the EL sample, 

with 15% of the brains showing unilateral and 75% of bilateral segmentation errors. Problems 

with posterior HC body segmentation were observed in 80% of cases, including 35% unilaterally, 

and 45% bilaterally.  

In the LL sample, ERC segmentation errors from ASHS output were manifest in all cases, 

with 20% restricted to one hemisphere, and 80% showing problems bilaterally. Similarly, 

anterior HC body ASHS segmentation errors were ubiquitous, with errors in only one case 

restricted to the left hemisphere of the anterior HC body. Posterior HC body segmentation errors 

from ASHS were observed in 90% of those cases, with 25% showing improper segmentation 

unilaterally. 

Post-optimization validation 

ICC(2). For the EL sample, post-optimization ICC(2) values revealed substantially 

improved automated-manual correspondence for HC subfields in sample-specific and Lifespan 

atlases. Although correspondence for ERC also improved, the higher validity coefficient (ICC[2] 

= 0.635) was still below the pre-established standard of inter-rater reliability (i.e., 0.85). Bilateral 

ICC(2) values for SUB and CA3/DG approached or were above 0.90, but the ICC(2) for CA1/2, 

for both sample-specific and Lifespan atlases was still lower than we hoped. In contrast, for the 

LL sample, the ICC(2) values for ERC were not considerably improved by optimization 
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procedures. Correspondence between manually traced bilateral ERC and the sample-specific 

atlas segmentation was only ICC(2) = 0.207, whereas the agreement between manual 

segmentation and the one produced by the Lifespan atlas reached a moderate value: ICC(2) = 

0.590. Comparison of volumetric data and visual inspection revealed inconsistencies in several 

cases used in ERC atlas building, suggesting that ASHS segmentation output was more 

consistent than manual demarcation in this more ambiguous anatomical region in which no 

geometric-anatomical heuristic was applied. Following correction of these 13 cases of manually 

demarcated ERC from the LL sample, the automated-manual correspondence improved 

substantially for the Lifespan atlas, but not the sample-specific atlas (Table 1). Similarly, 

concurrent validity for the remaining HC subfields SUB, CA1/2, and CA3/DG all showed 

marked improvements following optimization, with consistently higher ICC(2) values for the 

Lifespan than the sample-specific atlas.  

DSC. Spatial overlap between automated and manually segmented data increased 

following optimization procedures for both samples. This change was independent of atlas type. 

In addition, the differences between automated and manually segmented subfield data are most 

apparent at the edges of the structures (Fig. 5), and some differences in the SUB-CA1/2 

boundary appear to differ in the anterior vs. posterior HC body. 

Bias estimation. To evaluate whether one of the automated methods systematically under- 

or over-estimates subfield volumes in comparison with manual morphometry, we generated BA 

plots (Fig. 6, SI Figs. 2-3). BA plots comparing ASHS automated output derived from sample-

specific and lifespan atlases, without optimization (SI Fig. 3) demonstrate a proportional bias in 

some regions: larger volumes were associated with greater negative differences, i.e. smaller 

estimates generated by ASHS. In an extreme example, the proportional bias stemmed from one 
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case from the LL sample having a large overall volume. In that case, ASHS did not adequately 

segment the first HC body slice on the left or the final HC body slice on the right, even following 

optimization procedures. This proportional bias appeared considerably greater in ERC and SUB 

than in CA1/2 and CA3/DG, and was reduced, though not eliminated, by optimization, 

particularly for the lifespan atlas (Figure 5).  

Cross-validation 

To validate the optimization approach presented here, we applied it to an independent 

sample. The participants in that sample were recruited from a different population, and scanned 

on a different MRI installation, with some differences in acquisition parameters. The images 

were manually demarcated by independent raters who were trained on the manual segmentation 

protocol, described above. The data were also segmented in ASHS using the extended lifespan 

atlas optimized for limiting segmentations to the manually indicated slice ranges.  

Methods 

Participants. The cross-validation sample was drawn from ongoing, longitudinal 

investigations of brain and cognitive aging in Detroit, Michigan. Participants provided written 

informed consent in accord with the Declaration of Helsinki. The sample included 30 healthy 

adults (14 men and 16 women) from 31 to 84 years of age (mean age = 61.44, SD = 12.78 years). 

All participants were right-handed, free of neurological and psychiatric diseases, and cognitively 

intact (MMSE range 26-30; mean MMSE = 29.20; SD = 1.03).  

MRI acquisition. All sequences were acquired on a 3T Siemens Verio (Siemens Medical 

AG, Erlangen, Germany) MRI scanner with a 12-channel head coil. We acquired a high-

resolution PD-weighted TSE sequence in the coronal plane, perpendicular to the long axis of the 

hippocampus: TE = 17 ms, TR = 7150 ms, flip angle = 120°, pixel bandwidth = 96 Hz/pixel, 
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turbo factor 11, in-plain resolution = 0.4 mm × 0.4 mm, slice thickness = 2.0 mm, 30 slices, 

image matrix 280 x 512. Acquisition also included a high-resolution T1-weighted MPRAGE 

sequence in the coronal plane, along the AC-PC line, with TR = 1680 ms, TE = 3.51 ms, TI = 

900 ms, flip angle = 9.0°, bandwidth = 180 Hz/pixel, GRAPPA acceleration factor 2, and voxel 

size = 0.67 mm × 0.67 mm × 1.34 mm.   

Manual demarcation procedure. Manual demarcation was performed primarily by two 

raters (AMD and QY), using the same manual segmentation protocol as described above for the 

initial validation. The raters attained the same standards of reliability (ICC ≥ .90 for bilateral 

regions) and AMD was reliable with one of the raters who traced the original sample (ARB). 

Automated segmentation and optimization. We used the extended-lifespan atlas for 

segmentation in ASHS, followed by our optimization approach using the truncation procedure 

described above. Visual and quantitative inspection of the output showed disagreement in 12 out 

of 30 cases on the final body slice included in manual ranging. Thus, a somewhat more 

conservative range was applied, with the most posterior body slice excluded from the original 

ranging criteria.  

Results 

Comparison between automated and manual segmentation showed high agreement, 

which was improved by applying a more conservative ranging criterion (Table 2). In addition, 

we identified an outlier with a very large hippocampus that was not segmented by ASHS on the 

two most anterior slices (SI Fig. 1). The influence of that outlier attenuated the validity 

coefficient for CA1/2. Overall, however, correspondence between the optimized ASHS output 

and manual segmentations was good, with ICC(2) values for bilateral ROIs ranging from 0.700 

to 0.915. 
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Discussion 

This study yielded four main results. First, we successfully created a series of customized 

atlases in ASHS using data from across the lifespan. This work extends prior findings from older 

adults (Yushkevich et al., 2015b) to children, adolescents, and younger adults using highly 

validated aggregated labels that have shown strong replicability across laboratories (Bender et al., 

2013; Mueller et al., 2007, 2009; Shing et al., 2011). Second, we provided independent estimates 

of concurrent validity for ASHS segmentation of HC subfields based on novel customized 

atlases. Third, we showed that the concurrent validity and proportional bias of automated and 

manual HC subfield segmentation could be improved considerably by manually optimizing 

automated procedures and by using a lifespan sample for atlas generation, particularly for the LL 

sample. The optimization procedure used here is similar to that from the original ASHS work 

(Yushkevich et al., 2010), and relies on extending the boundaries during atlas building and 

truncating the data in accord with manual ranging criteria for slice inclusion. Fourth, we cross-

validated our findings. We replicated the concurrent validity findings based on the lifespan atlas 

and new optimization method on a sample from a different scanner, with different acquisition 

parameters, in a different population, demarcated by different raters trained on the same manual 

segmentation protocol.  

Discrepancies: Sources and Solutions 

Automated approaches are highly consistent, but their external validity remains unknown 

until their output is carefully compared to the results of reliable manual tracing. The greatest 

disagreement in segmentation accuracy during the initial validation attempt arose in the most 

posterior or anterior aspects of cortex or subfields. An apparent strength of ASHS is in its 

excellent correspondence based on within-slice segmentation. It encounters, nonetheless, 
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problems in generalizing the longitudinal spatial extent from the training atlases to the target 

images. Left unchecked, ASHS may misclassify or exclude some or all regions in final slices, or, 

in some cases, add slices, relative to the range defined and segmented by the manual 

segmentation protocol, on which the customized atlases were based. Applying the ASHS ‘slice 

heuristics’ function in atlas building did not remedy these discrepancies between manually 

defined ranges and the range of slices determined by ASHS. Whereas these discrepancies may 

produce similar estimations of total volume, they suggest a greater concern with specificity in 

coverage of the HC body. Furthermore, although these discrepancies were still apparent in 

applying our extended atlas and optimization procedures to an independent data set, this was 

remedied by applying a slightly more conservative criterion for range of slices included in 

estimating HC body volume. 

Using BA plots, we found that ASHS produces a significant compression of variance in 

regional volumes, as the worst agreement with manual tracing was observed for extreme values. 

Similar variance compression has been observed when other automated procedures were 

compared to manual morphometry (e.g., Kennedy et al. 2009). This may be due to segmentation 

algorithms assuming that individuals are drawn from a homogenous, normally distributed 

population. The ensuing emphasis on central tendency may yield stronger influence on extreme 

cases by pulling those closer to the distribution mean. The MASV method employed in ASHS 

(Rohlfing et al., 2004; Klein and Hirsch, 2005), entails registration and normalization of 

individual native space images to a series of manually segmented template images, and 

subsequent inverse registration of multiple template-based segmentations back to each individual 

image. A voting scheme is then used to combine the resultant multiple segmentations into a 

unified segmentation. The benefit of the MASV method in ASHS might have mitigated the 
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deviations in atlas-based segmentation within slices included in manually defined ranges.  

We found that our optimization procedure that applied identical anatomical criteria used 

in manual segmentations to establishing regional inclusion boundaries improves the validity of 

automated approaches. Thus, the discrepancy in selection of multiple anatomical landmarks for 

establishing regional boundaries appears to be a crucial difference between manual and 

automated methods. However, even under the optimized procedures, the largest HC in the 

sample was still not correctly segmented, with the most anterior and posterior slices misclassified 

or not included. This may indicate a need for further refinement of HC body ranging procedures 

for both manual and automated segmentation methods (Wisse et al., 2017).  

In addition, manual HC subfield demarcation has most frequently relied on widely used 

atlases, in which, unlike most MRI-based segmentations, the slices are not aligned 

perpendicularly to the long axis of the hippocampus (i.e., Duvernoy, 2005). Manual methods 

involve the successive segmentation of structures on 2D slices and rely on multiple anatomical 

landmarks for determining range of inclusion and placement of internal boundaries. As such, 

manual demarcation benefits from expertise and recognition of relevant individual differences in 

brain morphology and standardized decision processes for handling partial volume effects or 

motion artifacts in structures of interest (i.e., CSF, GM/WM, dura, choroid plexus, blood vessels, 

etc.). In contrast, automated methods commonly utilize multiple types of spatial transformations 

to bridge various imaging modalities with different acquisition planes, different voxel size and 

varying degree of voxel anisotropy. Moreover, such automated approaches may be less sensitive 

to individual differences in morphology and relative distance from anatomical landmarks. The 

borders of some regions (i.e., ERC) are inherently more ambiguous because of multiple sources 

of noise, even when viewed by expert raters. Nevertheless, manual tracing remains the standard 



AUTOMATED VS MANUAL HIPPOCAMPAL SUBFIELDS Bender et al., 29 

not because it is infallible, but because it is performed by trained experts who are guided by 

knowledge of neuroanatomy, understanding of MRI artifacts, and flexibility in considering 

individual differences. The present findings also suggest that automated, multi-atlas voting 

approaches may help guide experienced raters in morphologically ambiguous circumstances. 

Together these issues underscore the importance of expert review of segmentation accuracy and 

consistency. 

Relation to other findings 

It is important to note that ICC and DSC statistics, which are rarely compared directly, 

reveal different but complimentary results. The ICC(2), essentially an analysis-of-variance 

technique, is sensitive to deviations between cases and procedures (automated vs. manual), and 

can be interpreted as reflecting error variability between methods, relative to the overall 

variability within the sample. DSC, a measure of spatial overlap between two structures, does not 

account for non-error individual variability in their size. As expected, compared to DSC, the 

ICC(2) was considerably more sensitive to variability, as shown by the larger and more variable 

confidence intervals for the latter. Also, in both samples, the CA1/2 and CA3/DG regions 

appeared less sensitive than SUB and ERC to differences in automated vs. manual segmentation. 

These observations are supported by the BA plots (Fig. 6) and by the bias statistics (Fig. 7), 

which show lower bias for the lifespan atlas and reduction in bias following optimization 

procedures. It should be noted that the BA plots are sensitive to bias that reflects systematic 

differences between methods and overall tendencies toward generating differences in 

segmentations proportional to the size of the structure. In contrast, the 95% confidence intervals 

around the ICC(2) reflects the uncertainty of the statistic at the population level, and indicates 

that 95% of estimated intervals would include the population parameter. Thus, the three statistics 
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reported here (ICC[2], DSC, BA bias) are complementary, and reflect different aspects of 

agreement between methods.    

The present findings also highlight the greater difficulty of manual segmentation for ERC 

due to inconsistent interpretation of morphometric rules even by experienced raters. Moreover, 

as is apparent primarily in the LL sample, it is possible that this discrepancy resulted from 

differences in image acquisition or morphological differences in development. Indeed, in these 

images, both SUB and ERC were more likely than CA1/2 and CA3/DG influenced by 

differences in signal intensity arising from adjacent vasculature. This discrepancy also may result 

from poorer gray-white matter contrast, signal drop-off, or partial voluming of subcortical white 

matter in rhinal cortices on 2-mm thick slices used in our high-resolution T2-weighted sequences, 

and typically employed in HC subfield imaging (Yushkevich et al., 2015a). These problems 

would be less likely on thinner T1-weighted images with lower in-plain resolution, on which EC 

volumes can be reliably estimated (e.g., Goncharova et al., 2001; Raz et al., 2010). Together, 

these issues appear to make definitive manual designation of collateral sulcus more ambiguous 

(Insausti et al., 1998; Pruessner et al., 2002). However, the present findings may also indicate 

that use of the automated, MASV method by ASHS made it less vulnerable to imaging artifacts 

and partial voluming in comparison to expert manual operators. Although it can be performed 

reliably, , ERC volume estimation is  a challenging task even on thinner slices with isotropic 

voxels (e.g., Xu et al., 2000; Price et al., 2011). It remains unclear, pending comparison to 

histologically demarcated samples, whether this improvement in reliability also reflects greater 

validity of ERC demarcation by ASHS or greater consistency of the automated procedure. 

Limitations and Future Directions 
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The results of this study should be interpreted in the context of several limitations. First, 

our segmentation was limited to the body of the HC and adjacent ERC and the results cannot be 

generalized to the hippocampal head and tail. Although ASHS may be capable of producing 

reliable segmentations of subfields in HC head and tail, histologically validated methods for 

cytoarchitectonically informed segmentation of subfields within HC head and tail are not yet 

established; this is primarily due to the less uniform distributions of subfields in the head and tail 

(Wisse et al., 2017). In the HC head, a challenge to validity emerges largely from its complex 

anatomical structure: the HC head is rotated in two planes and the number of HC head digitations 

can vary among individuals. Moreover, similarity of appearance displayed by tissue in the 

hippocampal head and amygdala on MRI can complicate precise, reliable demarcation of 

boundaries between adjacent gray matter regions. This is further complicated in aging samples as 

the age-dependent inferior horn of the lateral ventricle frequently serves as a landmark for this 

boundary. This produces too many challenges to be treated without serious concerns about the 

differential distributions of subfields in the head (Wisse et al., 2017). In the tail, variability in 

acquisition angle, HC length, curvature, subfield distribution, and relative distance from the 

fornices and thalamus currently limits the validity of any segmentation protocol (Wisse et al., 

2017). These challenges have been identified in enumerating the discrepancies among the 

protocols currently used for HC subfield demarcation (Yushkevich et al., 2015a) and the strategy 

towards improvement and harmonization of the rules are currently the goal of the Hippocampal 

Subfields Group consortium (Wisse et al., 2017).   

Furthermore, several automated protocols offer segmentation with greater anatomical 

distinctions, yielding separate measures of almost all CA subregions, subiculum subregions, 

fimbria, alveus, the vestigial hippocampal fissure and the ‘dark band’ on T2-weighted, stratum 
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radiatum lacunosum molecular (SRLM). As a rule, such highly specific labels show relatively 

low reliability in manual measures, and consequently low validity in automated protocols, 

whereas aggregating small regions improves both (Iglesias et al., 2015; Marizzoni et al., 2015; 

Yushkevich et al., 2015a). In contrast to this rule and to the pattern of results in the present study, 

a recent study of small, specific labels in five healthy adults showed high ICC, but lower DSC 

for SRLM (Amaral et al., 2017), although it is unclear which formula was used for ICC 

calculation, which limits direct comparison to the present study.  

Second, our optimization procedure relies on manual intervention, as it involves defining 

HC body ranges based on anatomical landmarks. Consistent application of such procedures may 

be challenging for non-expert human operators. In general, the various sources of potential 

discrepancies outlined above underscore the necessity of manually checking the output of 

automated segmentation protocols – although this is always strongly suggested when automated 

segmentation is performed. The benefit conveyed by removing an additional slice in the cross-

validation suggests that improving correspondence between manual and automated methods 

depends on accuracy of segmenting internal, within-slice features and on consistent ranging. It 

remains unclear how representative are the individual slices along HC and whether including an 

entire region with a higher noise profile is preferable to more specific measures that sample a 

more limited, but representative anatomical aspect with smaller measurement error. Nevertheless, 

the optimization procedures described here and the manual inspection of automated output 

require certain expertise in MR-based neuroanatomy. Thus, to attain the high levels of 

concurrent validity reported here, personnel charged with performing these steps should have 

adequate training and expertise in neuroanatomy. This is, of course, true with regards to any 

computerized procedure that benefits from corrections and adjustments to its automated output.   
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Third, the present validation was performed only with ASHS, and evaluation of other 

software for HC subfield segmentation was beyond the scope of the present study. Methods 

based on multi-atlas segmentation, including Multiple Automatically Generated Templates brain 

segmentation (MAGeT-Brain; Pipitone et al., 2014), should be evaluated. In addition, the 

Freesurfer software suite has included functionality for segmentation of HC subfields based on 

probabilistic or ex vivo data (Iglesias et al., 2015; Van Leemput et al., 2009). Although it is 

beyond the scope of the present study, additional work is also needed to reconcile the results of 

these approaches with the optimized morphometric approaches reported here.  

Fourth, we combined the data from two independent studies, originally designed to 

investigate questions related to cognitive development and aging, respectively. While this, in part, 

motivated the division of data into EL and LL samples, it is possible that EL analysis might have 

benefitted from further subdivision into samples of children/adolescents versus young adults. 

Cross-sectional evidence suggests that volumetric differences between children and early 

adulthood (Daugherty et al., 2016) vary across hippocampal subfields, and some young adults 

may more closely resemble their older counterparts than children. Sex differences in HC volume 

are reported in adolescence, with greater age-associated decrements in total HC volumes in 

adolescent males compared to females (Satterthwaite et al., 2014). Furthermore, the two samples 

investigated in the present study were scanned with non-identical acquisition methods and 

differed in averaging of multiple acquisitions and head coil used, which may complicate direct 

comparison of automated-manual concurrent validity between groups. Thus, future studies 

should evaluate the differential utility of such automated, atlas-based segmentation approaches 

for children and adolescents, by age and sex, while holding all other aspects of acquisition 

constant. Moreover, future studies should evaluate how well the optimization methods reported 
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here extend to other data. 

It is unclear why the lifespan atlases outperformed the sample-specific atlases in their 

agreement with manually demarcated data. Considering the MASV approach used by ASHS, it 

may seem possible that the more variable set of atlas-template images may have yielded a more 

diverse set of features, which ASHS could use to compare with any target image during 

segmentation. However, improving the concurrent validity of automated and manual 

segmentations by using the Lifespan rather than narrow-age atlases is at odds with prior findings 

and theory (Wang et al., 2013). Although it is possible that agreement between manual and 

automated methods could have benefitted from uniform acquisition parameters, the present 

analyses suggest that greater variability in the data used for atlas building may improve 

correspondence. In the present study, we chose to build atlases based on age distributions, and 

not on specific morphological features such as HC size and shape. It is possible that the lifespan 

atlas outperformed the sample specific atlases because it included a greater distribution of such 

morphological features. Future validation efforts should compare the concurrent validity of 

automated segmentations from atlases built using age as a criterion with those specifically built 

to include a diverse set of morphological features. Similarly, the images for atlas building were 

chosen based, in part, on the relative absence of gross motion artifacts. Further validation is 

needed to determine the degree to which motion artifacts in atlas template images may influence 

segmentation accuracy. These results, however, highlight the need for further research to 

determine the conditions, under which a more variable training set yields segmentations with 

better correspondence with manual segmentations generated by a more uniform set of atlases.  

It is also possible that ASHS segmentation errors at the most anterior or posterior aspects 

of the HC body stemmed from the manual segmentation protocol being limited to the body, at 
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the exclusion of the head and tail. One might speculate that subfield segmentation along the full 

extent of the HC, or use of additional ROIs for total HC in head and tail may have possibly 

mitigated such errors. However, it is also possible that the ability of ASHS to clearly infer the 

anterior and posterior boundaries of HC body for subfield segmentation may not be as precise as 

that of manual raters. ASHS apparently does not consistently generalize internal boundaries 

along the longitudinal hippocampal axis from atlases to target data. This is a key concern for 

researchers attempting to limit ASHS segmentations to the body, or attempting to use a 

consistent and valid scheme for separate estimation of subfield volumes in the body, head, and 

tail. Thus, further work is needed to determine the exact causes and solutions for addressing 

these issues within the ASHS framework and to reduce or eliminate the need for manual 

intervention and optimization as described in the present study. 

Conclusions 

Within the ASHS automated pipeline, customized atlases can be used to reliably segment 

HC subfields in accord with evolving guidelines and protocols used in manual demarcation. 

Furthermore, using minimal manual interventions, automated output can be optimized to attain 

high correspondence with standard manual morphometric methods. These findings have strong 

implications for structural and functional studies of HC subfields, particularly in large datasets 

and for lifespan comparisons. The optimized segmentation procedure introduced here and 

reliance on a lifespan atlas eliminated constant bias of automatic vs. manual segmentation. 

Nonetheless, proportional bias in some subfields remained and further refinement of 

segmentation procedures and neuroanatomical validation of demarcation rules remains critically 

important for advancement of research that relies on HC subfield morphometry.  
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Figure Captions 

 

Figure 1. Illustration of the anatomic-geometric heuristic for manual morphometry. A. A 

representative slice of anterior hippocampal body following the visualization of the uncal sulcus. 

To facilitate tracing, the T2-weighted contrast has been inverted to mimic a T1-weighted image. 

B. Placement of the ellipse and bisecting lines (the major and minor axes of the ellipse). C. The 

minor axis bisecting the ellipse marks the point from which a vertical line is dropped to create a 

boundary separating the subiculum from CA1/2, and CA 1/2 from CA3-4/DG, as shown in D. 

Bottom: 3-D illustrations of sagittal (E.) and oblique coronal (F.) views of manual subfield 

labeling in the HC body from one EL participant. 

 

Figure 2. List of atlases generated and applied at different stages of validation work. Red Xs 

indicate atlases used at intermediate stages of the validation efforts, and green check marks 

indicate atlases used in reported analyses. The original atlases generated with the ‘slice heuristics’ 

function in ASHS was only performed on the EL and LL samples, with no lifespan atlas 

generated. The optimization procedure included demarcation of subfields on one to two slices 

anterior and posterior, and was originally limited only to subfields and not ERC. Following 

inspection of the output from that atlas, additional demarcation was performed to similarly 

extend the labeling of ERC as well. 

 

Figure 3. Results of validation attempts for four comparisons between manual and automated 

approaches in ASHS, including the sample-specific atlas without optimization (red), the Lifespan 

atlas without optimization (orange), the sample-specific atlas following optimization (yellow), 

and the Lifespan atlas following optimization (green). Error bars represent 95% confidence 
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intervals. A. ICC(2) values for the Early Lifespan sample (top), and the Late Lifespan sample 

(bottom). B. DSC values for the Early Lifespan sample (top), and the Late Lifespan sample 

(bottom).  

 

Figure 4. Illustration of ASHS segmentation errors in the initial, non-optimized validation 

attempt. Left column depicts correct, manual segmentation, and right column shows faulty 

segmentations. A. Whereas manual segmentation (left) does not include this slice in the range, 

ASHS (right) includes multiple, erroneously included voxels in ERC, as indicated by the yellow 

arrow. B. Manual segmentation of ERC (left) in comparison with omitted segmentation by 

ASHS (right). C. Manual segmentation includes only ERC (left) as visible presence of uncus 

(indicated by the white arrow) indicates no body segmentation on this slice. In contrast, ASHS 

(right) includes segmentation of ERC and body subregions. D. Over-extension of ERC by ASHS 

in several voxels (right, as indicated by the yellow arrow), where ERC should no longer be 

segmented following the first body slice (left). E. Following the disappearance of the lamina 

quadrigemina, subfields are no longer segmented by the manual approach (left), but are both 

included, and mis-segmented by ASHS (right). 

 

Figure 5. Illustration of labeling by manual demarcation, optimized ASHS in the lifespan atlas, 

and the difference between the two. Numbers in white represent z-axis/slice number. The 

leftmost column shows the unlabeled T2-weighted, high-resolution image on all slices included 

in manual labeling. Although this reflects the original contrast, manually demarcation was 

performed on images with inverted contrast (T1-weighted appearance). The middle columns 

show manual and automated demarcation of ERC and hippocampal subfields. The rightmost 
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column shows the difference between ASHS and manual segmentation, and was generated by 

image subtraction between the two methods. As illustrated by the difference images (right 

column), the discrepancies between the two methods are most apparent at the edges of the 

subregional labels. 

 

Figure 6. Bland-Altman plots of agreement between manual and automated methods for Early 

Lifespan (EL) and Late Lifespan (LL) samples, using the ASHS customized lifespan atlas, 

following optimization procedures, with regression lines fitted to the data. On all plots, the Y-

axis represents the difference between ASHS automated and manual morphometry, and the X-

axis represents the combined mean of the two methods. The solid black horizontal lines indicate 

the mean difference between methods, and the dashed lines represent the 95% confidence 

interval or two standard deviations above and below the mean difference. Negative regression 

slopes indicate proportional bias: the automatic procedure overestimates smaller volumes and 

underestimated the larger volumes, relative to manual segmentation. 

 

Figure 7. Comparison of bias from Bland-Altman plots across atlases, optimization methods, and 

HC subfields for Early lifespan sample (open bars) and the Late lifespan sample (filled bars). 

Error bars represent the 95% CI of the bias statistic. 

 

Figure SI1. Example of extended subfield demarcation scheme. Additional slices included in 

demarcation of body subfield ROIs in slices 15 (anterior) and 24 (posterior) are shown with a 

solid red outline, and additional posterior ERC on slices 17-19 (dashed red outline). 
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Figure SI2. Bland-Altman plots of agreement between manual and automated methods for Early 

Lifespan (EL) and Late Lifespan (LL) samples, using the ASHS customized sample-specific 

atlases, following optimization procedures, with regression lines fitted to the data. On all plots, 

the Y-axis represents the difference between ASHS automated and manual morphometry, and 

the X-axis represents the combined mean of the two methods. The solid black horizontal lines 

indicate the mean difference between methods, and the dashed lines represent the 95% 

confidence interval or two standard deviations above and below the mean difference. 

 

Figure SI3. Bland-Altman plots of agreement between manual and automated methods for Early 

Lifespan (EL) and Late Lifespan (LL) samples, using the ASHS customized lifespan and sample-

specific atlases, with no optimization procedures applied. Regression lines are fitted to the data. 

On all plots, the Y-axis represents the difference between ASHS automated and manual 

morphometry, and the X-axis represents the combined mean of the two methods. The solid black 

horizontal lines indicate the mean difference between methods, and the dashed lines represent the 

95% confidence interval or two standard deviations above and below the mean difference. 

 


