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Abstract—Over the last decade, it has been seen a rapid 

pace in research and development of RFID-based automatic 

storage and retrieval systems (AS/RSs) due to the usage of 

increasingly centralized distribution centers to warehouse 

merchandising products, which are sold using the online 

method. This paper presents a study of an RFID-enabled 

warehousing system as part of the research work for future 

generation warehouses design. To this aim, a multi-objective 

optimization model was developed and used for obtaining 

trade-off decisions by measuring four conflicted objectives: 

minimization of the total cost, maximization of capacity 

utilization, maximization of service level and minimization of 

travel distance in the warehouse. The study also supports 

design decisions in determining an optimum number of storage 

racks and collection points that need be established for the 

warehouse. To reveal the alternative Pareto-optimal solutions 

using the developed model, an integrated fuzzy solution 

approach was proposed. Subsequently, a decision making 

algorithm was used to select the best Pareto-optimal solution. 

A case-study was conducted to demonstrate the applicability of 

the developed model.  
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I. INTRODUCTION 

Warehouses are one of main components which consist 

of an entire supply chain. Usually, warehouses receive and 

store merchandising products from suppliers before being 

transported to retailers or customers. In the last decade it has 

seen a growing need towards a trend in application and 

implementation of automated warehouses aiming to 

improve efficiency and capacity utilization, and reduce 

delivery time from warehouses to customers. 

There are a limited number of research publications in 

optimization of automated warehouse design in a 

combination of considerations including travel time, costs, 

and capacity utilization. Wang [1] presented a study of an 

RFID-based automated warehousing mechanism in order to 

address the tighter inventory control, shorter response time 

and greater variety of SKUs (stock keeping units), which are 

the most important challenges for designing future 

generation warehouses. Ma [2] formulated an automated 

warehouse as a constrained multi-objective model aimed at 

minimizing the scheduling quality effect and the travel 

distance. Huang [3] proposed a nonlinear mixed integer 

program under probabilistic constraints for site selection and 

space determination of warehouses by minimizing the total 

inbound and outbound transportation cost and the total 

warehouse operation cost in a two-stage network. Lerher [4] 

investigated the design in optimization of an automated 

storage and retrieval system aiming to minimize the initial 

investment and annual operating cost of the system. A 

genetic algorithm was used for the optimization process of 

decision variables. Lerher [5] proposed a mono-objective 

optimization approach for seeking the cost-effective design 

of an automated warehouse. Ashayeri [6] developed a 

design model of an automated storage and retrieval system 

incorporating the main influential parameters to minimize 

costs in investment and operation. Karasawa [7] developed a 

nonlinear mixed integer model aimed at minimizing the 

system cost for an automated warehouse system.  

In brief, a literature review in this area indicates there are 

limited studies in previous publications in optimizing the 

design of RFID-based automated warehousing system using 

the multi-objective method. This paper attempts to address 

this issue using the multi-objective method as an aid for 

optimizing the design of a proposed RFID-enabled 

automated warehousing system. To this aim, a multi-

objective optimization model was developed to maximize 

the warehouse capacity utilization and service level, and 

minimize travel distance of products from a storage rack to 

a collection point and minimize the total cost required for 

implementing such a warehousing system. The paper also 

includes an investigation in configuration of the proposed 

warehousing system focusing on the optimal number of 

racks and collection points that need be established.  

II. PROBLEM DEFINITION AND MODEL FORMULATION 

Figure 1 illustrates the structure of the concerned RFID-
enabled AS/RR [1]. The module comprises of two types of 
powered conveyors aligned next to one another; these are 
input conveyors (storage racks) and output conveyors. The 
entire operation of each conveyor system is controlled by a 
programmable logic controller that communicates with 
mounted sensors via a local area network. Within the RFID-
inventory management system, a chosen stock keeping unit 
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(SKU) can be released by the system based on a number of 
assignment policies or rules. These rules include for example 
the rule of being nearest to a collection point and/or a 
modular arm which is free or adjacent to the chosen SKU. 

One of the main issues to be addressed in designing the 

proposed RFID-enabled automated warehouse include 

allocating the optimum number of racks and collection 

points with respect to four objective functions: (1) 

minimization of total cost of implementing the warehouse, 

(2) maximization of capacity utilization of the warehouse, 

(3) maximization of service level in terms of satisfying all 

demands of dispatching products from the warehouse and 

(4) minimization of travel distance of products from racks to 

collection points. 

The following sets, parameters and decision variables 

were used in the formulation of the model: 

 

Sets:  

I   set of racks i I  

J  set of collection points j J  

K  set of departure points k K  

 

Given parameters:  
r

iC   fixed cost required for establishing an RFID-enabled 

rack i  
c

iC   fixed cost required for establishing a collection point

j  

t

iC  unit RFID tag cost per item at rack i  

 

 
Figure 1. Structure of the RFID-enabled AS/RR [1]. 

T

jkC  unit transportation (T) cost per meter from collection 

point j to departure point k 
l

jC  unit labor cost per hour at collection point j 

l

jR  working rate (items) per laborer ( l ) at collection 

point j 

jkd  travel distance (meter) per item from collection point 

j to departure point k  

W  transportation capacity (units) per forklift 

iS   maximum supply capacity (units) of rack i  

jS   maximum supply capacity (units) at collection point 

j  

jD   demand (in units) at collection point j  

d

ijt   average travel distance (meter) per item from rack i 

to collection point j 

 

Decision variables  

ijq  
 quantity of units travelling from rack i to collection 

point j 

jkq  
 quantity of units dispatched from collection point j

to departure point k  

jx  required number of laborers at collection point j 

iy   1: if rack i is required 

0: otherwise   

 

jy   1: if collection point j is required 

0: otherwise   

 

The four objectives, which include a minimization of 

total cost, a maximization of capacity utilization, 

maximization of service level and minimization of travel 

distance, are formulated as follows: 

Objective function (1) 

In this case, the total cost of establishing the RFID-

enabled automated warehouse includes costs of establishing 

RFID-enabled racks, collection points, RFID tag, 

transportation of products and labors. Thus, minimization of 

the total cost can be expressed below: 
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Objective function (2) 

Maximization of capacity (C) utilization is expressed as 

follows: 
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Objective function (3) 

To ensure the satisfaction of all demands of products 

delivered by the warehouse, this can be achieved by 

maximization of service level, which is given by: 

3

ij

i I j J i

q
Max F
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(3) 

Objective function (4) 

 

Tagged 
items 

Pusher 

The output conveyor system 

Spiral conveyors 

Storage rack 

rack 

Output to collection points  

Items enter onto a storage rack 



The travel distance of an in-store item from its location 

of a storage rack to a collection point can be minimized as 

follows: 

4 ij

d

ij

i I j J

Min F t q
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(4) 

There are a number of constraints which are included in 

the optimization. The constraints are given as follows: 
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, 0, , , ;ij jkq q i j k   (10) 

 0,1 , , ;,i jy y i j   (11) 

 

Equations 5 and 6 refer to the flow balance of a product 

travelling from a storage rack to a collection point and from 

a collection points to a departure point. Equations 7 and 8 

refer to demands to be satisfied. Equation (9) determines the 

required number of labors at a collection point. Equations 

(10) and (11) limit the decision variables to binary and non-

negative. 

III. OPTIMIZATION METHODOLOGY 

Several approaches were reported in the literature to 
solve the multi-objective problem. In this work, a fuzzy 
solution approach was proposed to transform the multi-
objective model into a single-objective model which is 
formulated by considering each objective individually by 
minimizing the scalarized difference between value of each 
objective and its optimal value. Undesired deviations were 
used for being subtracted from the single objective function 
to obtain more accurate objective values. 

A. Solution procedures 

To solve the developed multi-objective model, the 
solution procedures are expressed as follows: 

1) Convert the developed model into an equivalent crisp 

model using Jiménez method [8]. Accordingly, the 

equivalent crisp model can be formulated as follows. 
4 4 4
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2) Find the upper and lower bound (U, L) solution for 

each objective function. This can be obtained as follows for 

Upper bound solutions: 
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Lower bound solutions: 
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3) Find the respective satisfaction degree µ(xi) for each 

objective function as follows: 
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4) Transform the crisp model obtained from step (1) to a 

single objective function using the developed solution 

method. The developed solution method function (F) is 

formulated as follows: 
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Based on the aforementioned procedures, the developed 

method’s objective function can be written as follows. 
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Subject to equations (5)-(11). 

5) Vary the weight combination set ( ) consistently for 

the four objectives to reveal Pareto-optimal solutions. 

Usually, the weight combination set is allocated by decision 

makers based on the importance of each objective. 

6) Select the best Pareto-optimal solution using the 

proposed decision making algorithm. 

B. The decision making algorithm 

The next step after revealing the Pareto solutions is to 

determine the best trade-off solution. In this work, 

Technique for order preference by similarity to ideal 

solution (TOPSIS) was employed for revealing the best 

trade-off solution. This approach selects not merely the 

closest solution to the ideal solution, but also the farthest 

from the negative ideal solution [9]. 

Assume  

opPR o=1,2,...,x (number of pareto solutions); p =1,2,...,
PR-

y (number of objectives)

  
 
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refers the *x y decision matrix, where PR is the 

performance rating of alternative Pareto solutions with 

respect to objective function values. Thus, the normalized 

selection formula is presented as follows: 
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The amount of decision information can be measured by 

the entropy value as: 
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The degree of divergence (Dp) of the average intrinsic 

information contained for p = 1, 2, 3, 4 can be calculated as: 

1p pD E   (37) 

The weight for each objective function value is given by: 
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Thus, the objective weighted normalized value is given 

by: 

op o opv w PR  (39) 

The positive ideal solution AT and the negative ideal 

solution At are taken to generate an overall performance 

matrix for each Pareto solution. These values can be 

expressed as: 
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Distance between alternative solutions can be measured 

by the n-dimensional Euclidean distance. The separation of 

each alternative from the ideal solution is given as 
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The relative closeness to the ideal solution of alternative 

solutions with respect to objective function values is 

expressed as follows: 

,    1,2,...,
p

p

p p

D
rc p x

D D



 
 


 

(42) 

Where 0pD   and 0pD  , then, clearly,  1,0prc  . 

Select the trade-off solution with maximum rcp or list the 

obtained solution in descending order based on rcp.  

IV. APPLICATION AND EVALUATION 

In this section, a case study was used to investigate the 
applicability of the developed optimization model and the 
performance of the proposed optimization methodology. 
Table I shows the parameters used for application. The 
solver for the developed multi-objective model was 
LINGO

11
. 

A. Results and discussions 

This section presents the computational results of the 
developed multi-objective model using the proposed 
integrated fuzzy solution approach for the problem 
previously defined. The solution steps of the developed 
model are described as follows: 

1) Obtain the upper and lower value for each objective 

function by solving them individually. The results are ({UF, 

LF}) = ({504, 1,230}, {0.66, 0.94}, {0.85, 0.99}, {400,  

TABLE I.  APPLICATION DATA RANGES 

I   = 12 
iS = 25K-35K 

J   = 15 

K  = 2 
jS = 20-29K 

Cl

j
= 6.5-9 (GBP) d jk

= 20-45 

iCr = 60-90 (KGBP) ij

dt = 40-75 



Ct

i
= 0.25 (GBP) jD = 150-360 K 

CT

jk
= 0.4 (GBP) 

 l

jR = 100 

d jk
= 20-45 

c

jC = 15-18 (KGBP) 

W = 48  

2,310}).  

2) Find the respective satisfaction degree µ(xi) for each 

objective function. The satisfaction degrees are reported in 

Table II. 

3) Solve the crisp model as a single objective model 

using the developed solution method by an assignment of 

different combination of weight values with respect to the 

feasibility of each weight pair that is denoted by λ. 

4) Select the best solution using TOPSIS, the 

determined score values of Pareto-optimal solutions are 

reported in Table III. 

Table IV shows the obtained set of Pareto-optimal 

solutions for the four objective functions. It also shows the 

number of racks and collection points that should be 

established. For instance, solution 1, which is obtained by an 

assignment of
1 2 3 41, 0, = 0 and 0      , has a 

minimum total cost of 504 KGBP, a maximum capacity 

utilization of 66%, a maximum service level of 85% and a 

minimum travel distance of 400 km of all products. This 

solution offers six racks and nine collection points. Figure 2 

illustrates the further comparison among the solutions in 

response to the four objective functions. It can be observed 

in Figure 2 that the Pareto optimal method cannot produce a 

better solution in one objection function without worsening 

its performance in the other objective functions. 

After obtaining a set of Pareto-optimal solutions, 

decision makers may determine a solution depending on 

their preferences or using a decision making algorithm. In 

this work, TOPSIS was employed to select the best solution. 

As shown in Table III, solution 4 is the best solution as its 

score is the highest (0.279) with the total cost of 759K GBP, 

77% capacity utilization, 95.5% service level and travel 

distance 1021 km.  

TABLE II.  SATISFACTION DEGREES FOR OBJECTIVE FUNCTIONS 

µ(x1) 0.95 0.93 0.85 0.81 0.7 0.623 0.6 0.55 

µ(x2) 0.7 0.78 0.83 0.88 0.92 0.97 0.98 0.99 
µ(x3) 0.73 0.79 0.85 0.89 0.919 0.96 0.98 0.99 

µ(x4) 0.97 0.96 0.93 0.90 0.85 0.84 0.81 0.76 

TABLE III.  SCORE VALUES OF PARETO-OPTIMAL SOLUTION USING 

TOPSIS 

# 1 2 3 4 5 6 7 8 

Score 0.245 0.234 0.266 0.279 0.254 0.245 0.273 0.243 

Also, it requires an establishment of nine racks to supply 

products to eleven collection points. 

V. CONCLUSIONS 

In this work, a proposed RFID-enabled automated 

warehousing system was studied using the multi-objective 

optimization approach. The problem was involved in 

obtaining trade-offs between the negative impact (the extra 

costs) and the positive impact (maximization of the 

warehouse capacity utilization and service level, and 

minimization of travel distance of products from racks to 

collection points) of the proposed RFID-enabled automated 

warehousing system. The study also includes an approach to 

determine the optimal number of racks and collection points 

that should be established when designing the proposed 

warehouse. At the first stage, an integrated fuzzy solution 

approach was used to obtain Pareto-optima solutions. At the 

second stage, TOPSIS was employed to reveal the best 

Pareto solution. By implementation of the developed model 

using a case study it proves a reasonable applicability. The 

obtained solutions are close enough to ideal solutions since 

undesired deviations are proposed to be subtracted from the 

objective functions. This leads to a clear insight of a 

compromise solution between conflicting objectives for 

decision makers.  
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  350 non-zero elements, 59 constraints, 111 total variables, 59 integer variables 

Feasibility 

level 

# Min (F2) 

(KGBP) 

Max (F2) 

(%) 

Max (F3) 

(%) 

Min (F4) 

(Km) 

Open racks Open collection 

points 

0.8 1 504 0.66 0.85 400 6 9 
 2 595 0.693 0.85 680 6 9 

0.6 3 678 0.74 0.89 932 7 8 

 4 795 0.77 0.955 1021 9 11 
0.4 5 894 0.801 0.955 1342 10 13 

 6 978 0.84 0.97 1701 11 13 

0.2 7 1064 0.89 0.985 2030 12 14 
 8 1110 0.93 0.99 2280 12 14 

 

TABLE IV.          COMPUTATIONAL RESULTS 

 

 

 

 
Figure 2.  Comparison among the obtained objective function values. 
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