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Abstract. We study the Hausdorff and packing measures of typical compact metric spaces
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1. Introduction

Recall that a subset E of a metric space M is called co-meagre if its com-
plement is meagre; also recall that if P is a property that the elements of M
may have, then we say that a typical element x in M has property P if the
set E = {x ∈ M |x has property P} is co-meagre, see Oxtoby [9] for more
details. The purpose of this paper is to investigate the Hausdorff and pack-
ing measures of a typical compact metric space belonging to the Gromov–
Hausdorff space KGH of all compact metric spaces; the precise definition of
the Gromov–Hausdorff space KGH will be given below. The four most com-
monly used fractal dimensions of a metric space X are: the lower and upper
box dimensions, denoted by dimB(X) and dimB(X), respectively; the Haus-
dorff dimension, denoted by dimH(X); and the packing dimension, denoted by
dimP(X); the precise definitions will be given in Sect. 2.2. It is well-known that
if X is a metric space, then these dimensions satisfy the following inequalities,

dimH(X) ≤ dimP(X) ≤ dimB(X) ,

dimH(X) ≤ dimB(X) ≤ dimB(X) .
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We now return to the main question in this paper: what are the dimensions
of a typical compact metric space? Rouyer [13] has very recently provided the
following answer to this question.

Theorem A. [13] A typical compact metric space X ∈ KGH satisfies

dimH(X) = dimB(X) = 0 ,

dimB(X) = ∞ .

Theorem A shows that the lower box dimension of a typical compact metric
space is as small as possible and that the upper box dimension of a typical
compact metric space is as big as possible. Other studies of typical compact
sets show the same dichotomy. For example, Gruber [3] and Myjak & Rudnicki
[8] proved that if X is a metric space, then the lower box dimension of a typical
compact subset of X is as small as possible and that the upper box dimension
of a typical compact subset of X is (in many cases) as big as possible. The
purpose of this paper is to analyse this intriguing dichotomy, and, in particular,
the dichotomy in Theorem A, in more detail.

For example, as an application of our main results we show that not only
is the upper box dimension of a typical compact metric space X ∈ KGH equal
to infinity (see Theorem A above), but even the smaller packing dimension is
equal to infinity; this is the content of Theorem 1.1 below.

Theorem 1.1. A typical compact metric space X ∈ KGH satisfies

dimP(X) = ∞ .

While Theorems A and 1.1 study and compute the dimensions of typical
compact metric spaces, we prove more general results investigating and com-
puting not only the dimensions of typical compact metric spaces but also the
exact values of the Hausdorff and packing measures of typical compact metric
spaces, see Theorem 2.4.

In fact, we prove even stronger results providing information about the so-
called Hewitt–Stromberg measures of typical compact spaces, see Theorems
2.2 and 2.3; the results in Theorem 2.4 on the exact values of the Hausdorff
and packing measures of typical compact metric spaces follow immediately
from Theorems 2.2 and 2.3.

The paper is structured as follows.
We first recall the definition of the Gromov–Hausdorff space and the

Gromov–Hausdorff metric in Sect. 2.1.
In Sects. 2.2–2.3 we recall the definitions of the fractal dimensions and mea-

sures investigated in the paper. The definitions of the Hausdorff and packing
measures (and the Hausdorff and packing dimensions) are recalled in Sect. 2.2
and the definitions of the Hewitt–Stromberg measures are recalled in Sect. 2.3.
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Sections 2.4–2.6 contain our main results. In Sect. 2.4 we investigate and
compute the exact values of the Hewitt–Stromberg measures of typical com-
pact metric spaces. Sections 2.5–2.6 contain several applications and corollaries
of the results in Sect. 2.4: in Sect. 2.5 we apply the results from Sect. 2.4 to
find the exact values of the Hausdorff and packing measures of typical compact
spaces, and in Sect. 2.6 we specialise even further and apply the results from
Sect. 2.4 to find exact values of the packing dimension (and box dimensions)
of typical compact metric spaces.

Finally, the proofs are given in Sects. 3–6.

2. Statements of results

2.1. The Gromov–Hausdorff space KGH and the Gromov–Hausdorff metric
dGH

We define the pre-Gromov–Hausdorff space KGH by

KGH =
{

X
∣∣∣ X is a compact and non-empty metric space

}
.

Next, we define the equivalence relation ∼ in KGH as follows, namely, for X,Y ∈
KGH, write

X ∼ Y ⇔ there is a bijective isometry f : X → Y .

It is clear that ∼ is an equivalence relation ∼ in KGH, and the Gromov–
Hausdorff space KGH is now defined as the space of equivalence classes, i.e.

KGH = KGH
/

∼ .

While the elements of KGH are equivalence classes of compact metric spaces,
we will use the standard convention and identify an equivalence class with
its representative, i.e. we will regard the elements of KGH as compact metric
spaces and not as equivalence classes of compact metric spaces. Next, we define
the Gromov–Hausdorff metric dGH on KGH. If Z is a metric space, and A and
B are compact subsets of Z, then the Hausdorff distance dH(A,B) between A
and B is defined by

dH(A,B) = max
(

sup
x∈A

dist(x,B) , sup
y∈B

dist(y,A)
)

,

where dist(z,E) = infx∈E d(z, x) for z ∈ Z and E ⊆ Z. The Gromov–
Hausdorff metric dGH on KGH is now defined by

dGH(X,Y ) = inf
{

dH(f(X), g(Y ))
∣∣∣ Z is a complete metric space

and f : X → Z and g : Y → Z are isometries
}

,
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for X,Y ∈ KGH. It is well-known that (KGH, dGH) is a complete metric space
[11]. The reader is referred to [11, Chapter 10], for a detailed discussion of the
Gromov–Hausdorff space and the Gromov–Hausdorff metric.

2.2. Hausdorff measure, packing measure and box dimensions

While the definitions of the Hausdorff and packing measures (and the Haus-
dorff and packing dimensions) and box dimensions are well-known, we have,
nevertheless, decided to briefly recall the definitions below. There are sev-
eral reasons for this: firstly, since we are working in general (compact) metric
spaces, the different definitions that appear in the literature may not all agree
and for this reason it is useful to state precisely the definitions that we are
using; secondly, and perhaps more importantly, the less well-known Hewitt–
Stromberg measures (which will be defined below in Sect. 2.3) play an impor-
tant part in this paper and to make it easier for the reader to compare and
contrast the definitions of the Hewitt–Stromberg measures and the definitions
of the Hausdorff and packing measures it is useful to recall the definitions
of the latter measures; and thirdly, in order to provide a motivation for the
Hewitt–Stromberg measures.

Let X be a metric space and let d be the metric in X. For x ∈ X and
r > 0, let C(x, r) denote the closed ball with centre at x and radius equal to
r, i.e. C(x, r) = {y ∈ X | d(x, y) ≤ r}. The lower and upper box dimensions of
a subset E of X are defined as follows. For r > 0, the covering number Nr(E)
and the packing number Mr(E) of E are defined by

Nr(E) = inf
{

|I|
∣∣∣ (C(xi, r) )i∈I is a family of closed balls

with xi ∈ X and E ⊆ ∪iC(xi, r)
}

,

Mr(E) = sup
{

|I|
∣∣∣ (C(xi, r) )i∈I is a family of closed balls

with xi ∈ E and d(xi, xj) ≥ r for i �= j
}

. (2.1)

The lower and upper box dimensions, denoted by dimB(E) and dimB(E), re-
spectively, are now defined by

dimB(E) = lim inf
r↘0

log Nr(E)
− log r

= lim inf
r↘0

log Mr(E)
− log r

,

dimB(E) = lim sup
r↘0

log Nr(E)
− log r

= lim sup
r↘0

log Mr(E)
− log r

;
(2.2)

the fact that the lower limits lim infr↘0
log Nr(E)

− log r and lim infr↘0
log Mr(E)

− log r co-

incide and the fact that the upper limits lim supr↘0
log Nr(E)

− log r and lim supr↘0
log Mr(E)

− log r coincide is proven in [3].
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Next, we recall the definitions of the Hausdorff and packing measures. We
start by recalling the definition of a dimension function.

Definition. (Dimension function) A function h : (0,∞) → (0,∞) is called a
dimension function if h is increasing, right continuous and limr↘0 h(r) = 0.

The Hausdorff measure associated with a dimension function h is defined
as follows. Let X be a metric space and E ⊆ X. For δ > 0, we write

Hh
δ (E) = inf

{∑
i

h(diam(Ei))

∣∣∣∣∣ E ⊆
∞⋃

i=1

Ei , diam(Ei) < δ

}
.

The h-dimensional Hausdorff measure Hh(E) of E is now defined by

Hh(E) = sup
δ>0

Hh
δ (E) .

If t > 0 and ht denotes the dimension function defined by ht(r) = rt, then we
will follow the traditional convention and write

Hht(E) = Ht(E) .

Finally, the Hausdorff dimension dimH(E) is defined by

dimH(E) = sup{t ≥ 0 | Ht(E) = ∞} .

The reader is referred to Rogers’ classical text [12] for an excellent and sys-
tematic discussion of the Hausdorff measures Hh.

The packing measure with a dimension function h is defined as follows. For
E ⊆ X and δ > 0, write

Ph

δ (E) = sup

{∑
i

h(2ri)

∣∣∣∣∣ (C(xi, ri) )i is a family of closed balls such that

ri ≤ δ and with xi ∈ E and d(xi, xj) ≥ ri+rj

2 for i �= j

}
.

The h-dimensional prepacking measure Ph
(E) of E is now defined by

Ph
(E) = inf

δ>0
Ph

δ (E) .

Finally, we define the h-dimensional packing measure Pt(E) of E, as follows

Ph(E) = inf
E⊆∪∞

i=1Ei

∞∑
i=1

Ph
(Ei) .

As above, we note that if t > 0 and ht denotes the dimension function defined
by ht(r) = rt, then we will follow the traditional convention and write

Pht(E) = Pt(E) .
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Finally, the packing dimension dimP(E) is defined by

dimP(E) = sup{t ≥ 0 | Pt(E) = ∞} .

It is well-known that if E ⊆ X, then

dimH(E) ≤ dimP(E) ≤ dimB(E) ,

dimH(E) ≤ dimB(E) ≤ dimB(E) .

The reader is referred to [2] for an excellent discussion of the Hausdorff dimen-
sion, the packing dimension and the box dimensions.

2.3. Hewitt–Stromberg measures

Hewitt–Stromberg measures were introduced by Hewitt & Stromberg in their
classical textbook [6, (10.51)], and have subsequently been investigated fur-
ther by, for example, [4,5,14], highlighting their fundamental importance in
the study of local properties of fractals and products of fractals. In particu-
lar, Edgar’s textbook [1, pp. 32–36], provides an informative and systematic
introduction to the Hewitt–Stromberg measures and their importance in the
study of local properties of fractals. The measures also appear explicitly in,
for example, Pesin’s monograph [10, 5.3], who discusses their important role
in the study of dynamical systems and implicitly in Mattila’s text [7]. While
Hausdorff and packing measures are defined using coverings and packings by
families of sets with diameters less than a given positive number δ, say, the
Hewitt–Stromberg measures are defined using packings of balls with the same
diameter δ. For a dimension function h, the Hewitt–Stromberg measures are
defined as follows. For a metric space X and E ⊆ X, write

Uh
(E) = lim inf

r↘0
Mr(E)h(2r) .

Vh
(E) = lim sup

r↘0
Mr(E)h(2r) .

We now define the lower and upper h-dimensional Hewitt–Stromberg measures,
denoted by Uh and Vh, respectively, by

Uh(E) = inf
E⊆∪∞

i=1Ei

∞∑
i=1

Uh
(Ei) ,

Vh(E) = inf
E⊆∪∞

i=1Ei

∞∑
i=1

Vh
(Ei) .

The next result summarises the basic inequalities satisfied by the Hewitt–
Stromberg measures, the Hausdorff measure and the packing measure.
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Proposition 2.1. Let h be a dimension function. Then we have

Uh
(E) ≤ Vh

(E) ≤ Ph
(E)

∨l ∨l ∨l
Hh(E) ≤ Uh(E) ≤ Vh(E) ≤ Ph(E)

for all metric spaces X and all E ⊆ X.

Proof. This follows immediately from the definitions since Nr(E) ≤ Mr(E)
for all r > 0 by [3]; see also [1, pp. 32–36]. �

2.4. Hewitt–Stromberg measures of typical compact spaces

Our first main result computes the Hewitt–Stromberg measures of a typical
compact metric space; this is the content of Theorem 2.2 below.

Theorem 2.2. (Hewitt–Stromberg measures of typical compact spaces) Let h
be a continuous dimension function.
(1) A typical compact metric space X ∈ KGH satisfies

Uh(X) = Uh
(X) = 0 .

(2) A typical compact metric space X ∈ KGH satisfies

Vh(U) = Vh
(U) = ∞

for all non-empty open subsets U of X. In particular, a typical compact
metric space X ∈ KGH satisfies

Vh(X) = Vh
(X) = ∞ .

The proof of Theorem 2.2 is given in Sect. 3 and Sects. 5–6; Section 3 contains
a number of preliminary auxiliary results, and the proofs of the statements in
Theorems 2.2.(1) and 2.2.(2) are given in Sects. 5 and 6, respectively.

For brevity write

Mpositive =
{

X ∈ KGH

∣∣∣ 0 < Uh(X)
}

,

Minfinity =
{

X ∈ KGH

∣∣∣ Uh(X) = ∞
}

,

Ninfinity =
{

X ∈ KGH

∣∣∣ Uh(U) = ∞ for all non-empty open subsets U of X
}

,

and note that

Ninfinity ⊆ Minfinity ⊆ Mpositive .

While it follows from Theorem 2.2 that the set Mpositive is meagre, the set
Mpositive is, nevertheless, dense in KGH. In fact, even the smaller sets Ninfinity

and Minfinity are dense in KGH; this is the content of Theorem 2.3 below.



S. Jurina et al. AEM

Theorem 2.3. Let h be a continuous dimension function. Then the set{
X ∈ KGH

∣∣∣ Uh(U) = ∞ for all non-empty open subsets U of X
}

is dense in KGH.

The proof of Theorem 2.3 is given in Section 4.
We now present several applications of Theorem 2.2. In Section 2.5 we

apply Theorem 2.2 to find the Hausdorff and packing measures for a typical
compact metric space, and in Section 2.6 we apply the results from Section 2.5
to find the packing dimension (and other dimensions) of a typical compact
metric space.

2.5. Hausdorff and packing measures of typical compact spaces

Because of the importance of the Hausdorff measures and the packing mea-
sures, the following corollary of Theorem 2.2 seems worthwhile stating sepa-
rately.

Theorem 2.4. (Hausdorff measures and packing measures of typical compact
metric spaces) Let h be a continuous dimension function.
(1) A typical compact metric space X ∈ KGH satisfies

Hh(X) = 0 .

(2) A typical compact metric space X ∈ KGH satisfies

Ph(U) = ∞
for all non-empty open subsets U of X. In particular, a typical compact
metric space X ∈ KGH satisfies

Ph(X) = ∞ .

Proof. This result follows immediately from Proposition 2.1 and Theorem 2.2.
�

2.6. Packing dimensions of typical compact spaces

As a further specialization of Theorem 2.4 we obtain the next result about
the Hausdorff and packing dimensions of typical compact spaces. While the
result in Theorem 2.5.(1) (saying that dimH(X) = 0 for a typical compact
metric space X) has already been obtained by Rouyer [13] (see Theorem A in
Section 1), we believe that it is instructive to present a simple proof based on
Theorem 2.4.

Theorem 2.5. (Hausdorff dimensions and packing dimensions of typical com-
pact metric spaces) Let h be a continuous dimension function.



On the Hausdorff and packing measures

(1) [13] A typical compact metric space X ∈ KGH satisfies

dimH(X) = 0 .

(2) A typical compact metric space X ∈ KGH satisfies

dimP(U) = ∞
for all non-empty open subsets U of X. In particular, a typical compact
metric space X ∈ KGH satisfies

dimP(X) = ∞ .

Proof. (1) Note that
⋂

t∈Q+

{
X ∈ KGH

∣∣∣ Ht(X) = 0
}

⊆
⋂

t∈Q+

{
X ∈ KGH

∣∣∣ dimH(X) ≤ t
}

⊆
{

X ∈ KGH

∣∣∣ dimH(X) = 0
}

. (2.3)

Since it follows from Theorem 2.2 that the set {X ∈ KGH |Ht(X) = 0} is co-
meagre for all t > 0, we conclude from (2.3) that the set {X ∈ KGH | dimH(X) =
0} is co-meagre.
(2) Note that
⋂

t∈Q+

{
X ∈ KGH

∣∣∣Pt(U) = ∞ for all non-empty open subsets U of X
}

⊆
⋂

t∈Q+

{
X ∈ KGH

∣∣∣ dimP(U) ≥ t for all non-empty open subsets U of X
}

⊆
{

X ∈ KGH

∣∣∣ dimP(U) = ∞ for all non-empty open subsets U of X
}

.

(2.4)

Since it follows from Theorem 2.2 that the set {X ∈ KGH | Pt(U) = ∞ for all
non-empty open subsets U of X } is co-meagre for all t > 0, we conclude from
(2.4) that the set {X ∈ KGH | dimP(U) = ∞ for all non-empty open subsets U
of X } is co-meagre. �

We also obtain the following corollary providing information about the
lower box dimension of a typical compact space.

Corollary 2.6. (Lower box dimension of typical compact metric spaces) Let h
be a continuous dimension function such that

lim
r↘0

h(r)
rt = ∞ for all t > 0 (2.5)
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(e.g. the dimension function h defined by h(r) = 1
log 1

r

k for 0 < r < 1
e and

h(r) = 1 for r ≥ 1
e satisfies this condition).

(1) We have
{

X ∈ KGH

∣∣∣ Uh
(X) = 0

}
⊆

{
X ∈ KGH

∣∣∣ dimB(X) = 0
}

. (2.6)

There are continuous dimension functions h satisfying (2.5) such that
{

X ∈ KGH

∣∣∣ Uh
(X) = 0

}
�

{
X ∈ KGH

∣∣∣ dimB(X) = 0
}

. (2.7)

(2) A typical compact space X ∈ KGH satisfies

Uh
(X) = 0 ,

i.e.
{

X ∈ KGH

∣∣∣ Uh
(X) = 0

}
is co-meagre.

(3) [13] A typical compact space X ∈ KGH satisfies

dimB(X) = 0 ,

i.e.
{

X ∈ KGH

∣∣∣ dimB(X) = 0
}

is co-meagre.

Remark. For brevity write

S =
{

X ∈ KGH

∣∣∣ Uh
(X) = 0

}

and

T =
{

X ∈ KGH

∣∣∣ dimB(X) = 0
}

.

The statement in Part (3) of Corollary 2.6 has recently been obtained by
Rouyer [13]. However, since Part (1) in Corollary 2.6 shows that S is a subset
of T , we deduce that the statement in Part (2) is stronger than Rouyer’s result
in Part (3). In fact, since Part (1) in Corollary 2.6 also shows that S, in general,
is a proper subset of T , we conclude that the statement in Part (2), in general,
is strictly stronger than Rouyer’s result in Part (3).

Proof. (1) The inclusion in (2.6) follows easily from the definitions and the
fact that limr↘0

h(r)
rt = ∞ for all t > 0. Next, in order to show (2.7), we must

construct a continuous dimension function h satisfying condition (2.5) and a
compact metric space X such that dimB(X) = 0 and Uh

(X) > 0. We construct
the space X as follows. For a positive integer n, write In = {0, 2(n + 1) − 1},
and for i ∈ In define Sn,i : [0, 1] → [0, 1] by Sn,i(x) = 1

2(n+1) (x + i). Next, for
i1 ∈ I1, . . . , in ∈ In, let Ii1...in

= S1,i1S2,i2 · · · Sn,in
([0, 1]), and put

Xn =
⋃

i1∈I1,...,in∈In

Ii1...in



On the Hausdorff and packing measures

and

X =
⋂
n

Xn ;

the set Xn is the union of the 2n disjoint closed intervals Ii1...in
each with length

equal to 1
2n(n+1)! , and the sets Xn are constructed inductively as follows: let

X0 = [0, 1] and for n = 1, 2, . . ., the set Xn is obtained by deleting the middle
n

n+1 ’th part of each of the intervals Ii1...in−1 in Xn−1.
We first show that dimB(X) = 0. Indeed, if 1

2n(n+1)! < r ≤ 1
2(n−1)n!

, then
X can be covered by 2n closed intervals with diameter equal to r and so
dimB(X) ≤ dimB(X) ≤ lim supn→∞

log 2n

− log 2n−1n! = 0.
Next, we construct a continuous dimension function h satisfying (2.5) such

that Hh(X) > 0. Indeed, we define h by h(r) = 1
log 1

r

for 0 < r < 1
e and

h(r) = 1 for r ≥ 1
e . It is clear that (2.5) is satisfied. We now show that

Hh(X) > 0. Let λi1...in
denote the Lebesgue measure restricted to the interval

Ii1...in
and normalised so that λi1...in

(Ii1...in
) = 1. Next, define the probability

measure μn by μn = 1
2n

∑
i1∈I1,...,in∈In

λi1...in
. It is not difficult to see that

there is a probability measure μ such that μn converges weakly to μ. We now
show that there is a constant c > 0 such that

μ(U) ≤ h(diam(U)) (2.8)

for all U ⊆ [0, 1] with diam(U) < c. For a positive integer n, write rn =
1

2n(n+1)! . Next, let U ⊆ [0, 1] with rn+1 ≤ diam(U) < rn, and note that U can
intersect at most one of the intervals Ii1...in

, whence

μ(U) ≤ 1
2n = r

log 2n

− log rn+1
n+1 ≤ diam(U)

log 2n

− log rn+1 . (2.9)

We now prove the following claim.

Claim 1. There is a positive integer N such that if n ≥ N and rn+1 ≤ r < rn,
then

r
log 2n

− log rn+1 ≤ 1
log 1

r

. (2.10)

Proof of Claim 1. Since clearly
log

1
rn

2
n
2

= log(2n(n+1)!)

2
n
2

→ 0 and
log 1

rn

log 1
rn+1

=
log(2n(n+1)!)

log(2n+1(n+2)!) → 1, there is a positive integer N such that log 1
rn

≤ 2
n
2 for

n ≥ N and log 1
rn

≥ 1
2 log 1

rn+1
for n ≥ N . As the function x → log x

x is de-

creasing for x ≥ e and log 1
rn

≤ log 1
r , we therefore conclude that

log log
1
r

log
1
r

≤
log log

1
rn

log
1
rn

≤ log 2
n
2

1
2 log

1
rn+1

= log 2n

log
1

rn+1

for all n ≥ N , and (2.10) follows easily from

rearranging this inequality. This completes the proof of Claim 1.
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Combining (2.9) and (2.10) we deduce that

μ(U) ≤ diam(U)
log 2n

− log rn+1 ≤ 1
log 1

diam(U)
= h(diam(U))

provided diam(U) < rN . This proves inequality (2.8). Finally, it follows from
(2.8) and the mass distribution principle that Hh(X) ≥ 1 > 0.
(2) This statement follows immediately from Theorem 2.2.
(3) This statement follows immediately from Part (1) and Part (2). �

3. Proofs of Theorems 2.2 and 2.3: Preliminary results

In this section we collect some basic notation and present several technical
auxiliary lemmas that will be used in Sects. 4–6. We first list some useful
properties of the covering number Nr(X) and the packing number Mr(X);
recall that the covering number Nr(X) and the packing number Mr(X) of a
metric space X are defined in (2.1).

Lemma 3.1. (1) The function Nr : KGH → R is lower semi-continuous for
all r > 0.

(2) The function Mr : KGH → R is upper semi-continuous for all r > 0.
(3) We have Nr(X) ≤ Mr(X) ≤ N r

3
(X) for all r > 0 and all X ∈ KGH.

Proof. This follows from [13, Lemma 9]; see also [3]. �

Next, we list some useful properties of the Hewitt–Stromberg measures Uh

and Vh; recall that the Hewitt–Stromberg measures Uh and Vh are defined in
Section 2.3.

Proposition 3.2. Let h be a continuous dimension function.

(1) For all metric spaces X and all E ⊆ X, we have Uh
(E) = Uh

(E).
(2) For all metric spaces X and all E ⊆ X, we have Vh

(E) = Vh
(E).

Proof. Let X be a metric space and E ⊆ X. It is clear that Vh
(E) ≤ Vh

(E).
We now prove that Vh

(E) ≤ Vh
(E). Fix ε > 0. We first prove the following

claim.

Claim 1. There are functions ρ,R : (0,∞) → (0,∞) such that 1
2 ≤ ρ(r) ≤ 1 ≤

R(r) ≤ 2 and

Mr(E )h(2r) ≤ Mρ(r)r(E)h(2ρ(r)r) + ε ,

MR(r)r(E )h(2R(r)r) ≤ Mr(E)h(2r) + ε ,

for all r > 0.
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Proof of Claim 1. Let d denote the metric in X. Recall (see Section 2.2) that
we use the following notation, namely, if x ∈ X and r > 0, then C(x, r)
denotes the closed ball with radius equal to r and centre at x, i.e. C(x, r) =
{y ∈ X | d(x, y) ≤ r}.

We now turn towards the proof of Claim 1. Let r > 0. Since h is continuous,
we can choose a real number δ(r) with 0 < δ(r) ≤ 1

2 such that

h(2r) ≤ h(2(1 − δ(r))r) + ε
M 1

2 r
(E) . (3.1)

It follows from the definition of the packing number Mr(E ) that we can
find a family (C(xi, r) )Mr(E )

i=1 of closed balls C(xi, r) in X with xi ∈ E and
d(xi, xj) ≥ r for i �= j. Since xi ∈ E, there is a point yi ∈ E such that
yi ∈ B(xi,

δ(r)r
2 ). It therefore follows that r ≤ d(xi, xj) ≤ d(xi, yi)+d(yi, yj)+

d(yj , xj) < δ(r)r
2 + d(yi, yj) + δ(r)r

2 for i �= j, and so d(yi, yj) ≥ r − 2 δ(r)r
2 =

(1− δ(r))r. Consequently, (C(yi, (1− δ(r))r) )Mr(E )
i=1 is a family of closed balls

with yi ∈ E and d(yi, yj) ≥ (1 − δ(r))r for i �= j, whence

Mr(E ) ≤ M(1−δ(r))r(E) . (3.2)

It follows immediately from (3.1) and (3.2) that

Mr(E )h(2r) ≤ M(1−δ(r))r(E)

(
h(2(1 − δ(r))r) + ε

M 1
2 r

(E)

)

= M(1−δ(r))r(E)h(2(1 − δ(r))r) + M(1−δ(r))r(E)

M 1
2 r

(E) ε . (3.3)

However, since (1 − δ(r))r ≥ 1
2r, we conclude that M(1−δ(r))r(E) ≤ M 1

2 r(E),
and (3.3) therefore implies that

Mr(E )h(2r) ≤ M(1−δ(r))r(E)h(2(1 − δ(r))r) + ε (3.4)

for all r > 0. Finally, defining ρ,R : (0,∞) → (0,∞) by ρ(r) = 1 − δ(r) and
R(r) = 1

1−δ(r) , the desired conclusion follows immediately from (3.4). This
completes the proof of Claim 1.
We can now prove the statement in Proposition 3.2. Since 1

2 ≤ ρ(r) ≤ 1 ≤
R(r) ≤ 2, we conclude that

inf
0<t≤s

Mt(E )h(2t) ≤ inf
0<r≤ 1

2 s
MR(r)r(E )h(2R(r)r) ,

sup
0<r≤s

Mρ(r)r(E)h(2ρ(r)r) ≤ sup
0<t≤s

Mt(E)h(2t) ,
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and it therefore follows from Claim 1 that

Uh
(E ) = sup

s>0
inf

0<t≤s
Mt(E )h(2t)

≤ sup
s>0

inf
0<r≤ 1

2 s
MR(r)r(E )h(2R(r)r)

≤ sup
s>0

inf
0<r≤ 1

2 s
Mr(E)h(2r) + ε

= Uh
(E) + ε , (3.5)

and

Vh
(E ) = inf

s>0
sup

0<r≤s
Mr(E )h(2r)

≤ inf
s>0

sup
0<r≤s

Mρ(r)r(E)h(2ρ(r)r) + ε

≤ inf
s>0

sup
0<t≤s

Mt(E)h(2t) + ε

≤ Vh
(E) + ε . (3.6)

Finally, letting ε tend to 0 in (3.5) and (3.6) gives the desired result. �

Proposition 3.3. Let h be a continuous dimension function. Let X be a complete
metric space and let C be a compact subset of X. Fix c ≥ 0.

(1) If Uh
(V ∩ C) ≥ c for all open subsets V of X with V ∩ C �= ∅, then

Uh(C) ≥ c.
(2) If Vh

(V ∩ C) ≥ c for all open subsets V of X with V ∩ C �= ∅, then
Vh(C) ≥ c.

Proof. (1) Assume that Uh
(V ∩ C) ≥ c for all open subsets V of X with

V ∩ C �= ∅. We must now show that Uh(C) ≥ c. Let (Ei)i be a countable
family of subsets of X with C ⊆ ∪iEi. We now have C = ∪iEi ⊆ ∪iEi, and
it therefore follows from Baire’s category theorem that there is an index i0
and an open subset W of X such that C ∩ W �= ∅ and C ∩ W ⊆ Ei0 . We
therefore conclude that Uh

(Ei0 ) ≥ Uh
(C ∩ W ) ≥ c. It now follows from this

and Proposition 3.2 that
∑

i

Uh
(Ei) ≥ Uh

(Ei0)

= Uh
(Ei0 )

≥ c . (3.7)

Finally, using (3.7) and taking the infimum over all countable families (Ei)i of
subsets of X with C ⊆ ∪iEi, shows that Uh(E) = infE⊆∪∞

i=1Ei

∑∞
i=1 Uh

(Ei) ≥
c.
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(2) The proof of this statement is identical to the proof of the statement in
Part (1) and is therefore omitted. �

4. Proof of Theorem 2.3

The purpose of this section is to prove Theorem 2.3. For a dimension function
h, we define the set Hh by

Hh =
{

X ∈ KGH

∣∣∣ for all t > 0 there is a positive integer N and

x1, . . . , xN ∈ X ,

C1, . . . , CN ⊆ X ,

such that
X = ∪iB(xi, t) ,

Ci ⊆ B(xi, t) for all i ,

Ci ∈ KGH for all i ,

Uh
(Ci) = ∞ for all i

}
. (4.1)

Proposition 4.1. Let h be a dimension function. Then the set Hh is dense in
KGH.

Proof. Let X ∈ KGH and let ρ > 0. Also, let dX denote the metric in X. We
must now find a compact metric space Y ∈ KGH such that dGH(X,Y ) < ρ and
Y ∈ Hh. Since X is compact we can choose a finite subset E of X such that

dH(X,E) < ρ
2 .

Next, define the dimension function l : (0,∞) → (0,∞) by l(r) = rh(r), and
note that it follows from [12, Theorem 36] that there is a compact metric space
(Z, dZ) such that

0 < Hl(Z) < ∞ . (4.2)

Let μ denote the l-dimensional Hausdorff measure restricted to Z, and write
Z0 for the support of μ, i.e. Z0 = suppμ. Next, we fix z0 ∈ Z0 and put

K = B(z0, ρ
2 ) ∩ Z0.

Finally, let

Y = E × K , (4.3)

and equip Y with the supremum metric dY induced by dX and dZ , i.e.
dY ( (x′, z′) , (x′′, z′′) ) = max( dX(x′, x′′) , dZ(z′, z′′) ) for x′, x′′ ∈ X and z′,
z′′ ∈ K. It is clear that Y is compact, and so Y ∈ KGH. Below we show that
dGH(X,Y ) < ρ and Y ∈ Hh. This is the contents of the two claims below.
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Claim 1. dGH(X,Y ) < ρ.

Proof of Claim 1. Define f : E → Y and g : Y → Y by f(x) = (x, z0) and
g : Y → Y by g(x, z) = (x, z). It is clear that f and g are isometries and
we therefore conclude that dGH(E, Y ) ≤ dH(f(E), g(Y )) = dH(E × {z0}, E ×
K) ≤ supz∈K dZ(z, z0) ≤ ρ

2 , whence dGH(X,Y ) ≤ dGH(X,E) + dGH(E, Y ) <
dH(X,E) + ρ

2 < ρ
2 + ρ

2 = ρ. This completes the proof of Claim 1. �

Claim 2. Y ∈ Hh.

Proof of Claim 2. Let t > 0. It follows from the compactness of K that we
can choose finitely many points z1, . . . , zN ∈ K such that K ⊆ ∪jB(zj , t). Let
Kj = B(zj ,

t
2 ) ∩ K and write E = {x1, . . . , xM}. Finally, put

yi,j = (xi, zj) ,

Ci,j = {xi} × Kj

for i = 1, . . . , M and j = 1, . . . , N . In order to prove that Y ∈ Hh, it suffices
the show that

Y = ∪i,jB(yi,j , t) , (4.4)
Ci,j ⊆ B(yi,j , t) for all i, j , (4.5)

Uh
(Ci,j) = ∞ for all i, j. (4.6)

Below we show that the statements in (4.4)–(4.6) are satisfied.
Indeed, it is clear that Y = E × K = ∪i,j({xi} × (B(zj , t) ∩ K)) =

∪i,jB(yi,j , t); this proves (4.4).
It is also clear that Ci,j ⊆ B(yi,j , t) for all i, j; this proves (4.5).
Finally, we prove (4.6). We first show that

0 < Hl(Kj) < ∞
for all j. Indeed, it is clear that Hl(Kj) ≤ Hl(Z) < ∞. Next, we show that
Hl(Kj) > 0. Since zj ∈ K = B(z0, ρ

2 ) ∩ Z0, we conclude that there is a point
ẑj ∈ B(z0, ρ

2 ) ∩ Z0 with dZ(zj , ẑj) < t
2 . Hence, if we write Uj = B(z0, ρ

2 ) ∩
B(zj ,

t
2 ), then ẑj ∈ B(z0, ρ

2 ) ∩ Z0 and ẑj ∈ B(zj ,
t
2 ), whence ẑj ∈ Uj ∩ Z0. In

particular, we conclude that Uj is an open subset of Z with Uj ∩ Z0 �= ∅, and
since Z0 is the support of the l-dimensional Hausdorff measure restricted to Z,
we therefore deduce that Hl(Uj ∩ Z0) > 0. Finally, since Kj = B(zj ,

t
2 ) ∩ K =

B(zj ,
t
2 ) ∩ B(z0, ρ

2 ) ∩ Z0 ⊇ B(zj ,
t
2 ) ∩ B(z0, ρ

2 ) ∩ Z0 = Uj ∩ Z0, we now infer
that Hl(Kj) ≥ Hl(Uj ∩ Z0) > 0.

Since Hl(Kj) < ∞, we can choose δj > 0 such that Hl
δ(Kj) ≥ 1

2Hl(Kj) for
all 0 < δ ≤ δj . This clearly implies that if 0 < δ ≤ δj and (Ei)i is a countable
family of subsets of Z with diam(Ei) ≤ δ and Kj ⊆ ∪iEi, then

∑
i

l(diam(Ei)) ≥ 1
2Hl(Kj) . (4.7)
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Using Lemma 3.1 we deduce that for δ > 0, we have

Mδ(Kj)h(2δ) ≥ Nδ(Kj)h(2δ) ≥ 1
2δ Nδ(Kj) l(2δ) . (4.8)

Also observe that it follows from the definition of the covering number Nδ(Kj)
that we can find a family Bδ(Kj) of Nδ(Kj) closed balls in Z with centres in
Kj and radii equal to δ that covers Kj . In particular, diam(C) ≤ 2δ for all
C ∈ Bδ(Kj), and so

Nδ(Kj)l(2δ) =
∑

C∈Bδ(Kj)
l(2δ) ≥ ∑

C∈Bδ(Kj)
l(diam(C)) . (4.9)

Combining (4.8) and (4.9) now shows that

Mδ(Kj)h(2δ) ≥ 1
2δ Nδ(Kj) l(2δ) ≥ 1

2δ

∑
C∈Bδ(Kj)

l(diam(C)) . (4.10)

However, we conclude from (4.7) that
∑

C∈Bδ(Kj)
l(diam(C)) ≥ 1

2Hl(Kj) for
all 0 < δ ≤ δj , and it therefore follows from (4.10) that

Mδ(Kj)h(2δ) ≥ 1
2δ

∑
C∈Bδ(Kj)

l(diam(C)) ≥ 1
4δ Hl(Kj)

for all 0 < δ ≤ δj . This clearly implies that

Uh
(Kj) = lim infδ↘0 Mδ(Kj)h(2δ) ≥ lim infδ↘0

1
4δ Hl(Kj) = ∞ , (4.11)

since Hl(Kj) > 0. Finally, we conclude from (4.11) that Uh
(Ci,j) = Uh

({xi}×
Kj) = Uh

(Kj) = ∞. This completes the proof of (4.6).
It follows immediately from (4.4)–(4.6) that Y ∈ Hh. This completes the

proof of Claim 2.
Finally, it follows from Claim 1 and Claim 2 that Hh is dense in KGH. �

Proposition 4.2. Let h be a continuous dimension function.
(1) The set{

X ∈ KGH

∣∣∣ Uh
(U) = ∞ for all open subsets U of X with U �= ∅

}

is dense in KGH.
(2) The set{

X ∈ KGH

∣∣∣ Uh(U) = ∞ for all open subsets U of X with U �= ∅
}

is dense in KGH.

Proof. (1) Using Proposition 4.1, it clearly suffices to show that

Hh ⊆
{

X ∈ KGH

∣∣∣ Uh
(U) = ∞ for all open subsets U of X with U �= ∅

}
.

(4.12)

We will now prove (4.12). Let X ∈ Hh. In order to prove (4.12), we must
now show that Uh

(U) = ∞ for all open subsets U of X with U �= ∅. We
therefore let U be an open subset of X with U �= ∅, and proceed to show that
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Uh
(U) = ∞. Since U is non-empty and open there is x0 ∈ U and t0 > 0 with

BX(x0, t0) ⊆ U . Next, since X ∈ Hh, we conclude that there is a positive
integer N and

x1, . . . , xN ∈ X ,

C1, . . . , CN ⊆ X ,

such that

X = ∪iB(xi,
t0
2 ) ,

Ci ⊆ B(xi,
t0
2 ) for all i ,

Uh
(Ci) = ∞ for all i .

Since x0 ∈ X = ∪iB(xi,
t0
2 ), we can choose an index i0 ∈ {1, . . . , N} with

x0 ∈ B(xi0 ,
t0
2 ), whence B(xi0 ,

t0
2 ) ⊆ B(x0, t0), and so Ci0 ⊆ B(xi0 ,

t0
2 ) ⊆

B(x0, t0) ⊆ U . It follows from this that Uh
(U) ≥ Uh

(Ci0) = ∞.
(2) Using Part 1, it clearly suffices to prove that

{
X ∈ KGH

∣∣∣ Uh
(U) = ∞ for all open subsets U of X with U �= ∅

}

⊆
{

X ∈ KGH

∣∣∣ Uh(U) = ∞ for all open subsets U of X with U �= ∅
}

.

(4.13)

We will now prove (4.13). Let X ∈ KGH and assume that Uh
(U) = ∞ for all

open subsets U of X with U �= ∅. In order to prove (4.13), we must now show
that Uh(U) = ∞ for all open subsets U of X with U �= ∅. We therefore fix an
open subset U of X with U �= ∅, and proceed to show that Uh(U) = ∞. Since
U is non-empty and open there is x ∈ U and r > 0 such that BX(x, r) ⊆ U . In
particular, this implies that if we write C = B(x, r

2 ), then C is compact and
C ⊆ B(x, r) ⊆ U . Next, we prove the following claim.

Claim 1. If V is an open subset of X with V ∩ C �= ∅, then Uh
(V ∩ C) = ∞.

Proof of Claim 1. Let V be an open subset of X with V ∩ C �= ∅. Choose
y ∈ V ∩ C. Since y ∈ V and V is open, we can choose ε > 0 such that
B(y, ε) ⊆ V . Next, since y ∈ C = B(x, r

2 ), we can choose z ∈ B(x, r
2 ) with

z ∈ B(y, ε). Finally, since z ∈ B(x, r
2 ) ∩ B(y, ε), we can find δ > 0 with

B(z, δ) ⊆ B(x, r
2 ) ∩ B(y, ε), whence B(z, δ) ⊆ B(x, r

2 ) ∩ B(y, ε) ⊆ C ∩ V , and
so

Uh
(B(z, δ)) ≤ Uh

(C ∩ V ) . (4.14)

However, since the set B(z, δ) is open and non-empty, it follows from the
assumption about X that Uh

(B(z, δ)) = ∞, and we therefore conclude from
(4.14) that Uh

(C ∩ V ) = ∞. This completes the proof of Claim 1.
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Finally, it follows immediately from Claim 1 and Proposition 3.3 that
Uh(C) = ∞, and since C ⊆ U , this implies that Uh(U) = ∞. �

We can now prove Theorem 2.3.

Proof of Theorem 2.3. Theorem 2.3 follows immediately from Proposition 4.2.
(2). �

5. Proof of Theorem 2.2.(1)

The purpose of this section is to prove Theorem 2.2.(1). For a dimension
function h and r, c > 0, write

Lh
r,c =

{
X ∈ KGH

∣∣∣ Mr(X)h(2r) < c
}

.

Lemma 5.1. Let h be a dimension function and r, c > 0. Then the set Lh
r,c is

open in KGH.

Proof. This follows immediately from Lemma 3.1.

Proposition 5.2. Let h be a dimension function.
(1) For c ∈ R+, write

Tc =
{

X ∈ KGH

∣∣∣ Uh
(X) ≤ c

}
.

Then Tc is co-meagre.
(2) Write

T =
{

X ∈ KGH

∣∣∣ Uh
(X) = 0

}
.

Then T is co-meagre.

Proof. (1) It suffices to show that there is a countable family (Gs)s∈Q+ of open
and dense subsets Gs of KGH such that ∩s∈Q+Gs ⊆ Tc. For s ∈ Q+, we define
the set Gs by

Gs =
⋃

0<r<s

Lh
r,c .

We now prove that the sets Gs are open and dense subsets of KGH such that
∩s∈Q+Gs ⊆ Tc; this is the contents of the three claims below.

Claim 1. Gs is open in KGH.

Proof of Claim 1. This follows immediately from Lemma 5.1. This completes
the proof of Claim 1.

Claim 2. Gs is dense in KGH.
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Proof of Claim 2. Indeed, it is clear that {X ∈ KGH |X is finite} is dense
in KGH, and since it is not difficult to see that {X ∈ KGH |X is finite} ⊆
∪0<r<sL

h
r,c = Gs, we therefore conclude that Gs is dense in KGH. This com-

pletes the proof of Claim 2.

Claim 3. ∩s∈Q+Gs ⊆ Tc.

Proof of Claim 3. Let X ∈ ∩s∈Q+Gs. We must now show that Uh
(X) ≤ c.

Since X ∈ ∩s∈Q+Gs ⊆ ∩nG 1
n
, we conclude that for each positive integer

n, we can find rn < 1
n such that X ∈ Lh

rn,c, whence Mrn
(X)h(2rn) < c.

It follows immediately from this that Uh
(X) = lim infr↘0 Mr(X)h(2r) ≤

lim infn Mrn
(X)h(2rn) ≤ c, and so X ∈ Tc. This completes the proof of

Claim 3.
(2) This statement follows immediately from Part (1) since clearly T =
∩c∈Q+Tc.

We can now prove Theorem 2.2.(1).

Proof of Theorem 2.2.(1). Theorem 2.2.(1) follows immediately from Propo-
sition 5.2.(2). �

6. Proof of Theorem 2.2.(2)

The purpose of this section is to prove Theorem 2.2.(2). We start by introduc-
ing the following notation. First, recall that for a positive real number r, the
covering number Nr(X) of a metric space X is defined in (2.1). Next, for a
dimension function h and r, t, c > 0, write

Λh
r,c =

{
X ∈ KGH

∣∣∣ Nr(X)h(2r) > c
}

,

and

Lh
r,t,c =

{
X ∈ KGH

∣∣∣ there is a positive integer N and

x1, . . . , xN ∈ X ,

C1, . . . , CN ⊆ X ,

r1, . . . , rN ∈ (0, r) ,

such that
X = ∪iB(xi, t) ,

Ci ⊆ B(xi, t) for all i ,

Ci ∈ Λh
ri,c for all i

}
.

Also recall that for a dimension function h, the set Hh is defined in (4.1).
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Lemma 6.1. Let h be a dimension function and define the dimension function
h̃ by h̃(r) = h( r

3 ) for r > 0.

(1) For all X ∈ KGH, we have lim infr↘0 Nr(X)h(2r) ≥ U h̃
(X).

(2) For all r, t, c > 0, we have H h̃ ⊆ Lh
r,t,c.

Proof. (1) It follows from Lemma 3.1 that M3r(X) ≤ Nr(X) for all r > 0,
whence Nr(X)h(2r) ≥ M3r(X)h(2r) = M3r(X) h̃(2 · 3r) for all r > 0, and so
lim infr↘0 Nr(X)h(2r) ≥ lim infr↘0 M3r(X) h̃(2·3r) = lim infr↘0 Mr(C) h̃(2r)

= U h̃
(X).

(2) This statement follows immediately from Part (1). �

Lemma 6.2. Let h be a dimension function and r, c > 0. Then the set Λh
r,c is

open in KGH.

Proof. This follows immediately from Lemma 3.1. �

Proposition 6.3. Let h be a dimension function and r, t, c > 0. Then the set
Lh

r,t,c is open in KGH.

Proof. Let X ∈ Lh
r,t,c and let dX denote the metric in X. Also, in order to

distinguish balls in different metric spaces, we will denote the open ball in X
with radius equal to δ and centre at x ∈ X by BX(x, δ), i.e. BX(x, δ) = {x′ ∈
X | dX(x, x′) < δ}.

We must now find ρ > 0 such that B(X, ρ) ⊆ Lh
r,t,c.

Since X ∈ Lh
r,t,c, we conclude that there is a positive integer N and

x1, . . . , xN ∈ X ,

C1, . . . , CN ⊆ X ,

r1, . . . , rN ∈ (0, r) ,

such that

X = ∪iBX(xi, t) ,

Ci ⊆ BX(xi, t) for all i ,

Ci ∈ Λh
ri,c for all i .

Define Φ : X → R by Φ(x) = mini dX(x, xi) and note that Φ is continuous.
Since X is compact, we therefore conclude that there is x0 ∈ X such that
Φ(x0) = supx∈X Φ(x). For brevity write t0 = Φ(x0) = supx∈X Φ(x), and note
that since x0 ∈ X = ∪iB(xi, t), we can find i0 with x0 ∈ B(xi0 , t), whence

t0 = Φ(x0) ≤ dX(x, xi0) < t . (6.1)

Also, since Ci is compact and Ci ⊆ B(xi, t), we conclude that

ti = inf
{

s
∣∣∣ Ci ⊆ B(xi, s)

}
< t . (6.2)
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For brevity write

di = t − ti .

Finally, since Ci ∈ Λh
ri,c and Λh

ri,c is open (by Lemma 6.2), we conclude that
there is a positive real number ρi > 0 with

B(Ci, ρi) ⊆ Λh
ri,c . (6.3)

Now put

ρ = min(ρ1
2 , . . . , ρN

2 , t−t0
2 , d1

16 , . . . , dN

16 ) .

It follows from (6.1) and (6.2) that ρ > 0. We will now prove that

B(X, ρ) ⊆ Lh
r,t,c . (6.4)

Let Y ∈ B(X, ρ) and let dY denote the metric in Y . Since dGH(X,Y ) < ρ,
it follows that we may assume that there is a complete metric space (Z, dZ)
with X,Y ⊆ Z and dH(X,Y ) < ρ such that dX(x′, x′′) = dZ(x′, x′′) for all
x′, x′′ ∈ X, and dY (y′, y′′) = dZ(y′, y′′) for all y′, y′′ ∈ Y . Below we use the
following notation allowing us to distinguish balls in Y and balls in Z. Namely,
we will denote the open ball in Y with radius equal to δ and centre at y ∈ Y
by BY (y, δ), i.e. BY (y, δ) = {y′ ∈ Y | dY (y, y′) < δ}, and we will denote the
open ball in Z with radius equal to δ and centre at z ∈ Z by BZ(z, δ), i.e.
BZ(z, δ) = {z′ ∈ X | dZ(z, z′) < δ}.

We must now show that Y ∈ Lh
r,t,c. Since dH(X,Y ) < ρ, we conclude that

for each i, there is a point yi ∈ Y with dZ(xi, yi) < ρ. Next, put

Ki =
{

y ∈ Y
∣∣∣ dist(y, Ci) ≤ ρ

}
.

It is clear that

y1, . . . , yN ∈ Y ,

K1, . . . , KN ⊆ Y ,

r1, . . . , rN ∈ (0, r) .

In order to prove that Y ∈ Lh
r,t,c, it suffices to show that

Y = ∪iBY (yi, t) , (6.5)
Ki ⊆ BY (yi, t) for all i , (6.6)

Ki ∈ Λh
ri,c for all i . (6.7)

The proofs of (6.5)–(6.7) are the contents of the three claims below.

Claim 1. Y = ∪iBY (yi, t).

Proof of Claim 1. It is clear that ∪iBY (yi, t) ⊆ Y . In order to prove the reverse
inclusion, we let y ∈ Y . Since dH(X,Y ) < ρ, we conclude that there is a
point x ∈ X with dZ(x, y) < ρ. Also, since mini dX(x, xi) = Φ(x) ≤ t0,
we deduce that there is an index j with dX(x, xj) ≤ t0. Finally, it follows
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from the definition of yj that dZ(xj , yj) < ρ. Hence dY (y, yj) = dZ(y, yj) ≤
dZ(y, x)+dZ(x, xj)+dZ(xj , yj) = dZ(y, x)+dX(x, xj)+dZ(xj , yj) < ρ+t0+ρ =
2ρ + t0 ≤ t, and so y ∈ BY (yj , t) ⊆ ∪iBY (yi, t). This completes the proof of
Claim 1.

Claim 2. Ki ⊆ B(yi, t) for all i.

Proof of Claim 2. Since Ci ⊆ BX(xi, t), it follows from the definition of the
numbers ti = inf{s |Ci ⊆ B(xi, s)} and di = t − ti, that

Ci ⊆ BX(xi, t − di

2 ) . (6.8)

Next, since dZ(xi, yi) < ρ ≤ di

16 ≤ di

4 , it follows that

BX(xi, t − di

2 ) ⊆ BZ(xi, t − di

2 )

⊆ BZ(yi, t − di

4 ) . (6.9)

Finally, combining (6.8) and (6.9) shows that

Ci ⊆ BZ(yi, t − di

4 ) . (6.10)

We can now prove that Ki ⊆ BY (yi, t). Let y ∈ Ki. Since y ∈ Ki, we have
dist(y, Ci) ≤ ρ ≤ di

16 < di

8 , and it therefore follows that there is x ∈ Ci with
dZ(x, y) ≤ di

8 . Also, we deduce from (6.10) that x ∈ Ci ⊆ BZ(yi, t− di

4 ), whence
dZ(x, yi) ≤ t − di

4 . Combining the previous inequalities we have dY (y, yi) =
dZ(y, yi) ≤ dZ(y, x) + dZ(x, yi) ≤ di

8 + t − di

4 < t, and so y ∈ BY (yi, t). This
completes the proof of Claim 2.

Claim 3. Ki ∈ Λh
ri,c for all i.

Proof of Claim 3. It is clear that Ki is a closed subset of Y and so Ki ∈ KGH.
We now prove that

sup
x∈Ci

dist(x,Ki) ≤ ρ . (6.11)

Indeed, let x ∈ Ci. Since dH(X,Y ) < ρ, we conclude that there is y ∈ Y such
that dZ(x, y) < ρ. In particular, since x ∈ Ci, this shows that dist(y, Ci) ≤
dZ(y, x) ≤ ρ, and so y ∈ Ki. We deduce from this that dist(x,Ki) ≤ dZ(x, y) ≤
ρ. Finally, taking the supremum over all x ∈ Ci shows that supx∈Ci

dist(x,Ki)
≤ ρ. This completes the proof of (6.11).

Next, we prove that

sup
y∈Ki

dist(y, Ci) ≤ ρ . (6.12)

Indeed, let y ∈ Ki. Since y ∈ Ki, it follows from the definition of Ki that there
is x ∈ Ci such that dZ(y, x) ≤ ρ, and so dist(y, Ci) ≤ dZ(y, x) ≤ ρ. Finally,
taking the supremum over all y ∈ Ki shows that supy∈Di

dist(y, Ci) ≤ ρ. This
completes the proof of (6.12).
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Combining (6.11) and (6.12), we immediately conclude that dH(Ci,Ki) =
max(supx∈Ci

dist(x,Ki), supy∈Ki
dist(y, Ci)) ≤ ρ ≤ ρi

2 < ρi, whence Ki ∈
B(Ci, ρi) ⊆ Λh

ri,c. This completes the proof of Claim 3.
It follows immediately from Claim 1–Claim 3 that Y ∈ Lh

r,t,c. �

Proposition 6.4. Let h be a continuous dimension function.

(1) For c ∈ R+, write

Tc =
{

X ∈ KGH

∣∣∣ Vh
(U) ≥ c for all open subsets U ofX with U �= ∅

}
.

Then Tc is co-meagre.
(2) Write

T =
{

X ∈ KGH

∣∣∣ Vh
(U) = ∞ for all open subsets U ofX with U �= ∅

}
.

Then T is co-meagre.
(3) Write

S =
{

X ∈ KGH

∣∣∣ Vh(U) = ∞ for all open subsets U ofX with U �= ∅
}

.

Then S is co-meagre.

Proof. (1) It suffices to show that there is a countable family (Gs,t)s,t∈Q+ of
open and dense subsets Gs,t of KGH such that ∩s,t∈Q+Gs,t ⊆ Tc. For s, t ∈ Q+,
we define the set Gs,t by

Gs,t =
⋃

0<r<s

Lh
r,t,c .

We now prove that the sets Gs,t are open and dense subsets of KGH such that
∩s,t∈Q+Gs,t ⊆ Tc; this is the contents of the three claims below.

Claim 1. Gs,t is open in KGH.

Proof of Claim 1. This follows immediately from Proposition 6.3. This com-
pletes the proof of Claim 1.

Claim 2. Gs,t is dense in KGH.

Proof of Claim 2. Let h̃ denote the dimension function defined by h̃(r) = h( r
3 )

for r > 0, and note that it follows from Proposition 4.1 that H h̃ is dense in
KGH. Since it also follows from Lemma 6.1 that H h̃ ⊆ ∪0<r<sL

h
r,t,c = Gs,t,

we therefore conclude that Gs,t is dense in KGH. This completes the proof of
Claim 2.

Claim 3. ∩s,t∈Q+Gs,t ⊆ Tc.
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Proof of Claim 3. Let X ∈ ∩s,t∈Q+Gs,t. We must now show that if U is an

open subset of X with U �= ∅, then Vh
(U) ≥ c. We therefore let U be an open

subset of X with U �= ∅, and proceed to show that Vh
(U) ≥ c. Since U is

non-empty and open there is x0 ∈ U and t0 > 0 with B(x0, t0) ⊆ U . Next,
since X ∈ ∩s,t∈Q+Gs,t ⊆ ∩nG 1

n ,
t0
2

, we conclude that for each positive integer
n, we can find a positive real number rn with rn < 1

n such that X ∈ Lh
rn,

t0
2 ,c

.
In particular, this implies that there is a positive integer Nn and

xn,1, . . . , xn,Nn
∈ X ,

Cn,1, . . . , Cn,Nn
⊆ X ,

rn,1, . . . , rn,Nn
∈ (0, rn) ,

such that

X = ∪iB(xn,i,
t0
2 ) ,

Cn,i ⊆ B(xn,i,
t0
2 ) for all i ,

Cn,i ∈ Λh
rn,i,c for all i .

Since x0 ∈ X = ∪iB(xn,i,
t0
2 ), we can choose an index in ∈ {1, . . . , Nn}

such that x0 ∈ B(xn,in
, t0

2 ), whence B(xn,in
, t0

2 ) ⊆ B(x0, t0), and so Cn,in
⊆

B(xn,in
, t0

2 ) ⊆ B(x0, t0) ⊆ U . We conclude from this and Lemma 3.2 together
with the fact that Cn,in

∈ Λh
rn,in ,c, that Mrn,in

(U)h(2rn,in
) ≥ Nrn,in

(U)
h(2rn,in

) ≥ Nrn,in
(Cn,in

)h(2rn,in
) > c. Finally, since rn,in

< rn < 1
n and so

rn,in
→ 0, we deduce from the previous inequality that Vh

(U) = lim supr↘0

Mr(U)h(2r) ≥ lim supn Mrn,in
(U)h(2rn,in

) ≥ c. This completes the proof of
Claim 3.
(2) This statement follows immediately from Part (1) since clearly T =∩c∈Q+Tc.
(3) Using Part (2), it clearly suffices to prove that

T ⊆ S. (6.13)

To the end, let X ∈ T . We must now show that if U is an open subset of X
with U �= ∅, then Vh(U) = ∞. We therefore let U be an open subset of X
with U �= ∅, and proceed to show that Vh(U) = ∞. Since U is non-empty
and open there is x ∈ U and r > 0 such that B(x, r) ⊆ U . In particular, this
implies that if we write C = B(x, r

2 ), then C is compact and C ⊆ B(x, r) ⊆ U .
Next, we prove the following claim.

Claim 4. If V is an open subset of X with V ∩ C �= ∅, then Vh
(V ∩ C) = ∞.

Proof of Claim 4. Let V be an open subset of X with V ∩C �= ∅. We must now
show that Vh

(V ∩ C) = ∞. As V ∩ C �= ∅, it is possible to choose y ∈ V ∩ C.
Since y ∈ V and V is open, we can choose ε > 0 such that B(y, ε) ⊆ V . Next,
since y ∈ C = B(x, r

2 ), we choose z ∈ B(x, r
2 ) such that z ∈ B(y, ε). Finally,
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since z ∈ B(x, r
2 )∩B(y, ε), we can find δ > 0 with B(z, δ) ⊆ B(x, r

2 )∩B(y, ε),
whence B(z, δ) ⊆ B(x, r

2 ) ∩ B(y, ε) ⊆ C ∩ V , and so

Vh
(B(z, δ)) ≤ Vh

(C ∩ V ) . (6.14)

However, since B(z, δ) is open and non-empty and X ∈ T , it follows that
Vh

(B(z, δ)) = ∞, and we therefore conclude from (6.14) that Vh
(C ∩V ) = ∞.

This completes the proof of Claim 4.
Finally, it follows immediately from Claim 4 and Proposition 3.3 that

Vh(C) = ∞, and since C ⊆ U , this implies that Vh(U) = ∞.
We can now prove Theorem 2.2.(2).

Proof of Theorem 2.2.(2). Theorem 2.2.(2) follows immediately from Propo-
sition 6.4.(3). �
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