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A B S T R A C T

We developed Blue Intensity (BI) measurements from the crossdated ring sequences of Fokienia hodginsii (of the
family Cupressaceae) from central Vietnam. BI has been utilized primarily as an indirect proxy measurement of
latewood (LW) density of conifers (i.e., LWBI) from high latitude, temperature-limited boreal forests. As such, BI
closely approximates maximum latewood density (MXD) measurements made from soft x-ray. The less com-
monly used earlywood (EW) BI (EWBI) represents the minimum density of EW and is influenced by the lighter
pixels from the vacuoles or lumens of cells. The correlation of our BI measurements with climate, strongest for
EWBI, rivals that for total ring width (RW), and we demonstrate that it can be successfully employed as an
independent predictor for reconstruction models. EWBI exhibits robust spatial correlations with winter and
spring land temperature, sea surface temperature (SST) over the regional domain of ENSO, and the Standardized
Precipitation Evapotranspiration Index (SPEI) over Indochina. However, in order to mitigate the effects of color
changes at the heartwood – sapwood boundary we calculated ΔBI (EWBI-LWBI), and it too exhibits a significant
(p < 0.05), temporally stable response to prior autumn (Oct-Nov) rainfall and winter (December to April) dry
season temperature. We interpret this response as reflecting a potential cavitation defense by reducing lumen
diameter as a means to safeguard hydraulic conductivity in the stem, and to prevent the xylem from imploding
due to negative pressure. This study has wide implications for the further use of BI from the global tropics,
though it is unclear how many tropical tree species will be appropriate for use. It seems very likely that other
wood anatomical measurements can be combined with BI and RW for climate reconstruction.

1. Introduction

In dendroclimatology, the maximum latewood density (MXD, ex-
pressed as grams/cm3) of tree rings is a parameter measured directly by
soft X-ray of carefully prepared thin sections of wood (Schweingruber,
2012). MXD, most commonly measured from temperature-limited
conifers of the Northern Hemisphere high latitudes, often expresses a
stronger correlation with current growing season temperature than
does total ring width (RW). This is in part because RW of conifers ex-
hibits a strong autocorrelation that reflects the carry-over effects from
the previous year’s growth that are often the result of non-climatic
signals related to stand dynamics and endogenous disturbances (Cook

and Kairiukstis, 1990; Fritts, 1976). Conversely, the autocorrelation of
MXD is much more closely aligned to what is exhibited by temperature
data (Briffa et al., 2002; Rydval et al., 2014), owing to a more direct
current-season response to temperature than is expressed for RW.
Therefore MXD is more reflective of the secondary process of cell lig-
nification of the latewood, a process that is largely controlled by late
growing season temperature (Mork, 1960). Accordingly, including MXD
with RW for reconstruction of growing season temperature often in-
creases the skill and spectral fidelity of reconstruction models (e.g.,
D’Arrigo et al., 2003; Wilson and Luckman, 2003; Wilson et al., 2016).

Blue reflectance or blue intensity (BI) is an image analysis based
measurement that is interpreted as a proxy for the density of tree rings
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(Campbell et al., 2007). The procedure is theoretically based upon the
compound lignin’s propensity to absorb ultraviolet light more readily
than other wood structural components (Fukazawa, 1992). It is likely,
however, that BI also reflects cellulose and hemi-cellulose, both of
which are companion constituents of lignin in tracheid cell walls
(Vincent, 1999; Yan et al., 2004). The higher the degree of reflected
blue light, the less dense (i.e., less lignified) the wood and vice versa
(Fig. 1). The understanding of this property dates back to Lange (1954)
who utilized UV photomicrographs to measure the lignin content in the
latewood of spruce. However it was only recently that Gindl et al.
(2000) more formally made the connection between lignin content
(density), as measured through UV photomicrographs, and tempera-
ture. BI from the growth rings of high-latitude/altitude trees has been
shown to serve as an indirect proxy of wood density and therefore
temperature of the late growing season. Consequently BI has been
mostly used for high latitude/altitude conifer species where tempera-
ture has been shown to exert the greatest control on growth relative to
other climate parameters (Björklund et al., 2014; 2015; Campbell et al.,
2007; Dolgova, 2016; Rydval et al., 2014; 2017a; 2017b; Wilson et al.,
2014; 2017a).

Both the new method of BI and the preceding work on MXD are
predicated on the relationship between temperature and lignin content
of the tracheid cells of conifers, and are most commonly applied to the
latewood. Within a given species’ optimal range, cooler temperatures
inhibit and warmer temperatures enhance photosynthesis and, conse-
quently, lignification. At high-latitude/altitude sites, cooler than
average growing season temperature is correlated with less lignin al-
located to tracheid cell walls, resulting in low-density rings for

anomalously cool years known as “light rings” (e.g., Filion et al., 1986;
Gindl, 1999; Szeicz, 1996; Waito et al., 2013). Similarly, hemispheric
cooling caused by years of large volcanic eruptions may result in ex-
treme reduction in the density of growth rings across a broad region
(e.g., D’Arrigo et al., 2013; Esper et al., 2013, 2015; Gindl et al., 2000;
Jacoby et al., 1999; Szeicz, 1996). Since lignification is a process sec-
ondary to the formation of the cells (i.e., cells are formed first and then
lignified – sensu Mork, 1960) an abrupt reduction in growing season
temperature below optimum levels can result not only in light rings, but
often in “frost rings” where tracheid cells deficient in lignin rupture in
response to freezing of their internal water (Fig. 2). Conversely, a
warmer than average end to the growth season allows for a greater
degree of lignification and an increase in the density of the latewood.

Given the discussion above, it stands to reason that BI would afford
the same advantages over RW as does MXD, and for a fraction of the
cost in time and money. Wilson et al. (2014) show that BI typically
requires a larger sample size than MXD to improve signal strength, but
due to the comparatively low cost of generating BI this is usually not a
concern. Potential limitations remain, however, such as the effect of
color changes at the heartwood-sapwood boundary for many species
that can impart trend to data that may have nothing to do with a sys-
tematic climate related change in density (Björklund et al., 2014).
Discoloration may also occur as the result of physiological response to a
variety of non-climatic factors such as infusion of resin (and other
compounds) near the site of an injury. Hence, trees with a particularly
high contrast of wood color due to high resin content may exhibit either
an abrupt or slow change in reflectance values that is not climatic in
origin, and which distorts the BI time series (Fig. 3). It is currently

Fig. 1. CooRecorder image analysis software collects BI and RW measurements for each annual ring. For EW (A) all pixels in the highlighted box are sorted by dark
and light wood (white and blue, respectively), and the whitest 85% of pixels are measured (dark blue). For LW (B) measurements are taken from the 15% of the
darkest pixels (dark blue). To measure ΔBI the LW measurements are subtracted directly from the EW measurement, using an average of 100% of the pixels (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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unclear to what extent the BI method can be applied away from high
latitude/altitude tree line sites that are known for their temperature
sensitivity. Up until this current study, the BI methodology has not been
applied in tropical regions where precipitation sensitivity dominates
the tree ring response.

There is a dearth of research on the influence of hydroclimate on the
density of tree rings, as well as on the complexities of how climate and

secondary cellular processes like lignification are connected through
tree physiology. Several studies have linked increased wood density to
drought (e.g., Hoffmann et al., 2011; Xiao et al., 2014; Starheim et al.,
2013), and Hacke et al. (2001) demonstrate a clear relationship be-
tween wood density and the prevention of xylem implosion for drought
tolerant trees. However, no prior work that we could find made a
connection between the density of tropical tree rings and climate,

Fig. 2. In (A) a light density ring found in white spruce from near the northern tree line in Labrador, Canada. The light density latewood is from the year 1816,
following the 1815 eruption of Tambora in Indonesia (one of the most powerful eruptions in recorded history). A frost ring (B) in Siberian pine from Mongolia for the
year 536 C.E., the result of drastic cooling that froze sap water in the cells during the growing season and ruptured cell walls (SEM photomicrograph courtesy of Dee
Breger). Evidence for this abrupt climate change points to a massive eruption of the volcanic precursor of Krakatoa (D’Arrigo et al., 2001).

Fig. 3. Here we plot the inverted EWBI time series for core QNFH59B where two distinct periods result from a color change in the mid 1930s indicated by the red
arrows. The mean EWBI for the period 1850–1935=1.0767, and then changes to a mean of 1.2329 for the period 1935–2013. This abrupt change is entirely the
result of the color change and not a real change in density (the inversion results in an increased step where the raw BI would reflect a decrease). The calculation of
ΔBI, as described in the text, attempts to negate this effect (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article).
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particularly through the implementation of BI methodology. With this
paper we present the first use of BI from within the tropics from
crossdated core samples from the Vietnamese cypress Fokienia hodginsii
(family Cupressaceae). The cores come from the Tay Giang Protection
Forest in Quang Nam Province in central Vietnam (Fig. 4), from a
collection published by Buckley et al. (2017). With this paper we pre-
sent the first evidence that BI can be applied to tropical conifers and
used for the reconstruction of climate. We first compare the results of BI
with RW as a predictor for April SPEI, the reconstruction of which was
published by Buckley et al. (2017) from these same samples based on
RW alone. We then explore linkages between BI and factors related to
the broader regional climate. In this case the reflection of climate re-
sides most strongly within the earlywood (EW) portion of growth rather
than the latewood (LW), and is most finely tuned to temperature during
the winter dry season.

2. Materials and methods

2.1. Site description

As described in Buckley et al. (2017) the Fokienia hodginsii (Po Mu)
trees used for this study come from the Tay Giang Protected Forest in
Central Vietnam’s Quang Nam Province, growing on variable terrain
between 1000 and 1,500m above mean sea level. These trees were part
of a virtually undisturbed mixed evergreen broadleaved-coniferous
forest that grows on a dense humus layer over a very porous limestone
substrate. Five conifer species are found at this site including Po Mu,
which along with the two Podocarps Dacrycarpus imbricatus and Da-
crydium elatum, are canopy emergent. Two other Podocarps, Nageia
wallichiana and Podocarpus neriifolius, play a less dominant role in the
mid-canopy and the understory. Multiple broadleaf species, most no-
tably from the canopy dominant families of Magnoliaceae, Fagaceae
and Theaceae, are also present at the study location (see Buckley et al.,
2017 for further detail).

The region of Central Vietnam that surrounds the study location
experiences its seasonal rainfall peak in autumn (October–December),
rather than summer (June to September). A study by Li et al. (2015)
revealed a pronounced decadal oscillation of autumn precipitation over
Central Vietnam within the 8–11 year frequency band. This oscillation
appears to be modulated by the East Pacific–North Pacific (EP–NP)
teleconnection, in conjunction with ENSO-like lower frequency

variability. Positive SST anomalies in the South China Sea are asso-
ciated with the negative phase of the EP–NP pattern, and these
anomalies induce low-level convergence, enhance convection, and in-
crease precipitation over Central Vietnam. This circulation feature is
embedded in the large-scale circulation associated with SST anomalies
across the Pacific Ocean, where cooling in the Eastern and Central
tropical Pacific is flanked by warm anomalies in the North and South
Pacific and a warm Western Pacific Ocean. The positive phase of the
EP–NP is exemplified by opposing SST and circulation anomalies that
reduce rainfall over Central Vietnam (Li et al., 2015). Warming SST and
enhanced southerly low-level winds coincide with increased rainfall
and tropical cyclones, and are part of a hemispheric-scale change in the
general circulation in the form of a La Niña-like SST anomaly and a
strengthened Walker circulation branch that ascends near Vietnam and
the far-western Pacific (Wang et al., 2014).

2.2. Core preparation

We selected 29 core samples from 20 Fokienia hodginsii trees from
the QNFH core collection of Buckley et al. (2017) that was based upon
71 cores from 39 trees. Each of these core samples was crossdated and
measured for RW prior to this study, hence all missing rings and false
rings were accounted for. Selection criteria for the current study fo-
cused on those cores that exhibited the highest mean series inter-
correlation (MSI), the longest segment length, and the fewest missing
rings. Since this subset has substantially fewer samples than the ori-
ginal, we compare the two RW records in Fig. 5 in order to demonstrate
that the reduction in sample depth does not significantly alter the ori-
ginal QNFH growth index (r= 0.93 for the two versions of the record).
Most importantly only minor departures in low-frequency variability
are evident between the two records. For comparison purposes a full
tabulation of the basic statistics for RW and BI parameters (EW, LW and
ΔBI) from this subset of cores can be found in Table 1, while the four
tree-ring parameter time series developed for this paper are plotted in
Fig. 6. Prior to measuring BI, surficial pencil marks related to the
crossdating procedure were removed from all cores before immersion in
a solution of 99.5% acetone for 90 h. The acetone bath procedure is
necessary to remove resin and diminish potential color transitions re-
lated to the heartwood-sapwood boundary (Fig. 3). After removal from
the acetone the cores were air dried and re-sanded with micromesh
abrasives in order to produce the best possible surface for image

Fig. 4. The study location at Tay Giang Forest Protection (QNFH) area in Quang Nam province (red triangle in both maps): in (A) a regional overview and (B) a close
up of the black box in (A). The blue dots denote a series of rainfall station data that were used to develop a regional rainfall record. The locations of two other
published records of Fokienia hodginsii ring width data are indicated by the black triangles (A) at MCFH (Sano et al., 2009) and at BDFH (Buckley et al., 2010). The
two gray boxes denote the areal extent of SPEI data used by Buckley et al. (2017) for reconstruction from the QNFH ring width data. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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analysis using an Epson Perfection V850 Pro model scanner and Sil-
verfast software at 3200 dpi resolution. Prior to imaging, we calibrated
the scanner using a Monaco reflective MONR2015:03-01 IT8.7/2 cali-
bration target. We then used the image analysis software CooRecorder
8.1 (Larsson, 2016) to measure RW, and BI from the latewood (LWBI)
and earlywood (EWBI) portions of each ring.

2.3. Measuring Blue intensity from scanned images

The high-resolution scanned images from each crossdated core were
first imported into CooRecorder, and then a box was selected over the
latewood of each ring. Maximum parameters were set to 200 pixels
wide, and 50 pixels deep (see Fig. 1). Once each box was defined, only
the blue component of the reflected light was analyzed. Within each
box all pixels were ranked in order of the measured amount of blue on a
color-depth scale that is based on an 8-bit encoding where every
channel is resolved with 256 possible values that range from 1–256. A
value of 1 denotes complete absorption of visible blue light and high
density (i.e., maximum lignin content), while a value of 256 indicates
that all blue light is reflected and the density is low (minimum lignin
content). A value of 0 was used in the case of an absent ring. Of the blue
pixels in the defined box for LW (i.e., those pixels that register as having
lignin), we used the mean pixel values of the lowest 15th percentile
(i.e., those pixels at the low end of the scale with the highest degree of
lignification), and this was used as the preliminary measurement for
LWBI – the putative BI analogue of MXD. We then defined a box over

the earlywood portion of each ring, with parameters set to 200 pixels
wide and 500 pixels deep. All EW pixels were again ranked, but we now
averaged the highest 85% of blue intensity values (i.e., those pixels at
the 256 end of the color depth scale that represent the least amount of
lignification) – the BI analogue of minimum earlywood density. It
should be noted that in practice the actual width and depth of the boxes
selected for both LW and EW may vary, and the box dimensions will
scale smaller when the box depth dimension is larger than the ring’s
width, thereby ensuring there is no overlap with adjacent rings.

Preliminary BI data is essentially inversely correlated to density,
since dense cell walls express lower reflectance as more blue light is
absorbed. We therefore interpret BI as reflecting cell wall density
through the amount of lignin in the cells, though it is possible that other
anatomical features are responsible for BI variability as well, particu-
larly for EWBI, such as the lumen diameter as noted previously.
Typically a MXD time series exhibits a decreasing trend with increasing
age, while for BI trend increases with age. The traditional methods for
detrending time series for dendrochronology within the program
ARSTAN (Cook, 1985) does not allow positive-linear-only detrending as
a standard option, hence BI measurements are inverted to accom-
modate this detrending option (Björklund et al., 2014; 2015). Osten-
sibly inversion allows BI values to be more easily comparable to MXD,
but it is perhaps best not to equate the two measurements until further
research confirms the connection of BI to wood anatomy. Regardless,
for consistency with other papers we inverted our data for EWBI and
LWBI (see Rydval et al., 2014) by multiplying each value by -1 before
adding the constant 2.56 to eliminate any negative values. This con-
stant was used because the values are recorded in decimal form with the
max color intensity set at 2.56 (i.e., 256 on the color model described
above). Care was taken to ensure that rings denoted as absent for any
series (hence given a value of zero) were not corrupted by this proce-
dure, and still retain their original value of zero.

The Vietnamese cypress used for this study is a tropical conifer that
is known to have a high resin content that often imparts a marked
change in color at the heartwood/sapwood boundary (see Fig. 3). In
order to account for color changes from each core that were not ade-
quately removed by the acetone bath, ΔBI was calculated by subtracting
each non-inverted LWBI value from its corresponding year’s non-in-
verted EWBI value (Björklund et al., 2014). In their paper, Björklund
et al. (2014) presented ΔBI for Pinus sylvestris cores from a site in
Sweden that seemed to successfully account for the heartwood/

Fig. 5. Comparison plot of the two versions of the QNFH RW index (A) with original Buckley et al. (2017) 70-core version in red and our 29-core version in black. The
residuals of the two records are shown in (B) along with sample depth as the gray and red shaded areas (right y axis), and the dashed lines representing 0.1 mm to
either side of zero. Panel (C) shows a scatterplot of the two series that correlate at 0.93, indicating how little is lost with the reduction in sample size for our study (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 1
Basic statistics from the two versions of our QNFH tree ring record: a 70-core
collection used by Buckley et al. (2017) for a reconstruction of April SPEI, and
the 29-core subset of these cores presented in the current paper. The first and
last year of record is included along with values for mean series intercorrelation
(MSI), mean sensitivity (Mean Sens.) and serial autocorrelation (Auto Corr.) as
described in the text.

Series First year Last Year MSI Mean Sens Auto Corr.

RW - 70 Core 1347 2013 0.526 0.302 0.638
RW - 29 Core 1500 2013 0.554 0.309 0.636
ΔBI 1508 2013 0.358 0.141 0.424
EWBI 1508 2013 0.332 0.058 0.493
LWBI 1508 2013 0.142 0.047 0.396
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sapwood color change. These authors emphasized, however, that ΔBI
may have limited application when the correlation between EWBI and
LWBI is high, as this may remove signals related to climate, provided
that there is climate related common signal. As of this writing, the use
of ΔBI is a relatively new method and has been only used for den-
droclimatic reconstruction outside Scandinavia using mountain hem-
lock (Tsuga mertensiana) sites along the Gulf of Alaska (Wilson et al.,
2017b). This study is the very first comparative study of EW, LW and BI
metrics in order to assess the relative merits of each of the metrics in
understudied and challenging tropical conifers.

2.4. Standardizing growth indices

It is common practice in dendrochronology to standardize growth
indices in order to equalize variance through time and to account for
what is commonly referred to as the biological growth trend (e.g.,
Fritts, 1976; Cook, 1985). Standardization also allows for comparing
time series with distinctly different growth rates (i.e., mean and stan-
dard deviation), whether accounting for the overall growth rate of each
tree or the systematic changes in mean and variance throughout each
tree’s lifespan (see Cook and Peters, 1997). For this study we used the
same methodology that Buckley et al. (2017) used for standardizing the
RW record; Signal Free standardization as developed by Melvin and
Briffa (2008, 2014) and Briffa and Melvin (2011). For this purpose we
used the program RCSig, a freeware program developed at the Lamont-
Doherty Earth Observatory (http://www.ldeo.columbia.edu/tree-ring-
laboratory/resources/software), and based on the commonly used
program ARSTAN (Cook, 1985). RCSig allows for detrending individual
series using methods routinely available in ARSTAN, but within a
signal-free framework (see Melvin et al., 2007). For trees growing in
forests with high species diversity, complex forest dynamics and high
rainfall (such as the study location), the within-forest dynamics may
exert influence over ring-width patterns (including BI) that competes
with climate. Therefore, stochastic methods of detrending are more
appropriate than deterministic detrending techniques such as negative
exponential or linear regression models (Cook and Kairiukstis, 1990).

Using a signal-free framework reduces potential end effect biases

that can occur during detrending by removing the common forcing
signal within each series (Melvin et al., 2007). Accordingly, individual
series in our study were detrended using an age-dependent smoothing
spline, and the bi-weight robust mean for developing growth indices in
order to reduce the effects of outliers (Cook and Kairiukstis, 1990). To
quantify the signal strength of our record through time we calculated
two common statistics, the RBAR and the Expressed Population Signal
or EPS (Wigley et al., 1984). The RBAR metric analyzes the common
signal between the available bivariate pairs for any one time, and while
its value will not change with N, it will be biased as the relative number
of within-tree correlations increases compared to between-tree corre-
lations. In contrast EPS is sensitive to changes in N, as it estimates the
hypothetical squared correlation value between the sample chronology
and the theoretical infinitely replicated chronology. EPS values that
exceed 0.85 are generally considered to demonstrate an acceptable
level of common signal fidelity, though there is no actual significance
test (Wigley et al., 1984). Both EPS and RBAR were calculated for
successive 51-year windows and are presented along with each of our
time series in Fig. 6.

2.5. Climate data and analyses

We used the online resource KNMI Climate Explorer (Trouet and
Van Oldenborgh, 2013) to assess the spatial correlations of our RW and
BI time series with various features of the global climate (e.g., sea
surface temperature, maximum temperature over land, standardized
precipitation evapotranspiration index, etc.). In addition, we used
several freeware programs developed at the Lamont-Doherty Earth
Observatory Tree Ring Lab, such as program PCReg that was used for
climate response modeling and reconstruction. For comparison pur-
poses, we used the same climate datasets as Buckley et al. (2017), but
also shown in Fig. 7 are the monthly correlations with a local rainfall
mean and variance adjusted composite of 4 stations from the Quang
Nam region (locations shown in Fig. 4) that was not available to us
prior to this study. Additional data included gridpoints extracted from
the APHRODITE (Yatagai et al., 2012), and CRU TS3.24.01 (Harris and
Jones, 2017) temperature and precipitation networks, the Berkeley

Fig. 6. Stacked plot of the 4 time series produced for this study (left) with their corresponding EPS and Rbar statistics (right). From top to bottom the series are RW,
EWBI, LWBI and ΔBI. The gray shaded area on the left (bottom) indicates the sample depth through time.
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EARTH temperature series (Rhodes et al., 2013; Muller et al., 2013),
and the standardized precipitation-evapotranspiration index or SPEI
(Vicente-Serrano et al., 2013). We also used the Hadley Centre for
Climate Prediction and Research HadSST3 global SST data.

3. Results and discussion

From the scanned images of our 29-core subset we produced in-
dexed time series for RW, EWBI, LWBI, and ΔBI (Fig. 6). As noted
above, we demonstrate in Fig. 5 that the essential RW-derived signal
has not been lost with the reduction of samples between our 29-core
RW indices and the original 71-core Buckley et al. (2017) QNFH record.

Fig. 7. The correlation response plots for RW (left), ΔBI (center) and EWBI (right) with maximum temperature (top row), precipitation (center) and SPEI (bottom). A
24-month response window is shown, with significant correlations shown in black. The vertical dashed lines mark the transition from prior year (left) to current year
on the right.

Fig. 8. EWBI against December to April maximum (left) and minimum (right) temperature from the CRU TS3.24.01 global temperature dataset for the span of
1902–2013. All data are first-differenced prior to correlation, and only areas of significant correlation are shown in color.
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The Rbar and EPS statistics (Fig. 6) reinforce that our smaller sample
size adequately captures the overall variance of the larger population at
least back to the year 1700 for the BI parameters, and back to 1600 for
RW, based on the EPS threshold of 0.85 (Wigley et al., 1984). By
comparison, the Buckley et al. (2017) version of this record extends
back to the year 1347 and has an EPS value above 0.85 back to 1567,
and it remains above 0.8 back to 1550.

3.1. Climate response of Fokienia hodginsii BI parameters

The response of all QNFH tree ring parameters to monthly max-
imum temperature, total precipitation and SPEI (Fig. 7) reinforces the
importance of April as noted by Buckley et al. (2017) for RW. However,
the strong, direct response to prior autumn rainfall for EWBI and ΔBI
reinforces the idea that a pre-conditioning of the soil moisture by an
increase in autumn rainfall is important for growth in the following
year. From a density (BI) perspective, this suggests an increase in EW
lignification (hence the inverse response shown in Fig. 7) during times
of early season drought, which also corresponds to an overall reduction
in RW. We also find that for EWBI the relationship with April SPEI after
first differencing is strong and stable, while LWBI shows no significant
response (LWBI response not shown). In fact, EWBI correlates sig-
nificantly (p < 0.05) to temperature over the entire span of the dry
season (Fig. 8), indicating that the warmer and therefore drier condi-
tions are during the winter dry season (December–April), the more
lignified the EW cells will be the following year. This has major im-
plications for the role of xylem morphology in mitigating the effects of
severe water and vapor pressure deficit (VPD) in order to protect plants

from cavitation, as will be discussed below. The ΔBI exhibits the
strongest correlation with prior autumn rainfall and prior November
SPEI, and also rivals RW for its correlation with April SPEI (Fig. 7).

Buckley et al. (2017) found that the QNFH RW indices were directly
correlated with spring hydroclimate over the central Vietnam region, a
relationship strong enough to allow for a statistically stable re-
construction of the standardized precipitation-evapotranspiration index
(SPEI, Vicente-Serrano et al., 2010) for the month of April. Although
the QNFH index captured a similar ENSO-reflective correlation with sea
surface temperature (SST) to Fokienia records from northern (Sano
et al., 2009, 2012) and southern Vietnam (Buckley et al., 2010; 2014),
respectively, a multi-decadal period of drought in the mid 18th century
(1740–1770) was not as persistently expressed. These authors attrib-
uted an apparently dampened response to this epic period of drought,
the so-called Strange Parallels Drought (Cook et al., 2010), to central
Vietnam’s autumn rainfall peak that is absent from the rest of Vietnam
(Buckley et al., 2017; Li et al., 2015). These authors hypothesized that
this regionally specific spike in rainfall for October and November
serves to effectively dampen the effects of an annual dry period (No-
vember to April) that is more strongly expressed in northern and
southern parts of Indochina. The proposed mechanism was the linkage
between East Asian Winter Monsoon (EAWM) years that are modulated
by strong El Niño years and their effect on the ensuing summer mon-
soon over central Vietnam (Chen et al., 2013). Hansen et al. (2017)
reconstructed October-November rainfall from a Douglas fir record
from a karst region of northern Vietnam and argued, as did Buckley
et al. (2017) for QNFH, that autumn rainfall served to precondition
trees before the long dry season.

Fig. 9. Comparison of ΔBI (left) and RW (right) with maximum temperature for each month from prior December to April of the current year, from top to bottom, and
for the entire 5-month season for the two centered plots.
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3.2. BI and RW as predictors of climate

A further comparison of ΔBI and RW against maximum temperature
across the span of the dry season from December to April (Fig. 9) shows
the evolution of a response to atmospheric drought that culminates in a
maximum inverse correlation with April, typically the month of highest
maximum temperature across mainland Southeast Asia. This tempera-
ture maximum precedes the onset to the summer monsoon during what
is the classic “shoulder season” of March-May, a time of transition from

winter to summer monsoons. This is the period of reconstruction of
hydroclimate from cypress records from northern (Sano et al., 2009)
and southern Vietnam (Buckley et al., 2010). The relationship between
RW/ΔBI and maximum temperature is sufficiently strong and stable to
allow for a Principal Components based reconstruction of winter
(Dec–Apr) maximum temperature based on current and prior year RW
and ΔBI that explains nearly 37% of the variance of the instrumental
data (Table 2). The actual and estimated values for split calibration
periods, along with the full reconstruction (1550–2013), are shown in

Table 2
Split-period calibration and verification statistics for the winter temperature reconstruction shown in Fig. 10, and as described in the text. The top two panels show
undifferenced and first differenced results for the calibration (verification) period of 1902–1959 (1960-2012). The bottom two panels reverse these two periods for
the same statistics. Note the much higher statistics for RE and CE for the first differenced data for both periods, reflecting greater fidelity at higher frequency. The
inclusion of DBI reduces the low-frequency variability of the predictor series, as discussed in the text.

Undifferenced Late Calibration (1960-2012) Verification (1902-1959)

Test Score T stat Prob. Score (v) T-stat (v) Prob. (v)

Equality of
means

0.000 0.000 0.99571 −0.115 −1.281 0.19696

Cross products
mean

0.194 2.736 0.00417 0.125 2.876 0.00283

Sign test 39+14- 3.297 0.00049 42+16- 3.283 0.00051
Pearson

correlation
r= 0.607 5.449 0.00000 r= 0.619 5.903 0.00000

Robust
correlation

r= 0.652 6.148 0.00000 r= 0.623 5.966 0.00000

Spearman
correlation

r= 0.616 5.588 0.00000 r= 0.596 5.561 0.00000

Kendall Tau t= 0.447 4.725 0.00000 t= 0.429 4.756 0.00000
Reduction of

error
0.368 0.372

Coefficient of
efficiency

0.368 0.342

First differenced Late Calibration (1960-2012) Verification (1902-1959)

Test Score T stat Prob. Score (v) T-stat (v) Prob. (v)

Equality of means −0.005 −0.031 0.97344 0.016 0.118 0.90184
Cross products mean 0.589 2.822 0.00337 0.403 5.416 0.00000
Sign test 41+11- 4.022 0.00003 49+8- 5.298 0.00000
Pearson correlation r= 0.747 7.937 0.00000 r= 0.753 8.485 0.00000
Robust correlation r= 0.753 8.092 0.00000 r= 0.761 8.709 0.00000
Spearman correlation r= 0.688 6.711 0.00000 r= 0.793 9.638 0.00000
Kendall Tau t= 0.517 5.413 0.00000 t=0.591 6.498 0.00000
Reduction of error 0.557 0.564
Coefficient of efficiency 0.557 0.564
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Spearman correlation r=0.616 5.588 0.00000 r= 0.596 5.561 0.00000
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Reduction of error 0.368 0.372
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Fig. 10. This is the first reconstruction of the winter climate over
Southeast Asia from tree rings, and offers a unique perspective on
monsoon variability as will be discussed below. A further examination
of the winter (Dec–Apr) climate response over land and sea (e.g.,
maximum air temperature and sea surface temperature, respectively, as
shown in Fig. 11) for RW, ΔBI and EWBI, reinforces the importance of
ENSO variability in the broader sense. This is consistent with prior
research on this species over its entire range (Buckley et al., 2010,
2014, 2017; Sano et al., 2009, 2012).

3.3. The physiological basis for lignification of earlywood

The BI measurements we present in this paper represent time-
varying degrees of lignification of tracheid cells in what we interpret to
be a response to drought and heat stress. It is therefore important to
understand the processes that exert control over the timing and mag-
nitude of the lignification response, and how this may affect the func-
tion of xylem. Tracheid cells in the xylem of conifers create tiny con-
duits (typically 5–80 μm in diameter, and about 7mm in length).
Within the xylem, water flows in a continuous water column between
the soil and the leaves through the open space within tracheid cells
known as the lumen (Dixon and Joly, 1895; Hacke et al., 2004; Hacke,
2015). According to the cohesion-tension theory, as water evaporates
from the leaves through the stomata, hydraulic tension pulls water up
to the leaves from the soil through the xylem, maintaining the hydraulic
conductance (Cochard et al., 2013). It is imperative for survival that
this water column remains intact because if the tension becomes too
great, such as under severe conditions of drought, the water column can
be broken by an embolism as air is pulled into the xylem, thus cutting
off the supply of water to the leaves (Zimmermann, 1983). Extensive
embolisms caused by high evaporative demand and low soil water
content may result in partial or complete tree mortality from cavitation,

hence species have evolved to stave off cavitation through a variety of
physiological responses (Larter et al., 2017). It is therefore possible that
the reduction of lumen size through increased lignification of cell walls,
as suggested in this study, constitutes an attempt to alleviate the risk of
cavitation through a reduction in lumen diameter. Such reduction
might be expected to reduce tension placed on the water column
through high evaporative demand, and to further prevent the collapse
or implosion of xylem cells due to negative pressure (Hacke et al.,
2001).

The anatomical construction of conifer xylem plays an important
role in the trade-offs between efficiency of water transport and hy-
draulic safety from cavitation. However, since it is leaf evapo-
transpiration that drives the movement of water through the xylem,
future research should be aimed at better understanding the entire
chain of processes between leaf and soil. The degree to which EWBI is
driven by the empty space of the lumen rather than the tracheid walls
requires further research. Since there is direct correlation between the
cell wall thickness and the diameter of the lumen of each cell, this is
something that can be measured directly, and is a logical follow up to
the current study. We present a very preliminary result in Fig. 12 for a
set of 10 rings of Fokienia hodginsii from southern Vietnam where we
plot the ratio between cell wall thickness and lumen diameter (CWT/
LD) for the entire ring against EWBI, and find that they are highly
correlated (r= 0.86, p= 0.001). This result lends support to our in-
terpretation of EWBI in this paper – that EWBI is reflecting actual
density of the cells, and that the variability in EW density is linked to
hydroclimate. A recent paper by Björklund et al. (2017) finds that for
Northern Hemisphere conifers there is a distinct difference between the
EW and LW density and their respective relationships to RW. For EW,
an increase in density corresponds to a reduction of overall RW, while
LW is positively correlated with RW. With regard to the current study,
maximum temperature, during the lead up to the annual monsoon

Fig. 10. Reconstruction (top) of Dec-Apr maximum temperature based on a PC regression model of RW and ΔBI for current and prior year. The calibration and
verification plots (bottom) for 1910–1960 (left) and 1960–2013 (right). The reconstruction explains nearly 37% of the variance of the temperature data.
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onset, is driving both an increase in EW density (i.e., a decrease in BI),
as well as a reduction in annual RW.

4. Conclusions

We present here what is, to our knowledge, the first attempt at
applying BI methodology to tropical trees, in this case on Vietnamese
cypress trees growing in central Vietnam. A subset of 29 cores from 20
trees was selected from a previously published collection of 71 cores
from 37 trees, and adequately captures the signal of the larger popu-
lation. Comparisons between RW, EWBI, LWBI and ΔBI and their cor-
responding relationships with several climate parameters indicate that
BI offers comparable strength of signal to RW, and may provide an
independent variable to include for climate reconstruction. An im-
portant result of this study is a reconstruction of winter

(December–April) maximum temperature for the Indochina Peninsula
that explains nearly 37% of the variance of the original data. However
for the study species (Fokienia hodginsii) at least, it is necessary to ac-
count for color changes that occur at the heartwood/sapwood
boundary. For this study we used ΔBI, which results in an apparent loss
of low frequency variability for our reconstruction (Fig. 10). We must
therefore endeavor to find alternative methods for overcoming trend
bias without sacrificing low frequency variability of our reconstruc-
tions. For the current study it is the variability of the EW that appears to
be most strongly responsive to climate, rather than the more commonly
used LW, and it is the severity of the annual dry season from December
to April that triggers the BI response of the EW. We are interpreting the
BI response as reflecting the true density of the EW cells, owing to the
relationship between thickening of cell walls and reduction of lumen
diameters in response to the threat of cavitation.

Fig. 11. Spatial correlation fields between RW (top), ΔBI (center) and EWBI (bottom) against maximum temperature over land from the CRU TS3.24.01 global
dataset and sea surface temperature (SST) from the Hadley Centre for Climate Research for the December to April winter season. All data were first differenced prior
to correlation over the period 1902–2013. Note the strong correlation over regions of related to ENSO, as noted by Buckley et al. (2010; 2014, 2017) for this species
in Vietnam.
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We suggest with this paper that the lignification of EW cells during
annual growth ring development might indicate a cavitation-avoidance
response by reducing the size of lumens in order to maintain the in-
tegrity of the water column between the roots and the stomata. We have
initiated research that aims to corroborate the results presented here,
by direct measurements of cell wall thickness and lumen diameters
from these same cores. It is clear from our study that BI relates to
seasonal climate variability, and the response of EWBI in particular
shows a very strong and coherent expression of ENSO-related varia-
bility across much of the planet (Fig. 11). Our database of cypress re-
cords extends from southern to northern Vietnam, and we are ex-
panding into Laos on the western side of the Annamite Range. By
combining RW and BI parameters there is great potential to produce the
most highly robust tree-ring reconstructions of climate yet seen from
the global tropics. We will continue to research the mechanisms of
xylem genesis within the context of the ecophysiology of the species,
and this should allow for mechanistic climate-growth models that are
more accurate than the traditional empirically derived reconstructions.

Acknowledgements

This research was funded by the National Science Foundation of the
USA research grants AGS 12-03818 and AGS 13-03976, with additional
funding from the Lamont-Doherty Earth Observatory’s Climate Center
and Climate and Life initiatives. We are grateful to the forest rangers
and staff at the various site locations from which we sampled
throughout Vietnam. There are no conflicts of interest for any of the
authors of this manuscript. All data generated from this project will be
made available upon request. Lamont-Doherty Contribution No. 8207.

References

Björklund, J.A., Gunnarson, B.E., Seftigen, K., Esper, J., Linderholm, H.W., 2014. Blue
intensity and density from northern Fennoscandian tree rings, exploring the potential
to improve summer temperature reconstructions with earlywood information. Clim.
Past 10, 877–885. http://dx.doi.org/10.5194/cp-10-877-2014.

Björklund, J., Gunnarson, B.E., Seftigen, K., Zhang, P., Linderholm, H.W., 2015. Using

adjusted blue intensity data to attain high-quality summer temperature information:
a case study from Central Scandinavia. Holocene 25 (3), 547–556.

Björklund, J., Seftigen, K., Schweingruber, F., Fonti, P., von Arx, G., Bryukhanova, M.V.,
Cuny, H.E., Carrer, M., Castagneri, D., Frank, D.C., 2017. Cell size and wall dimen-
sions drive distinct variability of earlywood and latewood density in Northern
hemisphere conifers. New Phytol. 216 (3), 728–740. http://dx.doi.org/10.1111/
nph/14639.

Briffa, K.R., Osborn, T.J., Schweingruber, F.H., Jones, P.D., Shiyatov, S.G., Vaganov, E.A.,
2002. Tree-ring width and density data around the Northern hemisphere: part 1, local
and regional climate signals. Holocene 12 (6), 737–757.

Briffa, K.R., Melvin, T.M., 2011. A closer look at regional curve standardization of tree-
ring records: justification of the need, a warning of some pitfalls, and suggested
improvements in its application. In: Hughes, M.K., Swetnam, T.W., Diaz, H.F. (Eds.),
Dendroclimatology. Springer, Netherlands, Dordrecht, pp. 113–145.

Buckley, B.M., Anchukaitis, K.J., Penny, D., Fletcher, R., Cook, E.R., Sano, M.,
Wichienkeeo, A., Minh, T.T., Hong, T.M., 2010. Climate as a contributing factor in
the demise of Angkor, Cambodia. Proc. Natl. Acad. Sci. 107 (15), 6748–6752.

Buckley, B.M., Fletcher, R., Wang, S.Y.S., Zottoli, B., Pottier, C., 2014. Monsoon extremes
and society over the past millennium on mainland Southeast Asia. Quat. Sci. Rev. 95,
1–19. http://dx.doi.org/10.1016/j.quascirev.2014.04.022.

Buckley, B.M., Stahle, D.K., Luu, H.T., Wang, S.Y.S., Nguyen, T.Q.T., Thomas, P., Le, C.N.,
Ton, T.M., 2017. Central Vietnam climate over the past five centuries from cypress
tree rings. Clim. Dyn. 48 (11–12), 3707–3723.

Campbell, R., McCarroll, D., Loader, N.J., Grudd, H., Robertson, I., Jalkanen, R., 2007.
Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy.
Holocene 17, 821–828. http://dx.doi.org/10.1177/0959683607080523.

Chen, W., Feng, J., Wu, R., 2013. Roles of ENSO and PDO in the link of the East Asian
winter monsoon to the following summer monsoon. J. Clim. 26 (2), 622–635.

Cochard, H., et al., 2013. Methods for measuring plant vulnerability to cavitation: a
critical review. J. Exp. Bot. 64 (15), 4779–4791.

Cook, E.R., 1985. A Time Series Analysis Approach to Tree-Ring Standardization. Ph.D.
Dissertation. University of Arizona, Tucson p. 171.

Cook, E.R., Kairiukstis, L., 1990. Methods of Dendrochronology. Springer, New York.
Cook, E.R., Peters, K., 1997. Calculating unbiased tree-ring indices for the study of cli-

matic and environmental change. Holocene 7 (3), 361–370.
Cook, E.R., Anchukaitis, K.J., Buckley, B.M., D’Arrigo, R.D., Jacoby, G.C., Wright, W.E.,

2010. Asian monsoon failure and megadrought during the last millennium. Science
328 (5977), 486–548.

D’Arrigo, R., Frank, D., Jacoby, G., Pederson, N., 2001. Spatial response to major volcanic
events in or about AD 536, 934 and 1258: frost rings and other dendrochronological
evidence from Mongolia and northern Siberia: comment on RB Stothers,‘Volcanic dry
fogs, climate cooling, and plague pandemics in Europe and the Middle East’(climatic
change, 42, 1999). Clim. Change 49 (1), 239–246.

D’Arrigo, R., Buckley, B.M., Kaplan, S., Woollett, J., 2003. Interannual to multidecadal
modes of Labrador climate variability inferred from tree rings. Clim. Dyn. 20,
219–228. http://dx.doi.org/10.1007/s00382-002-0275-3.

D’Arrigo, R., Wilson, R., Anchukaitis, K.J., 2013. Volcanic cooling signal in tree ring

Fig. 12. Comparison of (top) EWBI (dashed line) with the ratio between cell wall thickness and lumen area for the entire ring (solid line) for a 10-ring segment of a
Fokienia hodginsii core from central Vietnam, shown on the bottom.

B.M. Buckley et al. Dendrochronologia 50 (2018) 10–22

21

http://dx.doi.org/10.5194/cp-10-877-2014
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0010
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0010
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0010
http://dx.doi.org/10.1111/nph/14639
http://dx.doi.org/10.1111/nph/14639
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0020
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0020
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0020
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0025
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0025
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0025
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0025
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0030
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0030
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0030
http://dx.doi.org/10.1016/j.quascirev.2014.04.022
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0040
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0040
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0040
http://dx.doi.org/10.1177/0959683607080523
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0050
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0050
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0055
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0055
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0060
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0060
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0065
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0070
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0070
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0075
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0075
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0075
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0080
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0080
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0080
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0080
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0080
http://dx.doi.org/10.1007/s00382-002-0275-3
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0090


temperature records for the past millennium. J. Geophy. Res.: Atmos. 118 (16),
9000–9010.

Dixon, H.H., Joly, J., 1895. On the ascent of sap. Phil. Trans. R. Soc. B Biol. Sci. 186.
Dolgova, E., 2016. June–September temperature reconstruction in the Northern Caucasus

based on blue intensity data. Dendrochronologia 39, 17–23.
Esper, J., Büntgen, U., Luterbacher, J., Krusic, P., 2013. Testing the hypothesis of post-

volcanic missing rings in temperature sensitive dendrochronological data.
Dendrochronologia 31, 216–222.

Esper, J., Schneider, L., Smerdon, J.E., Schöne, B.R., Büntgen, U., 2015. Signals and
memory in tree-ring width and density data. Dendrochronologia 35, 62–70.

Filion, L., Payette, S., Gauthier, L., Boutin, Y., 1986. Light rings in subarctic conifers as a
dendrochronological tool. Quat. Res. 26 (2), 272–279.

Fritts, H.C., 1976. Tree Rings and Climate.
Fukazawa, K., 1992. Ultraviolet microscopy. In: Lin, S.Y., Dence, C.W. (Eds.), Methods in

Lignin Chemistry. Springer, Berlin, Heidelberg, pp. 110–121.
Gindl, W., 1999. Climatic Significance of Light Rings in Timberline spruce, Picea Abies,

Austrian Alps. Arctic, Antarctic, and Alpine Research. pp. 242–246.
Gindl, W., Grabner, M., Wimmer, R., 2000. The influence of temperature on latewood

lignin content in treeline Norway spruce compared with maximum density and ring
width. Trees Struct. Funct. 14, 409–414.

Hacke, U.G. (Ed.), 2015. Functional and Ecologycal Xylem Anatomy. Springer
International Publishing, Cham, Switzerland.

Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., 2001. Trends in
wood density and structure are linked to prevention of xylem implosion by negative
pressure. Oecologia 126, 457–461. http://dx.doi.org/10.1007/s004420100628.

Hacke, U.G., Sperry, J.S., Pittermann, J., 2004. Analysis of circular bordered pit function
II. Gymnosperm tracheids with torus-margo pit membranes. Am. J. Bot. 91 (3),
386–400.

Hansen, K.G., Buckley, B.M., Zottoli, B., D’Arrigo, R.D., Van Truong, V., Nguyen, D.T.,
Nguyen, H.X., 2017. Discrete seasonal hydroclimate reconstructions over northern
Vietnam for the past three and a half centuries. Clim. Change 145 (1-2), 177–188.

Hoffmann, W.A., Marchin, R.M., Abit, P., Lau, O.L., 2011. Hydraulic failure and tree
dieback are associated with high wood density in a temperate forest under extreme
drought. Glob. Change Biol. 17 (8), 2731–2742.

Jacoby, G.C., Workman, K.W., D’Arrigo, R.D., 1999. Laki eruption of 1783, tree rings, and
disaster for northwest Alaska inuit. Quat. Sci. Rev. 18 (12), 1365–1371.

Lange, P.W., 1954. The distribution of lignin in the cell wall of normal and reaction wood
from spruce and a few hardwoods. Sven. Papperstidn 57, 525–532.

Larsson, L.-Å, 2016. CDendro & CooRecorder Program Package for Tree Ring
Measurements and Crossdating of the Data, Version 8.1.1. http://www.cybis.se/
forfun/dendro.

Larter, M., Pfautsch, S., Domec, J.-C., Trueba, S., Nagalingum, N., Delzon, S., 2017.
Aridity drove the evolution of extreme embolism resistance and the radiation of
conifer genus Callitris. New Phytol. 215, 97–112. http://dx.doi.org/10.1111/nph.
14545.

Li, R., Wang, S.Y., Gillies, R.R., Buckley, B.M., Truong, L.H., Cho, C., 2015. Decadal os-
cillation of autumn precipitation in Central Vietnam modulated by the East
Pacific–North Pacific (EP–NP) teleconnection. Environ. Res. Lett. 10 (2), 024008.

Melvin, T.M., Briffa, K.R., 2008. A “signal-free” approach to dendroclimatic standardi-
sation. Dendrochronologia 26 (2), 71–86.

Melvin, T.M., Briffa, K.R., 2014. CRUST: software for the implementation of regional
chronology standardisation: part 1. Signal-free RCS. Dendrochronologia 32 (1), 7–20.

Melvin, T.M., Briffa, K.R., Nicolussi, K., Grabner, M., 2007. Time-varying-response
smoothing. Dendrochronologia 25, 65–69. http://dx.doi.org/10.1016/j.dendro.
2007.01.004.

Mork, E., 1960. The relationship between temperature, leader growth, and growth and
lignification of annual rings in Spruce. Meddelelser fra det Norske Skogsforsoksvesen
56, 227–261.

Muller, R.A., Curry, J., Groom, D., Jacobsen, R., Perlmutter, S., Rohde, R., Rosenfeld, A.,
Wickham, C., Wurtele, J., 2013. Decadal variations in the global atmospheric land
temperatures. J. Geophys. Res. Atmos. 118 (11), 5280–5286.

Rhode, R., Muller, R.A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., Wurtele, J.,
Groom, D., Wickham, C., 2013. A new estimate of the average earth surface land
temperature spanning 1753-2011. Geoinform. Geostat. 2013 (1), 1. http://dx.doi.
org/10.4172/2327-4581.1000101.

Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B.E., Loader, N.J., Young, G.H.F.,
Wilson, R., 2014. Blue intensity for dendroclimatology: should we have the blues?
Experiments from Scotland. Dendrochronologia 32, 191–204. http://dx.doi.org/10.
1016/j.dendro.2014.04.003.

Rydval, M., Gunnarson, B.E., Loader, N.J., Cook, E.R., Druckenbrod, D.L., Wilson, R.,

2017a. Spatial reconstruction of Scottish summer temperatures from tree rings. Int. J.
Climatol. 7 (3), 1540–1556. http://dx.doi.org/10.1002/joc.4796.

Rydval, M., Loader, N.J., Gunnarson, B.E., Druckenbrod, D.L., Linderholm, H.W.,
Moreton, S.G., Wood, C.V., Wilson, R., 2017b. Reconstructing 800 years of summer
temperatures in Scotland from tree rings. Clim. Dyn. 1–24.

Sano, M., Buckley, B.M., Sweda, T., 2009. Tree-ring based hydroclimate reconstruction
over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought
and tropical Pacific influence. Clim. Dyn. 33 (2–3), 331.

Sano, M., Xu, C., Nakatsuka, T., 2012. A 300‐year Vietnam hydroclimate and ENSO
variability record reconstructed from tree ring δ18O. J. Geophys. Res. Atmos. 117
(D12).

Schweingruber, F.H., 2012. Tree Rings: Basics and Applications of Dendrochronology.
Springer Science & Business Media 266 pp.

Szeicz, J.M., 1996. White spruce light rings in northwestern Canada. Arctic Alpine Res.
184–189.

Starheim, C.C., Smith, D.J., Prowse, T.D., 2013. Dendrohydroclimate reconstructions of
july–august runoff for two nival‐regime rivers in west central British Columbia.
Hydrol. Process. 27 (3), 405–420.

Trouet, V., Van Oldenborgh, G.J., 2013. KNMI climate explorer: a web-based research
tool for high-resolution paleoclimatology. Tree Ring Res. 69 (1), 3–13.

Harris, I.C., Jones, P.D., 2017. UEACRU; CRU TS3.24.01: Climatic Research Unit (CRU)
Time-Series (TS) Version 3.24.01 of High Resolution Gridded Data of Month-by-
month Variation in Climate (Jan. 1901- Dec. 2015). Centre for Environmental Data
Analysis 03/2017.

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought
index sensitive to global warming: the standardized precipitation evapotranspiration
index. J. Clim. 23 (7), 1696–1718.

Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Beguería, S., Trigo, R., López-Moreno,
J.I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E.,
2013. Response of vegetation to drought time-scales across global land biomes. Proc.
Natl. Acad. Sci. 110 (1), 52–57.

Vincent, J.F., 1999. From cellulose to cell. J. Exp. Biol. 202 (23), 3263–3268.
Waito, Justin, Conciatori, France, Tardif, Jacques C., 2013. Frost rings and white early-

wood rings in Picea mariana trees from the boreal plains, central Canada. IAWA J. 34
(1), 71–87.

Wang, S.Y.S., Promchote, P., Truong, L.H., Buckley, B., Li, R., Gillies, R., Trung, N.T.Q.,
Guan, B., Minh, T.T., 2014. Changes in the autumn precipitation and tropical cyclone
activity over Central Vietnam and its East Sea. Vietnam J. Earth Sci. 36 (4), 489–496.

Wigley, T.M., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time
series, with applications in dendroclimatology and hydrometeorology. J. Climate
Appl. Meteorol. 23 (2), 201–213.

Wilson, R.J.S., Luckman, B.H., 2003. Dendroclimatic reconstruction of maximum summer
temperatures from upper tree-line sites in interior British Columbia. Holocene 13 (6),
853–863.

Wilson, R., Rao, R., Rydval, M., Wood, C., Larsson, L.Å., Luckman, B.H., 2014. Blue in-
tensity for dendroclimatology: the BC blues: a case study from British Columbia,
Canada. Holocene 24 (11), 1428–1438.

Wilson, R., Anchukaitis, K., Briffa, K., Büntgen, U., Cook, E., Arrigo, R.D.’, Davi, N., Esper,
J., Frank, D., Gunnarson, B., Hegerl, G., Klesse, S., Krusic, P., Linderholm, H., Myglan,
V., Peng, Z., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zorita, E., 2016. Last
millennium northern hemisphere summer temperatures from tree rings: part I: the
long term context. Quat. Sci. Rev. 134, 1–18.

Wilson, R., Wilson, D., Rydval, M., Crone, A., Büntgen, U., Clark, S., Ehmer, J., Forbes, E.,
Fuentes, M., Gunnarson, B.E., Linderholm, H.W., 2017a. Facilitating tree-ring dating
of historic conifer timbers using blue intensity. J. Archaeol. Sci. 78, 99–111.

Wilson, R., D’Arrigo, R., Andreu-Hayles, L., Oelkers, R., Wiles, G., Anchukaitis, K., Davi,
N., 2017b. Blue Intensity based experiments for reconstructing North Pacific tem-
peratures along the Gulf of Alaska. EGU General Assembly Conference Abstracts Vol.
19http://dx.doi.org/10.5194/cp-2017-26. (p. 7716).

Xiao, S.C., Xiao, H.L., Peng, X.M., Tian, Q.Y., 2014. Daily and seasonal stem radial activity
of Populus euphratica and its association with hydroclimatic factors in the lower
reaches of China’s Heihe river basin. Environ. Earth Sci. 72 (2), 609–621.

Yan, L., Li, W., Yang, J., Zhu, Q., 2004. Direct visualization of straw cell walls by AFM.
Macromol. Biosci. 4 (2), 112–118.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., Kitoh, A., 2012.
APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia
based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 93 (9), 1401–1415.

Zimmermann, M.H., 1983. Xylem Structure and the Ascent of Sap. Available at:.
Springer Berlin Heidelberg, Berlin, Heidelberg. http://link.springer.com/10.1007/
978-3-662-22627-8.

B.M. Buckley et al. Dendrochronologia 50 (2018) 10–22

22

http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0090
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0090
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0095
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0100
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0100
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0105
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0105
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0105
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0110
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0110
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0115
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0115
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0120
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0125
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0125
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0130
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0130
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0135
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0135
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0135
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0140
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0140
http://dx.doi.org/10.1007/s004420100628
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0150
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0150
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0150
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0155
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0155
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0155
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0160
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0160
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0160
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0165
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0165
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0170
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0170
http://www.cybis.se/forfun/dendro
http://www.cybis.se/forfun/dendro
http://dx.doi.org/10.1111/nph.14545
http://dx.doi.org/10.1111/nph.14545
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0185
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0185
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0185
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0190
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0190
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0195
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0195
http://dx.doi.org/10.1016/j.dendro.2007.01.004
http://dx.doi.org/10.1016/j.dendro.2007.01.004
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0205
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0205
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0205
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0210
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0210
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0210
http://dx.doi.org/10.4172/2327-4581.1000101
http://dx.doi.org/10.4172/2327-4581.1000101
http://dx.doi.org/10.1016/j.dendro.2014.04.003
http://dx.doi.org/10.1016/j.dendro.2014.04.003
http://dx.doi.org/10.1002/joc.4796
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0230
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0230
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0230
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0235
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0235
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0235
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0240
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0240
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0240
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0245
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0245
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0250
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0250
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0255
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0255
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0255
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0260
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0260
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0265
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0265
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0265
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0265
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0270
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0270
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0270
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0275
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0275
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0275
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0275
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0280
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0285
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0285
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0285
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0290
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0290
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0290
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0295
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0295
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0295
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0300
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0300
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0300
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0305
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0305
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0305
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0310
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0310
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0310
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0310
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0310
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0315
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0315
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0315
http://dx.doi.org/10.5194/cp-2017-26
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0325
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0325
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0325
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0330
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0330
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0335
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0335
http://refhub.elsevier.com/S1125-7865(17)30126-1/sbref0335
http://link.springer.com/10.1007/978-3-662-22627-8
http://link.springer.com/10.1007/978-3-662-22627-8

	Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective
	Introduction
	Materials and methods
	Site description
	Core preparation
	Measuring Blue intensity from scanned images
	Standardizing growth indices
	Climate data and analyses

	Results and discussion
	Climate response of Fokienia hodginsii BI parameters
	BI and RW as predictors of climate
	The physiological basis for lignification of earlywood

	Conclusions
	Acknowledgements
	References




