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Abstract. Achieving fully homomorphic encryption was a longstanding
open problem in cryptography until it was resolved by Gentry in 2009.
Soon after, several homomorphic encryption schemes were proposed. The
early homomorphic encryption schemes were extremely impractical, but
recently new implementations, new data encoding techniques, and a bet-
ter understanding of the applications have started to change the situa-
tion. In this paper we introduce the most recent version (v2.1) of Simple
Encrypted Arithmetic Library - SEAL, a homomorphic encryption li-
brary developed by Microsoft Research, and describe some of its core
functionality.

1 Introduction

In many traditional encryption schemes (e.g. RSA, ElGamal, Paillier)
the plaintext and ciphertext spaces have a tremendous amount of alge-
braic structure, but the encryption and decryption functions either do
not respect the algebraic structure at all, or respect only a part of it.
Many schemes, such as ElGamal (resp. e.g. Paillier), are multiplicatively
homomorphic (resp. additively homomorphic), but this restriction to one
single algebraic operation is a very strong one, and the most interesting
applications would instead require a ring structure between the plaintext
and ciphertext spaces to be preserved by encryption and decryption. The
first such encryption scheme was presented by Craig Gentry in his fa-
mous work [22], and since then researchers have introduced a number of
new and more efficient fully homomorphic encryption schemes.

The early homomorphic encryption schemes were extremely impractical,
but recently new implementations, new data encoding techniques, and
a better understanding of the applications have started to change the
situation. In 2015 we released the Simple Encrypted Arithmetic Library -
SEAL [19] with the goal of providing a well-engineered and documented
homomorphic encryption library, with no external dependencies, that
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would be equally easy to use both by experts and by non-experts with
little or no cryptographic background.
SEAL is written in C++11, and contains a .NET wrapper library for the
public API. It comes with example projects demonstrating key features,
written both in C++ and in C#. SEAL compiles and is tested on modern
versions of Visual Studio and GCC. In this paper we introduce the most
recent version, SEAL v2.1, and describe some of its core functionality.
The library is publicly available at

http://sealcrypto.codeplex.com

and is licensed under the Microsoft Research License Agreement.

1.1 Related Work

A number of other libraries implementing homomorphic encryption exist,
e.g. HElib [2] and Λ ◦ λ [18]. The FV scheme has been implemented in
[9, 1], both of which use the ideal lattice library NFLlib [31]. Perhaps
the most comparable work to SEAL is the C++ library HElib [2] which
implements the BGV homomorphic encryption scheme [12].
A comparison of popular homomorphic encryption schemes, including
BGV and FV, was presented by Costache and Smart in [14]. An compar-
ison of the implementations, respectively, of BGV as in HElib and of FV
as in SEAL would be very interesting, but appears challenging. One rea-
son for this is that the documentation available for HElib [24, 25, 26] does
not in general make clear how to select optimal parameters for perfor-
mance, and in [26, Appendix A] it is noted ‘[t]he BGV implementation in
HElib relies on a myriad of parameters ... it takes some experimentation
to set them all so as to get a working implementation with good perfor-
mance’. On the other hand, we know better how to select good parame-
ters for performance for SEAL (see Section 4 below). Such a comparison
is therefore deferred to future work.

2 Notation

We use b·c, d·e, and b·e to denote rounding down, up, and to the nearest
integer, respectively. When these operations are applied to a polynomial,
we mean performing the corresponding opearation to each coefficient sep-
arately. The norm ‖ · ‖ always denotes the infinity norm. We denote the
reduction of an integer modulo t by [·]t. This operation can also be ap-
plied to polynomials, in which case it is applied to every integer coefficient
separately. The reductions are always done into the symmetric interval
[−t/2, t/2). loga denotes the base-a logarithm, and log always denotes
the base-2 logarithm. Table 1 below lists commonly used parameters,
and in some cases their corresponding names in SEAL.

3 Implementing the Fan-Vercauteren Scheme

In this section we present our implementation of the Fan-Vercauteren
(FV) scheme [20].

http://sealcrypto.codeplex.com


Parameter Description Name in SEAL

q Modulus in the ciphertext
space (coefficient modulus) coeff_modulus

t Modulus in the plaintext
space (plaintext modulus) plain_modulus

n A power of 2

xn + 1 The polynomial modulus
which specifies the ring R poly_modulus

R The ring Z[x]/(xn + 1)

Ra The ring Za[x]/(xn + 1)

w A base into which ciphertext
elements are decomposed
during relinearization

logw decomposition_bit_count

` There are
`+ 1 = blogw qc+ 1
elements in each component
of each evaluation key

δ Expansion factor in the ring R
(δ ≤ n)

∆ Quotient on division of
q by t, or bq/tc

rt(q) Remainder on division of
q by t, i.e. q = ∆t+ rt(q),
where 0 ≤ rt(q) < t

χ Error distribution (a truncated
discrete Gaussian distribution)

σ Standard deviation of χ noise_standard_deviation

B Bound on the distribution χ noise_max_deviation

Table 1: Notation used throughout this document.

As described in [20], the FV scheme consists of the following algorithms:
SecretKeyGen, PublicKeyGen, EvaluateKeyGen, Encrypt, Decrypt, Add,
Mul, and Relin (version 1). In SEAL we generalize the scheme a little
bit, as will be discussed below.

3.1 Plaintext Space and Encodings

In FV the plaintext space is the polynomial quotient ringRt = Zt[x]/(xn+
1). The homomorphic addition and multiplication operations on cipher-
texts (that will be described later) will carry through the encryption
to addition and multiplications operations in Rt. Plaintext polynomials
are represented by instances of the BigPoly class in SEAL. In order to
encrypt integers or rational numbers, one needs to encode them into el-
ements of Rt. SEAL provides a few different encoders for this purpose
(see Section 5).



3.2 Ciphertext Space

Ciphertexts in FV are vectors of polynomials in Rq. These vectors con-
tain at least two polynomials, but grow in size in homomorphic multi-
plication operations, unless relinearization is performed. Homomorphic
additions are performed by computing a component-wise sum of these
vectors; homomorphic multiplications are slightly more complicated and
will be described below. Ciphertexts are represented by instances of the
BigPolyArray class in SEAL.
Textbook-FV only allows ciphertexts of size 2, resulting in minor changes
to the homomorphic operations compared to their original description
in [20]. We will describe below the algorithms that are implemented
in SEAL.

3.3 Encryption and Decryption

Ciphertexts in SEAL are encrypted exactly as described in [20]. A SEAL
ciphertext ct = (c0, . . . , ck) is decrypted by computing[⌊

t

q
[ct(s)]q

⌉]
t

=

[⌊
t

q

[
c0 + · · ·+ cks

k
]
q

⌉]
t

.

Encryption are decryption are implemented in SEAL by the Encryptor

and Decryptor classes, respectively.

3.4 Addition

Suppose two SEAL ciphertexts ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk)
encrypt plaintext polynomials m1 and m2, respectively. Suppose WLOG
j ≤ k. Then

ctadd = ([c0 + d0]q, . . . , [cj + dj ]q, dj+1, . . . , dk)

encrypts [m1 +m2]t.
In SEAL homomorphic addition is implemented as Evaluator::add.
Similarly, homomorphic subtraction is implemented as Evaluator::sub.

3.5 Multiplication

Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two SEAL cipher-
texts of sizes j+1 and k+1, respectively. The output of Mul(ct1, ct2) is a
ciphertext ctmult = (C0, C1, . . . , Cj+k) of size j+k+ 1. The polynomials
Cm ∈ Rq are computed as

Cm =

[⌊
t

q

( ∑
r+s=m

crds

)⌉]
q

.

In SEAL we define the function Mul (or rather family of functions) to
mean this generalization of the Textbook-FV multiplication operation
(without relinearization). It is implemented as Evaluator::multiply.



Algorithms for polynomial multiplication. Multiplication of
polynomials in Z[x]/(xn+ 1) is the most computationally expensive part
of Mul, which in SEAL we implement using Nussbaumer convolution [16].
Note that here polynomial multiplication needs to be performed with
integer coefficients, whereas in other homomorphic operations it is done
modulo q, which is significantly easier, and can always be done more
efficiently using the Number Theoretic Transform (NTT).
It is also possible to implement a Karatsuba-like trick to reduce the num-
ber of calls to Nussbaumer convolution, reducing the number of polyno-
mial multiplications to multiply two ciphertexts of sizes k1 and k2 from
k1k2 to ck1k2, where c ∈ (0, 1) is some constant depending on k1 and k2.
For example, if k1 = k2 = 2, then c = 3/4, which is currently the only
case implemented in SEAL.

3.6 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to
(at least) 2 after it has been increased by multiplications as was described
in Section 3.5. In other words, given a size k + 1 ciphertext (c0, . . . , ck)
that can be decrypted as was shown in Section 3.3, relinearization is sup-
posed to produce a ciphertext (c′0, . . . , c

′
k−1) of size k, or—when applied

repeatedly—of any size at least 2, that can be decrypted using a smaller
degree decryption function to yield the same result. This conversion will
require a so-called evaluation key (or keys) to be given to the evaluator,
as we will explain below.
Let w denote a power of 2, and let `+1 = blogw qc+1 denote the number
of terms in the decomposition into base w of an integer in base q. We will
also decompose polynomials in Rq into base-w components coefficient-
wise, resulting in ` + 1 polynomials. Now consider the EvaluateKeyGen

(version 1) algorithm in [20], which for every i ∈ {0, . . . , `} samples

ai
$← Rq, ei ← χ, and outputs the vector

evk2 =
[(

[−(a0s+ e0) + w0s2]q, a0
)
, . . . ,

(
[−(a`s+ e`) + w`s2]q, a`

)]
.

In SEAL we generalize this to j-power evaluation keys by sampling sev-
eral ai and ei as above, and setting instead

evkj =
[(

[−(a0s+ e0) + w0sj ]q, a0
)
, . . . ,

(
[−(a`s+ e`) + w`sj ]q, a`

)]
.

Suppose we have a set of evaluation keys evk2, . . . , evkk. Then relin-
earization converts (c0, c1, . . . , ck) into (c′0, c

′
1, . . . , c

′
k−1), where

c′0 = c0 +
∑̀
i=0

evkk[i][0]c
(i)
k , c′1 = c1 +

∑̀
i=0

evkk[i][1]c
(i)
k ,

and c′j = cj for 2 ≤ j ≤ k − 1.
Note that in order to generate evaluation keys access to the secret key is
needed. This means that the owner of the secret key must generate an
appropriate number of evaluation keys and share them with the evalu-
ating party in advance of the relinearization computation, which further



means that the evaluating party needs to inform the owner of the se-
cret key beforehand whether or not they intend to relinearize, and if so,
by how many steps. Note that if they choose to relinearize after every
multiplication, only evk2 will be needed. SEAL implements the above
operation as Evaluator::relinearize.

3.7 Other Homomorphic Operations

In addition to the operations described above, SEAL implements a few
other useful operations, such as negation (Evaluator::negate), multipli-
cation by a plaintext polynomial (Evaluator::multiply_plain), addi-
tion (Evaluator::add_plain) and subtraction (Evaluator::sub_plain)
of a plaintext polynomial, noise-optimal product of several ciphertexts
(Evaluator::multiply_many), exponentiation with relinearization at ev-
ery step (Evaluator:exponentiate), and a sum of several ciphertexts
(Evaluator::add_many).
SEAL has a fast algorithm for computing the product of a ciphertext with
itself. The difference is only in computational complexity, and the noise
growth behavior is the same as in calling Evaluator::multiply with a
repeated input parameter. This is implemented as Evaluator::square.

3.8 Key Distribution

In Textbook-FV the secret key is a polynomial sampled uniformly fromR2,
i.e. it is a polynomial with coefficients in {0, 1}. In SEAL we instead sam-
ple the key uniformly from R3, i.e. we use coefficients {−1, 0, 1}.

4 Encryption Parameters

Everything in SEAL starts with the construction of an instance of a con-
tainer that holds the encryption parameters (EncryptionParameters).
These parameters are:
• poly_modulus: a polynomial xn + 1;
• coeff_modulus: an integer modulus q;
• plain_modulus: an integer modulus t;
• noise_standard_deviation: a standard deviation σ;
• noise_max_deviation: a bound for the error distribution B;
• decomposition_bit_count: the logarithm logw of w (Section 3.6);
• random_generator: a source of randomness.

Some of these parameters are optional, e.g. if the user does not specify σ
or B they will be set to default values. If the the decomposition bit count
is not set (to a non-zero value), SEAL will assume that no relinearization
is going to be performed, and prevents the creation of any evaluation
keys. If no randomness source is given, SEAL will automatically use std

::random_device.
In this section we will describe the encryption parameters and their im-
pact on performance. We will discuss security in Section 7. In Section 4.4
we will discuss the automatic parameter selection tools in SEAL, which
can assist the user in determining (close to) optimal encryption param-
eters for many types of computations.



4.1 Default Values

The constructor of EncryptionParameters sets the values for σ and B
by default to the ones returned by the static functions

ChooserEvaluator::default_noise_standard_deviation(), and

ChooserEvaluator::default_noise_max_deviation() .

Currently these default values are set to 3.19 and 15.95, respectively.
As we also mentioned above, unless they want to use relinearization,
the user does not need to set decomposition_bit_count. By default the
constructor will set its value to zero, which will prevent the construction
of evaluation keys.
SEAL comes with a list of pairs (n, q) that are returned by the static
function

ChooserEvaluator::default_parameter_options()

as a keyed list (std::map). The default (n, q) pairs are presented in Ta-
ble 2.

n q

1024 235 − 214 + 211 + 1
2048 260 − 214 + 1
4096 2116 − 218 + 1
8192 2226 − 226 + 1
16384 2435 − 233 + 1

Table 2: Default pairs (n, q).

4.2 Polynomial Modulus

The polynomial modulus (poly_modulus) is required to be a polynomial
of the form xn + 1, where n is a power of 2. This is both for security and
performance reasons (see Section 7).
Using a larger n decreases performance. On the other hand, it allows
for a larger q to be used without decreasing the security level, which in
turn increases the noise ceiling and thus allows for larger t to be used. A
large value of t allows the scheme to support larger integer arithmetic.
When CRT batching is used (Section 5.3), a larger n will allow for more
elements of Zt to be batched into one plaintext.

4.3 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the
coefficient modulus q affects two things: the upper bound on the inherent



noise that a ciphertext can contain4 (see Section 6), and the security
level5 (see Section 7.2 and references therein).
In principle we can take q to be any integer, but taking q to be of special
form provides performance benefits. First, if q is of the form 2A − B,
where B is an integer of small absolute value, then modular reduction
modulo q can be sped up, yielding overall better performance.
Second, if q is a prime with 2n|(q − 1), then SEAL can use the Number
Theoretic Transform (NTT) for polynomial multiplications, resulting in
huge performance benefits in encryption, relinearization and decryption.
SEAL uses David Harvey’s algorithm for NTT, as described in [27], which
additionally requires that 4q ≤ β, where β denotes the word size of q:

β = 264dlog(q)/64e .

Third, if t|(q − 1) (i.e. rt(q) = 1), then the noise growth properties are
improved in certain homomorphic operations (recall Table 3).
The default parameters in Table 2 satisfy all of these guidelines. They
are prime numbers of the form 2A−B where B is much smaller than 2A.
They are congruent to 1 modulo 2n, and not too close to the word size
boundary. Finally, rt(q) = 1 for t that are reasonably large powers of 2,
for example the default parameters for n = 4096 provide good perfor-
mance when t is a power of 2 up to 218.
We note that when using CRT batching (see Section 5.3) it will not be
possible to have t be a power of 2, as t needs to instead be a prime of a
particular form. In this case the user can try to choose the entire triple
(n, q, t) simultaneously, so that t = 1 (mod 2n) and q satisfies as many
of the good properties listed above as possible.

4.4 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation,
SEAL provides an automatic parameter selection tool. It consists of two
parts: a Simulator component that simulates noise growth in homomor-
phic operations using the estimates of Table 3, and a Chooser component,
which estimates the growth of the coefficients in the underlying plaintext
polynomials, and uses Simulator to simulate noise growth. Chooser also
provides tools for computing an optimized parameter set once it knows
what kind of computation the user wishes to perform.

5 Encoding

One of the most important aspects in making homomorphic encryption
practical and useful is in using an appropriate encoder for the task at
hand. Recall that plaintext elements in the FV scheme are polynomials
in Rt. In typical applications of homomorphic encryption, the user would
instead want to perform computations on integers or rational numbers.

4 Bigger q means higher noise bound (good).
5 Bigger q means lower security (bad).



Encoders are responsible for converting the user’s inputs to polynomials
in Rt by applying an encoding map. In order for the operations on cipher-
texts to reflect the operations on the inputs, the encoding and decoding
maps need to respect addition and multiplication.

5.1 Integer Encoder

In SEAL the integer encoder is used to encode integers into plaintext
polynomials. Despite its name, the integer encoder is really a family of
encoders, one for each integer base β ≥ 2.
When β = 2, the idea of the integer encoder is to encode an integer a in
the range [−(2n− 1), 2n− 1] as follows. It forms the (up to n-bit) binary
expansion of |a|, say an−1 . . . a1a0, and outputs the polynomial

IntegerEncode(a, β = 2) = sign(a) ·
(
an−1x

n−1 + . . .+ a1x+ a0
)
.

Decoding (IntegerDecode) amounts to evaluating a plaintext polynomial
at x = 2. It is clear that in good conditions (see below) the integer
encoder respects addition and multiplication:

IntegerDecode [IntegerEncode(a) + IntegerEncode(b)] = a+ b ,

IntegerDecode [IntegerEncode(a) · IntegerEncode(b)] = ab .

When β is set to some integer larger than 2, instead of a binary expansion
(as was done in the example above) a base-β expansion is used. SEAL
uses a balanced base-β representation to keep the absolute values of the
coefficients as small as possible [19].
Note that the infinity norm of a freshly encoded plaintext polynomial is
bounded by β/2, and the degree of the polynomial encoding a is bounded
by dlogβ(|a|)e. However, as homomorphic operations are performed on
the encryptions, the infinity norm and degree will both grow. When the
degree becomes greater than or equal to n, or the infinity norm greater
than t/2, the polynomial will “wrap around” in Rt, yielding an incorrect
result. In order to get the correct result, one needs to choose n and t
to accommodate the largest plaintext polynomial appearing during the
computation. For a very nice estimate on how large n and t need to be,
we refer the reader to [15].
The integer encoder is available in SEAL through the IntegerEncoder

class. Its constructor will require both the plain_modulus and the base
β as parameters. If no base is given, the default value β = 2 is used.

5.2 Fractional Encoder

There are several ways for encoding rational numbers in SEAL. One way
is to simply scale all rational numbers to integers, encode them using
the integer encoder described above, and record the scaling factor in the
clear as a part of the ciphertext. We then need to keep track of the
scaling during computations, which results in some inefficiency. Here we
describe what we call the fractional encoder, which has the benefit of
automatically keeping track of the scaling. Just like the integer encoder,



the fractional encoder is really a family of encoders, parametrized by an
integer base β ≥ 2. The function of this base is exactly the same as in
the integer encoder, and we will only explain how the fractional encoder
works when β = 2.
Consider the rational number 5.8125, with the finite binary expansion

5.875 = 22 + 20 + 2−1 + 2−2 + 2−4 .

First we take the integer part and encode it as usual with the integer en-
coder, obtaining the polynomial IntegerEncode(5, β = 2) = x2+1. Then
we take the fractional part, add n (degree of the polynomial modulus) to
each exponent, and convert it into a polynomial by changing the base 2
into the variable x. Finally we flip the signs of each of the terms, in this
case obtaining −xn−1 − xn−2 − xn−4. This defines FracEncode(r, β = 2)
for rational numbers r ∈ [0, 1). For any rational number r with a finite
binary expansion, we set

FracEncode(r, β = 2) = sign(r)· [IntegerEncode(b|r|c, β = 2)

+FracEncode({|r|} , β = 2)] ,

where the fractional part is denoted by {·}. Concluding our example,
FracEncode(5.8125, β = 2) yields the polynomial −xn−1−xn−2−xn−4 +
x2 + 1. Decoding works by reversing the steps described above. It is easy
to see that FracEncode respects both addition and multiplication [19].
The fractional encoder is implemented by the class FractionalEncoder.
Its constructor will take as parameters the plain_modulus, the base β,
and positive integers nf and ni with nf + ni ≤ n, which describe how
many coefficients are reserved for the fractional and integer parts, re-
spectively.6 If no base is given, the default value β = 2 is used.

Comparing the two fractional encoding approaches. The
scale-to-integer technique mentioned above, and our fractional encoder,
have similar performance and limitations, but are not equivalent. In some
cases the fractional encoder is strictly better.
For example, suppose the homomorphic operations result in some can-
cellations in the underlying plaintext. Since the level of a scaled en-
coder never drops, it does not recognize this cancellation, and once the
level reaches its maximum (n coefficients), decoding will fail. For the
fractional encoder, however, cancellations take care of themselves, per-
mitting potentially more homomorphic operations. As a concrete ex-
ample, consider n = 8, base β = 2, and the computation (12 · 0.25)3.
With the scale-to-integer technique, a rational number a/2i is encoded
as (p(x), i), where p(x) is an integer encoding of a. Hence, the inputs
are encoded as (x3 + x2, 0), and (0, 2). The result of the computation is
(3x7 + x6 − x − 3, 6), which does not decode to the correct result since
the first entry wrapped around xn + 1. On the other hand, with the
fractional encoder, the two inputs are encoded as x3 + x2 and −x6, and
the resulting plaintext polynomial is equal to (x + 1)3, which decodes
correctly.

6 More precisely, nf describes how many coefficients are used when truncating possibly
infinite base-β expansions of rational numbers.



Remark 1. In [15] the authors claimed that the two fractional encoding
methods above are equivalent, by claiming the existence of an isomor-
phism between the underlying rings. We would like to point out that
their object R1 does not satisfy the distribution law, hence is not a ring.
This was likely an innocent typo (indeed, with a sign mistake fixed R1

does become a ring), but even then the map φ : R1 → R2 in their paper
is only a surjective homomorphism, and not injective, due to the fact
that encoding is not unique: e.g. (xi, i) encodes the integer 1 for all i.

5.3 CRT Batching

The CRT (Chinese Remainder Theorem) batching technique allows up
to n integers modulo t to be packed into one plaintext polynomial, and
operating on those integers in a SIMD (Single Instruction, Multiple Data)
manner. For more details and applications we refer the reader to [11, 36,
19].
Batching provides the maximal number of plaintext slots when the plain-
text modulus t is chosen to be a prime number and congruent to 1
(mod 2n), which we assume to be the case. Then there exists (see e.g. [19])
a ring isomorphism Decompose : Rt →

∏n−1
i=0 Zt, whose inverse we denote

by Compose. In SEAL, Compose and Decompose are computed using a
negacyclic variant of the Number Theoretic Transform (NTT).
When used correctly, batching can provide an enormous performance
improvement over the other encoders. Note, however, that for computa-
tions on encrypted integers rather than on integers modulo t one needs
to ensure that the values in the individual slots never wrap around t
during the computation.
SEAL provides all of the batching-related tools in the PolyCRTBuilder

class.

6 Inherent Noise

Definition 1 (Inherent noise). Let ct = (c0, c1, . . . , ck) be a cipher-
text encrypting the message m ∈ Rt. Its inherent noise is the unique
polynomial v ∈ R with smallest infinity norm such that

ct(s) = c0 + c1s+ · · ·+ cks
k = ∆m+ v + aq

for some polynomial a.

It is proved in [20], that the function (or family of functions) Decrypt, as
presented in Section 3.3, correctly decrypts a ciphertext as long as the
inherent noise satisfies ‖v‖ < ∆/2.

6.1 Overview of Noise Growth

We present in Table 3 probabilistic estimates of noise growth in some
of the most common homomorphic operations. Even though these are
estimates, they are simple and work well in practice. For input ciphertexts
cti we denote their respective inherent noises by vi. When there is a single
encrypted input ct we denote its inherent noise by v.



Operation Input description Estimated output noise

Encrypt Plaintext m ∈ Rt 2B
√

2n/3

Negate Ciphertext ct ‖v‖
Add/Sub Ciphertexts ct1 and ct2 ‖v1‖+ ‖v2‖+ rt(q)

AddPlain/ Ciphertext ct and ‖v‖+ rt(q)
SubPlain plaintext m

MultiplyPlain Ciphertext ct and N‖m‖ (‖v‖+ rt(q)/2)
plaintext m with N
non-zero coefficients

Multiply Ciphertexts ct1 and ct2 t (‖v1‖+ ‖v2‖+ rt(q))

(with of sizes j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉j1+j2−1

2j1+j2

integer encoders)

Multiply Ciphertexts ct1 and ct2 nt (‖v1‖+ ‖v2‖+ rt(q))

(with of sizes j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉j1+j2−1

2j1+j2

PolyCRTBuilder)

Square Ciphertext ct of size j Same as Multiply(ct, ct)

Relinearize Ciphertext ct of size K ‖v‖
and target size L < K +(K − L)

√
nB(`+ 1)w

Table 3: Noise estimates for homomorphic operations in SEAL.

6.2 Maximal Levels for Default Parameters

In Table 4 we give the maximal supported levels for various power-of-2
plaintext moduli, only taking the noise growth into account. The coeffi-
cient moduli are chosen to be the defaults, given in Table 2. We chose to
use a uniformly random polynomial in Rt as the plaintext.

n log2 q log2 t Max. level

210 35 6 1

211 60
7 2
16 1

212 116
1 6
8 4
20 2

213 226
8 8
20 5
30 3

214 435
8 15
32 7
64 4

Table 4: Maximal levels for different choices of
polynomial modulus and plaintext modulus.



7 Security of FV

7.1 Ring-Learning With Errors

The security of the FV encryption scheme is based on the apparent hard-
ness of the famous Ring-Learning with Errors (RLWE) problem [30].
Each RLWE sample can be used to extract n Learning with Errors (LWE)
samples [34, 28]. The concrete hardness depends on the parameters n, q,
and the standard deviation of the error distribution σ.

7.2 Security of the Default Parameters in SEAL v2.1

We now give an estimate of the security of the default parameters in
SEAL v2.1 based on the LWE estimator of [7].7 The estimator takes
as input an LWE instance given by a dimension n, a modulus q, and a
relative error α =

√
2πσ/q. For various attacks it returns estimates for

the number of bit operations, memory, and number of samples required
to break the LWE instance. In Table 5 we give the expected number
of bit operations required to attack the LWE instances induced by the
SEAL v2.1 default parameters, assuming that the attacker has as many
samples, and as much memory, as they would require. Recall from Sec-
tion 4.1 that in SEAL the default standard deviation is σ = 3.19, so we
always have αq = σ

√
2π ≈ 8, and we use α = 8/q. We use the default n

and q as presented in Table 2.

n q α small sis bkw sis dec kannan

1024 235 − 214 + 211 + 1 8/q 97.6 237.4 126.5 116.1 116.6
2048 260 − 214 + 1 8/q 115.1 391.2 136.2 129.0 129.5
4096 2116 − 218 + 1 8/q 119.1 615.3 132.7 128.2 129.2
8192 2226 − 226 + 1 8/q 123.1 1168.6 132.2 — 131.1
16384 2435 − 233 + 1 8/q 130.5 1783.5 134.4 — 135.9

Table 5: Estimates of log of the bit operations required to perform the
above named attacks on the SEAL v2.1 default parameters. The symbol

‘—’ denotes that the estimator did not return a result.

Recently, Albrecht [3] described new attacks on LWE instances where
the secret is very small, and presented estimates of the cost of these
attacks on the default parameters used in SEAL v2.0. Estimates for cost
of the attacks described in [3] have been included into the LWE estimator
of [7]. In Table 5 we have included the attack presented in [3, Sections 3
and 4], labelled ‘small sis’, which performs best against the SEAL v2.1
parameters. To label the other attacks we follow the notation of [7]:
‘bkw’ denotes a variant [23] of the BKW attack [10, 5], ‘sis’ denotes a
distinguishing attack as described in [32]; ‘dec’ denotes a decoding attack
as described in e.g. [29]; ‘kannan’ denotes the attack described in [6]. The

7 We used the version available on February 23rd, 2017 (commit d70e1e9).



estimator was not run for Arora-Ge type attacks [8, 4] or for meet-in-
the-middle type attacks, since these are both expected to be very costly.

Remark 2. At the time of writing this, determining the concrete hard-
ness of parametrizations of (R)LWE is an active area of research (see
e.g. [17, 13, 7]), and no standardized (R)LWE parameter sets exist.
Therefore, when using SEAL or any other implementation of (R)LWE-
based cryptography, we strongly recommend the user to consult experts
in the security of (R)LWE when choosing which parameters to use.
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itors, Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Pro-
ceedings, Part I, volume 6755 of Lecture Notes in Computer Science,
pages 403–415. Springer, 2011.

[9] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent
Zucca. A Full RNS Variant of FV like Somewhat Homomorphic
Encryption Schemes. Cryptology ePrint Archive, Report 2016/510,
2016. http://eprint.iacr.org/2016/510.

[10] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant
learning, the parity problem, and the statistical query model. J.
ACM, 50(4):506–519, 2003.

https://github.com/CryptoExperts/FV-NFLlib
https://github.com/shaih/HElib
http://eprint.iacr.org/2017/047
http://eprint.iacr.org/2017/047
http://eprint.iacr.org/2016/510


[11] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts
in lwe-based homomorphic encryption. In Public-Key Cryptography–
PKC 2013, pages 1–13. Springer, 2013.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. In Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 309–325. ACM, 2012.

[13] Johannes A. Buchmann, Niklas Büscher, Florian Göpfert, Stefan
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