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Abstract

Background: Environmental factors have a large influence on the composition of the human gut microbiota. One
of the most influential and well-studied is host diet. To assess and interpret the impact of non-dietary factors on
the gut microbiota, we endeavoured to determine the most appropriate method to summarise community variation
attributable to dietary effects. Dietary habits are multidimensional with internal correlations. This complexity can be
simplified by using dietary indices that quantify dietary variance in a single measure and offer a means of controlling
for diet in microbiota studies. However, to date, the applicability of different dietary indices to gut microbiota studies
has not been assessed. Here, we use food frequency questionnaire (FFQ) data from members of the TwinsUK cohort
to create three different dietary measures applicable in western-diet populations: The Healthy Eating Index (HEI), the
Mediterranean Diet Score (MDS) and the Healthy Food Diversity index (HFD-Index). We validate and compare these
three indices to determine which best summarises dietary influences on gut microbiota composition.

Results: All three indices were independently validated using established measures of health, and all were significantly
associated with microbiota measures; the HEI had the highest t values in models of alpha diversity measures, and had
the highest number of associations with microbial taxa. Beta diversity analyses showed the HEI explained the greatest
variance of microbiota composition. In paired tests between twins discordant for dietary index score, the HEI was associated
with the greatest variation of taxa and twin dissimilarity.

Conclusions:We find that the HEI explains the most variance in, and has the strongest association with, gut microbiota
composition in a western (UK) population, suggesting that it may be the best summary measure to capture gut microbiota
variance attributable to habitual diet in comparable populations.

Keywords: Microbiome, Microbiota, Dietary Index, Dietary covariate, Human microbiota, Food frequency questionnaire, FFQ,
Healthy Eating Index, HEI, Mediterranean Dietary Score, MDS, Healthy Food Diversity Index, HFD-Index

Background
The composition of the gut microbiota is associated with
various aspects of human health and by many is consid-
ered a new clinical target [1]. Genetic influences are
thought to be low, with environmental factors being the
primary drivers of variation [2, 3]. Research has focused
on host-mediated environmental factors such as xeno-
biotic exposure, antibiotic use and, in particular, diet,

where multiple studies have indicated associations of
long-term diet with the microbiota [4–6]. For example,
non-digestible fermentable dietary carbohydrates, short-
chain fatty acid ratios and dietary protein and fat can
modulate bacterial abundance [7–11]. However, the
extent to which clinical interventions or more distal
factors, such as socio-economics and geo-physical
factors influence the microbiota are emerging questions
[12–14]. Selecting a dietary measure which encapsulates
the variance in the microbiota attributable to diet is a
useful goal which enables adjustment for diet in many
studies. However, currently there is no standard
approach to quantification of dietary data in microbiota
studies.
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Diet is a complex, multi-faceted phenotype that is often
summarised using dietary indices to simplify analyses [15].
Dietary indices are nutritionally derived indices based on
levels of (often differently defined) healthy consumption
of nutrients or food groups. Analysing diet with the focus
on patterns rather than individual dietary constituents is
advantageous because dietary constituents are consumed
together and often correlate with one another [16].
Dietary indices therefore provide a means to capture the
overall dietary pattern of an individual or population in a
single measure, allowing adequate adjustment for diet
without saturation of models by the high dimensionality
of dietary data. Dietary indices tend to assess diet quality
based broadly on one of three categories; consumption
measured against dietary guidelines, recommend foods,
and dietary variety [17]. Indices within this analysis were
selected to fall broadly into one of these three categories
and because they were not defined in relation to a specific
disease.

Dietary indices
Healthy Eating Index (HEI)
The Healthy Eating Index (HEI) 2010 is a dietary index
developed by the United States Department of Agriculture
(USDA) as a means to assess diet measured as compliance
to US Dietary Guidelines for Americans [15]. Designed to
capture diet quality from 24-h food recalls and FFQ data,
the HEI is comprised of 12 calorie-adjusted components
representing ‘adequacy’ components, scored to reflect the
extent an individual meets the recommended consump-
tion level for that group, and ‘moderation’ components,
where maximum scores are awarded when consumption
falls below a lower threshold. The HEI is scored from 0 to
100; the higher an individual’s score therefore, the health-
ier their diet is considered to be. The HEI was selected for
this analysis because it is readily applicable to FFQ data
[18]; it contains relative weighted measures for each
group; and because it uses set thresholds (i.e. rather than
those based on study population averages).

Mediterranean Dietary Score (MDS)
Mediterranean diets are associated with lower rates of
common chronic diseases. They are characterised by high
intakes of whole grain, vegetables, legumes, fruit, unsatur-
ated lipids and fish; low to medium intakes of saturated
lipids, meat and dairy, and modest alcohol consumption
[19]. The Mediterranean Dietary Score (MDS), scored
from 0 to 10, is considered here as an index based on
study population averages; due to its increasing popularity
as a measure of dietary health [20]; and because of its
straightforward method of grouping foods. Here, we use
methodology developed and evaluated for use in non-
Mediterranean countries [19].

Healthy Food Diversity index (HFD-index)
Indices that capture dietary diversity may offer researchers
a fast and effective way of assessing dietary quality, based
on suggestive evidence that a more diverse diet may be
associated with better health outcomes [21]. In addition,
we hypothesised that a wider variety of foods may result
in a wider variety of ecological niches for microbes. The
Healthy Food Diversity index (HFD-index) scores between
0 and 1–1/number of individuals (0.9998 for this study),
where a higher value indicates a more diverse diet. The
HFD-index was selected for this study as it considers
diversity of food in conjunction with using a weighted
health value to circumnavigate many of the traditional
problems of measures of dietary diversity [22], and has
been used in a previous microbiota study as a dietary co-
variate [23].
In this analysis, we first validate each index as a meas-

ure of a healthy diet within the TwinsUK cohort, and
then asses each index’s association with measures of gut
microbiota composition. Our aim is to determine the
optimal summary measure of diet-based variation in gut
microbiota composition for use as a covariate in future
analyses.

Results
All dietary indices were validated within the TwinsUK
cohort, with results suggesting all three capture diet suc-
cessfully. Microbiota associations were observed with all
three indices, with the greatest number being associated
with the HEI.

Index construction and validation
Index scores created from data of 5047 individuals were
used to assess index validity (Table 1). None of the indices
achieved minimum or maximum scores possible in their
1st and 99th percentile, as expected given the real-world
nature of the data (Additional file 1: Table S1). The range
of all of the indices was wide enough to allow meaningful
differences to be detected.
Based on previous research, dietary indices are expected

to be predictive of differences between populations known
to have differing dietary patterns. In this case, concurrent
criterion validation suggests that a dietary index predicts
non-smokers, women and older people to have healthier
diets than smokers, men and younger people, respectively
[18]. All three indices significantly predicted a difference
of means for smoking and non-smoking; the HEI and
MDS for men and women, and just the MDS for age
(Table 2).
Both the HEI and the MDS had a small, significant

negative association with BMI; there was no significant
association with the HFD-index (Table 3). HEI and MDS
had a small but significant negative association with health
as captured by the frailty index (where age, zygosity and
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sex were covariates). The frailty index (FI) is the propor-
tion of age-related health deficits reported by subjects
from over 30 holistic health domains [24]; the HFD-index
exhibited a small positive association with FI suggesting
that diversity of food is associated with adverse health
(Table 3).

Microbiota assessment
A subset of 2070 individuals with 16S rRNA gene sequen-
cing gut microbiota data were used to assess the extent
the dietary indices were able to explain variance within
the cohorts microbial community structure (Table 1).
Linear mixed-effects models were used to assess associa-
tions between the dietary indices and alpha diversity. All
significant associations were small, with the highest β
value observed between Shannon diversity and the HEI
(Fig. 1, Table 4). The highest t values came from the HEI,
where many were greater than 2, the threshold for indica-
tion of good model fit [25] (Additional file 1: Table S3).
Both the HEI and MDS were significantly associated with

number of OTUs, Shannon and Simpson indices; only the
HFD-index was associated with diversity indicator Chao1.
Interestingly, all alpha diversity associations with the HFD-
index were negative. Comparison of t values from the HEI,
MDS and HFD-index found that the HEI explains more of
the variance within the data than the other two indices
(Additional file 1: Table S3).
We used hierarchical modelling to investigate the con-

tributions to variance explained by health and diet separ-
ately and together (Additional file 1: Table S4–6). Beta
coefficients are similar across all models suggesting dietary
indices capture alpha diversity variance attributable to diet
independent of health deficits.
All three indices exhibited FDR-adjusted associations

with individual OTU relative abundances significant at
q < 0.05: the HEI had 167, the MDS had 107, and the
HFD-index had 13 (Table 5, Additional file 1: Table S7–
13). Both the HEI and MDS exhibited significant
negative correlations with Ruminococcus, Lachnospira
and Actinomyces (Additional file 1: Table S9–13). The
HFD-index also exhibited significant correlations with
several Ruminococcus and Lachnospiracae; with only one
genus-level association assigned to genus Cc115 within
the family Erysipelotrichaceae.
In linear mixed-effects models, the HEI was signifi-

cantly associated with axes 1, 2, 4, 8 and 10 from PCoA
of unweighted UniFrac distances; the MDS with the first
2 and the highest correlations for both was with axis 2
(HEI: β = − 0.14, p < 0.0001, MDS: β = − 0.12, p < 0.0001)
(Additional file 1: Table S14–15). The HFD-index was
approaching significance with axis 2 (β = − 0.039, p = 0.
055) and axis 8 (β = − 0.095, p < 0.0001) (Additional file 1:
Table S16).
The unique setting of this study within a large twin

cohort allowed us to undertake twin paired tests that re-
duce the variation due to genetic and early-environmental
factors. Twins discordant for their dietary index value
were assessed using paired Wilcoxon rank-sum tests to
replicate OTU associations. We observed that of the 167
HEI-associated OTUs, 71 were nominally significant in
difference between “healthy diet” to “less healthy diet”
pairs, and 17 were FDR-adjusted significant to q < 0.05
(Fig. 2). Of the 107 OTUs associated with the MDS, 32
were nominally significant and one, an OTU assigned to
genus Coprococcus, was FDR significant. Of the 13 FDR-

Table 1 Descriptive statistics of validation cohort and
microbiota subset

Characteristic (measure) Validation cohort Microbiota subset

n 5047 2070

Sex (%female) 91.2 90

Zygosity (% MZ) 56.8 55.9

Ethnicity (% white)* 98.2 98.6

Age (at FFQ) (μ,σ2) 58.4 (13.2) 60.5 (11.5)

BMI (μ,σ2)* 26.2 (5) 25.9 (4.7)

FI (μ,σ2)* 0.2 (0.1) 0.19 (0.1)

HEI (μ,σ2) 60 (10.3) 60.4 (10.2)

MDS (μ,σ2) 4.6 (1.8) 4.5 (1.8)

HFD-index (μ,σ2) 0.2 (0.1) 0.2 (0.1)

Descriptive statistics of cohorts used to validate (validation cohort) three
dietary indices and assess association with the microbiota (microbiota subset).
Presented also are the means (μ) and standard deviation (σ2) of the three
indices: the Healthy Eating Index (HEI), the Mediterranean Diet Score (MDS)
and Healthy Food Diversity index (HFD-index). Zygosity is presented as %
mono-zygotic twins (MZ), age as the date at which the Food Frequency
Questionnaire (FFQ) was administered, body mass index by BMI (kg/m2), and
frailty index (proportion of age-related health-deficits) as FI. *Data available on
88–90% subjects for these variables

Table 2 Concurrent criterion validation of dietary indices

n HEI MDS HFD-index

Men vs women 443:4604 56.4:60.4*** 4.2:4.6*** 0.2:0.19⊥

Over 60s vs under 60s 2543:2504 59.8:60.3⊥ 4.5:4.6** 0.2:0.2⊥

Smokers vs non-smokers 317:2909 55.9:61*** 4.1:4.7*** 0.16:0.21***

Three dietary indices, the Healthy Eating Index (HEI), the Mediterranean Diet
Score (MDS) and the Healthy Food Diversity index (HFD-index) were
assessed for their ability to predict difference of diet of smokers vs non-
smokers, over 60s vs under 60s, and men vs women via two sample t test
(HFD-index via Wilcoxon rank sum). Difference in means is displayed for each
grouping, with significance thresholds indicated by: **p < 0.01, ***p < 0.001,
⊥ = non-significant. Results of tests are indicated in Additional file 1: Table S2

Table 3 Correlation of dietary indices with health measures

n HEI MDS HFD-index

BMI 4428 β = −0.076 *** β = − 0.098*** Non-significant

FI 4553 β = −0.12*** β = − 0.11*** β = 0.013*

Three dietary indices, the Healthy Eating Index (HEI), the adjusted-Mediterranean
Diet Score (MDS) and the Healthy Food Diversity index (HFD-index) were assessed
for their correlation with two health measures; body mass index (BMI kg/m2) and
Rockwood’s frailty index (FI) [24] via nested linear regression models (adjusting
for age, sex and zygosity). p values: p < 0.05*, p < 0.001***
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Fig. 1 Standardised coefficients indicating correlation magnitude from mixed-effects models of three dietary indices (the Healthy Eating Index
(HEI), Mediterranean Diet Score (MDS) and the Healthy Food Diversity index (HFD-index) for four measures of microbial alpha diversity; Chao1,
observed OTUs, Shannon index and the Simpson index. Only significant results included, p values are *< 0.05, **< 0.01, ***< 0.001. Full results,
including model AIC and t values are in Additional file 1: Table S3. Alpha diversity metrics were rarefied and adjusted for age, sex, gender and
technical covariates

Table 4 Alpha diversity results

Diversity measure HEI MDS HFD-Index

Chao1 −0.01⊥ > 0.00⊥ − 0.05**

OTUs 0.06** 0.05* − 0.05*

Shannon 0.1*** 0.07*** − 0.01⊥

Simpson 0.06** 0.05* − 0.01⊥

Standardised coefficients of linear mixed-effects models of three dietary indices,
the Healthy Eating Index (HEI), Mediterranean Diet Score (MDS) and the Healthy
Food Diversity index (HFD-index), against four measures of alpha diversity (Chao1,
Observed number of OTUs (OTUS), Shannon diversity and Simpson’s diversity
index). Alpha diversity measures were rarefied and adjusted for BMI, sex, age and
technical covariates (see the “Methods” section). p values: *p < 0.05, **p < 0.01,
***p < 0.001, ⊥ = non-significant

Table 5 Number of taxonomic associations observed with
dietary indices

Taxonomic level HEI MDS HFD-index

OTUs 167 107 13

Genus 16 6 1

Phylum 4 0 0

Number of Qiime de novo derived operational taxonomic units (OTUs), genus
and phyla significantly associated with three dietary indices, the Healthy
Eating Index (HEI), Mediterranean Diet Score (MDS) and the Healthy Food
Diversity index (HFD-index). Number of results are those significant post FDR
adjustments in linear mixed effects models adjusted for age, BMI, sex and
technical microbiota covariates. Full results are included in Additional file 1:
Table S7–13
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adjusted significant associations with the HFD-index,
none were significantly associated with discordant twins.
In regression analyses of weighted UniFrac distance be-
tween 755 twin pairs against dietary index dissimilarity,
adjusted for difference of BMI and technical covariates, no
significant associations were observed.

Discussion
The primary aim in this analysis was to identify a dietary
composite which explains variation in the gut micro-
biota, and therefore might have most utility to capture
diet in microbiota studies. In this analysis, three dietary
indices were successfully applied to FFQ data derived
from the TwinsUK cohort and were assessed for their
ability to explain inter-individual variance within the gut
microbiota. Our evidence here is suggestive of the HEI
being the index of choice.
We made some assumptions in this analysis; that it is

the range of healthy diets along these indices that cap-
tures the greatest range of difference between microbial

communities; that the dietary index that captures the
highest amount of variance with measures of alpha and
beta diversity, and the highest number of associations
with OTUs is the index of preference. However, we
make no assumption that the microbes associated with
the higher dietary scores are necessarily the microbes
that are the most important for health.
All three dietary indices performed in validation tests and

could therefore have specific utility. All could distinguish
between smokers and non-smokers; the HEI and MDS
differed marginally between women and men; only the
MDS could distinguish between young and old, but the
magnitude of the effect was minimal. The HEI and MDS
were significantly negatively associated with frailty as would
be expected; the frailer a person, the less healthy their diet
[26], further confirming validity of the HEI and MDS as a
measure of healthy eating. Associations with health mea-
sures (BMI and frailty) were small, as expected due to the
large number of factors influencing health [18, 24]. The
positive HFD-index association with frailty, although small,

Fig. 2 Box plot of OTU residuals (see the “Methods” section) significantly different between twins discordant for the Healthy Eating Index (HEI).
Twins were characterised as healthy or less healthy relative to their co-twin if they were in differing HEI quantiles and their score differed by
greater than 1 standard deviation (number of discordant twins pairs = 250). Of the 167 FDR-significant associations observed in mixed-effects
models with the HEI, the 17 Qiime de novo derived operational taxonomic units (OTUs) presented here differed (FDR q < 0.05) between twin
pairs in paired Wilcoxon rank-sum tests. X axis labels indicate the lowest taxonomic level assigned to each de novo OTU used in the analysis
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was in an unexpected direction and is difficult to interpret.
This may reflect the fact that the HFD-index was not
calorie adjusted, whereas the other indices take total energy
content into account. One concurrent criterion proposed
by Guenther was that the Healthy Eating Index was
improved in older adults compared with younger adults
[18]. Our sample detected a small difference between age
groups for the MDS, but no difference for the HEI. As the
HEI is population independent, this may be a consequence
of our study population demographics (older, white,
middle-class women) with limited sampling in the younger
age groups. The MDS could have succeeded here because
it reflects dietary preference of specific food groups relative
to the study population mean.
Our focus was to find a means of controlling for as

much dietary-influenced microbiota variation as possible.
Therefore, as the HEI had the greatest association with
the microbiota and explained the most variance and
dissimilarity of the data within this cohort, we argue that
it can be deemed the most suitable index to use as a
dietary covariate. Del Chierico 2014 [20] makes the a
priori assumption that there will be compelling evidence
for microbiota associations with the MDS based on its
positive associations with health outcomes. Indeed, we
observed, like others [19], the MDS to have associations
with health measures and microbiota. However, the nature
of the HEI (comprised of multifaceted components rather
than binary variables and with a larger numeric range)
means it covers more variation of diet compared with the
MDS (with associations based on population medians and
comprised of a much smaller numeric range). This may
explain its larger capture of microbiota associations within
our population.
The HFD-index also exhibited some intriguing associa-

tions as an index based on dietary variety; and the differ-
ent outcomes when compared with the HEI and MDS
may suggest some underlying associations driven by diver-
sity of diet. However, its negative associations with alpha
diversity are at odds with what might be hypothesised;
that a more varied diet creates more ecological niches for
a more diverse community assemblage. It is likely that
patterns observed here are due to unsuitability of FFQ raw
data for this index; many of the values used to create the
health value were difficult to ascertain in quantities from
the data (e.g. wheat germ oil and soy bean oil). Indeed, the
FFQ has been designed to capture intakes of the most
frequently consumed food for a population; therefore,
inherent in the data is a limit on its ability to capture
diversity of diet. Additionally, whilst diet-diversity indices
are frequently utilised as indicators of nutrient intake in
children and populations from lower-income countries
[27, 28] they may be less suited to western diets.
The HEI can be appropriately applied to a wide range of

dietary data types; particularly 24 h and 3-day recall diaries,

and therefore offers opportunity as the covariate of choice
for a wide range of microbiota studies [15, 18]. OTU associ-
ations that differed between twin pairs discordant for the
HEI generally followed health-associated patterns previ-
ously observed. Eubacterium dolichum, associated with a
lower (less-healthy) HEI score in the present study, was
observed to positively associate with frailty [29] and with a
dietary score based on visceral fat mass within this cohort
[30]. This finding is in keeping with Murine models show-
ing blooming of related bacteria (Erysipelotrichi) in the con-
text of an unhealthy diet [5]; similarly, genus Oscillospira
(here, associated positively with HEI) has been observed to
be reduced in the presence of diseases that involve inflam-
mation and patients with non-alcoholic fatty liver disease
[31], and was negatively correlated with BMI differences in
a different twin cohort [32]. Clostridiales are a polyphyletic
group with some notable pathogenic gut species (e.g.
Clostridium difficile), yet contribute in force to the core
microbiota [33]. Their decreased relative abundance has
been shown to associate with disease states and here was
enriched in twins with a higher HEI score relative to their
sibling. Similarly, an increase in Fusobacteriawas associated
with disease states and was observed here in higher relative
abundance in less healthy eaters [34]. Lachnospiraceae were
less enriched in colorectal cancer patients and again here
mostly associated with a higher HEI score [35]. Therefore,
this suggests that the HEI is associated with bacterial
species in a way that would be expected given its design as
a measure of healthy diet, and is applicable as a means of
explaining dietary impact on the community composition
of the microbiota.
A key consideration in the utilisation of FFQ data is its

appropriateness for the study population. The UK branch of
the EPIC population, for which the FFQ used in the present
study was derived, was deemed to be appropriate for this
study because of similarities in population demographic.
However, future studies should consider their study popula-
tions and adjust FFQs accordingly to capture regional and
ethnic foods, as has been validated in [36–38], or add adjust-
ment based on race and geography [39]. Furthermore, a key
socioeconomic factor to consider in the interpretation of
FFQ data is education status, as this has been shown to in-
crease inaccuracy of the FFQ reporting [36, 40]. An adjusted
FFQ that considers these factors could be used to create the
HEI using methodology as described here, providing the use
of an adequate food composition database. Alternatively,
iterations of the HEI have been created and validated that
better capture dietary data from other populations [16].
Similarly, the cohorts older age and majority female gender
may impact how accurately FFQ captures the cohorts diet
and therefore may influence the extent of variance captured
by the HEI. Future studies should seek to confirm that with
adjustments to the HEI, it remains the most appropriate
index of choice across different populations.
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A drawback of using any self-reported diet data is that
individuals have a tendency to inaccurately report their
consumption of food items; generally, over reporting fruits
and vegetables and under reporting food items that are
considered unhealthy [41, 42]. Drawing direct associations
between a disease and individual dietary components
derived from FFQs has been shown to be problematic
[41], and points to the strength of comparative summary
measures. Another consideration is that FFQ is designed
to measure long-term habitual food intakes, whereas the
eating behaviour immediately before microbiota sampling
may diverge from typical eating behaviour. Although a last-
ing shift in community structure is unlikely from short-
term changes [43], future studies should also explore and
consider secondary adjustments to capture short-term food
intakes.
The HEI as presented here had some limitations. The

HEI (and MDS) were both developed in countries outside
of this cohort, and an index created using UK-specific
thresholds of consumption may have performed even bet-
ter within this population. The HEI might also benefit
from the use of a diversity measure as one of the compo-
nents as has been done in adjusted HEI studies [17, 44].
The benefits of a healthy diet are well known [45], and it

is important to note that a healthy diet-associated micro-
biota may not directly drive these outcomes or be directly
influenced as a result of dietary consumption. These are
also influenced by indirect effects associated with a healthy
lifestyle [46]. Many of the microbial associations observed
here were small. This is possibly reflective of the complex
intertwining factors affecting the community composition
of the microbiota. However, until the nuances of these rela-
tionships with the microbiota are fully characterised, the
HEI offers an effective way of capturing wider dietary infor-
mation in a single, weighted, energy-adjusted variable when
other factors are of interest.
The HEI is likely inappropriate as a predictor variable of

differences between microbial ecosystems as poor diets
that are different but score similarly may mask trends due
to specific dietary constituents. Future studies should
expand on existing work to probe the effect of specific
dietary elements on microbiota, but in these studies, it will
be important to co-vary for overall dietary health. This
study supports the use of an HEI approach in such
endeavours.

Conclusions
Of the indices studied here, associations with measures of
gut microbiota composition show the Heathy Eating Index
(HEI) as the most appropriate, previously established, diet-
ary index to utilise as a covariate in microbiota studies
within this population. Adjustment of thresholds or FFQ
parameters could readily be applied in different demo-
graphics, but would need to be tested. As a single variable,

it is readily applied to a wide range of dietary data, has
extensive resources provided by the USDA to aid its ana-
lysis and creation and is readily adjustable and interpret-
able. This will allow future research to adequately control
for diet without saturation of models by the high dimen-
sionality of diet data, allowing researchers to better inter-
pret the effect of other environmental factors on the gut
microbiota and potentially other human-microbe inter-
action models which necessitate adjustment for diet.

Methods
Study population
All individuals included in this study are part of the Twin-
sUK research cohort, the UK’s largest research database of
mono- and dizygotic twins. Descriptive statistics for the
data used here are provided in Table 1.

Food frequency questionnaire (FFQ) data
Food frequency questionnaire (FFQ) data was collected
following the EPIC-Norfolk guidelines [47], with only
those answering for all 152 food groups considered for
this analysis. As with any ongoing large-cohort study, the
data was collected in batches; both undertaken on rolling
bases The first was undertaken predominantly in 2007 for
3370 individuals, and the second between 2014 and 2015
for 4116; 5047 unique individuals were used here. All
analysis considered the score for the nearest time-point,
excluding subjects with a greater than 5-year difference;
subsequent microbiota analysis was undertaken on data
matched to samples from 2070 individuals.

HEI construction
All indices were constructed in RStudio [48] following
relevant methodologies. The HEI was constructed
following Guenther et al. 2013 guidelines [15]. The
reported weekly frequency of each FFQ food item was
converted to the unit recommended by the HEI guidelines
(Additional file 1: Table S17). Divergences from the
published methodology was the use of the ‘Composition of
foods integrated database’ (CoFids) published by Public
Health England [49], as a more appropriate look-up table
for a UK-based cohort. CoFids was used where calories
and proportional components of FFQ food items were
required for calculating HEI components (Additional file 1:
Table S17). Where available, volumetric conversions were
calculated using specific gravities obtained from the
USDA websites. Similar to subsequent studies [17, 50],
food items were categorised into HEI components based
on their predominant attributes (e.g. broken down into
lean and solid fat fractions) after being initially classified
into the USDA sub-groupings, rather than being consid-
ered within all groups (Additional file 1: Table S17.)
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MDS construction
There is some variance in methodology in assigning the
MDS depending on the different weighting of evidence for
factors considered to constitute a healthy diet [19, 51];
here, the MDS was constructed using the modified MDS
methodology outlined by Trichopoulou et al. 2005 [19].
Estimates of daily grammes of consumption were created
from residual energy-adjusted FFQ data of seven groups
(Additional file 1: Table S18). Scores were assigned to each
category as either 0 (no MDS) or 1 (MDS) for each cat-
egory depending on whether the twin was above or below
median intake of the study population. Medians were cal-
culated using the combined scores for each FFQ ‘batch’.

HFD-index construction
Methodology from Drescher et al. 2007 [22] was used to
create this index, where a healthy food value is calcu-
lated for each FFQ food item and used as a weighting
for multiplication against a Simpson’s index score of all
consumed foods, indicating the diversity (Additional file 1:
Table S19). This results in a diversity measure of diet
that considers the health value of the variety of foods
combined.

Validation of indices
All statistical analysis was undertaken in Rstudio. Construct
validity of indices was assessed following partial method-
ology from Guenther et al. 2014 [18]. First, via review of
overall distributions of the total index score. Secondly, as
healthy diets distinguish smokers from non-smokers, young
from old and men from women, concurrent criterion
validity was assessed using two sample t tests for the MDS
and HEI, where distributions approached normalcy, and
Wilcoxon. Age was calculated as age at questionnaire sub-
mission and separated into two groups; below 50s and over
50s, and those who self-reported as current smokers used
to assess differences between smokers and non-smokers.
5047 individuals were used to assess age and sex differ-
ences; due to data absent due to longitudinal differences in
data collection, a subset of 3226 were used to assess differ-
ences between smokers and non-smokers.
Indices were also assessed as the primary explanatory

variable against health measures in nested linear regres-
sion models with age, twin zygosity, and sex as covariates
against BMI on a subset of 4428 individuals missing data,
again due to differences in collection method. Similarly,
on a subset of 4553 individuals following the Rockwood
method [24], a frailty index of the TwinsUK participants
was used to indicate the health predictive capacity of each
dietary indices, zygosity and sex as covariates.

Microbiota analysis
A subset of 2070 individuals were used to assess the extent
the variation within and between individuals’ microbiota

could be captured by each dietary index. Collection and
processing of samples for 16S rRNA gene sequencing for
the TwinsUK cohort has been described previously [52].
Individuals brought samples to clinical visit or posted them
in sealed ice packs to the research department where they
were stored at − 80 °C, until shipped frozen for analysis.
DNA was extracted at Cornell University, where the V4
region of the 16S rRNA genes was amplified. A multiplexed
approach was used to sequence the amplicons on the
Illumina MiSeq platform. Following demultiplexing, sample
read paired-ends were merged using a 200 nt minimum
overlap. 16S rRNA gene sequencing data was processed
and OTUs generated as described previously [53]; per
sample de novo identification and removal of chimeric
sequences was undertaken using USEARCH, and then de
novo OTUs were picked in QIIME using SUMACLUST at
a similarity threshold of 97% [54]. The OTU representative
sequences were aligned using the parallel_align_seqs_
pynast command within QIIME, the resulting alignment
was then filtered to remove variable regions using the
filter_alignment command, and a phylogenetic tree was
created using the make_phylogeny command. All
commands were run with the default parameters in QIIME
version 1.9.1.
Alpha diversity metrics of Shannon diversity, chao1,

Simpson’s diversity and observed species were also calcu-
lated in Qiime. OTUs were rarefied to 10,000 sequences
per sample 50 times, and the 4 alpha diversity metrics were
then calculated as the mean for each sample across the 50
rarefied tables. Mixed-effects models were constructed
using the “lme4” package in R to assess the extent alpha
diversity varied with dietary index; all model variables were
scaled prior to input, and all reported coefficients are stan-
dardised [25]. Nested models were used to compare the
effect of each dietary index. Models were adjusted for age,
BMI, twin zygosity, sex and OTU count per samples, with
technical covariates and FFQ questionnaire batch as
random effects. As χ2 values resulting from ANOVA of two
mixed models are only appropriate for comparisons of
nested models, to assess relative goodness of fit of the three
dietary indices, t values, AICs and β coefficients from the
mixed-effects models for each index were used to quantify
the ability of a dietary index to capture each measure. To
further assess the ability of dietary indices to capture vari-
ance, hierarchical models of alpha diversity were performed
with BMI and a smaller subset (n = 2015) incorporating
frailty data.
Relative abundances of OTUs found in > 25% in individ-

uals were log10 transformed, and residuals were generated
via regression against technical covariates of sequencing
depth, sequence run, person who extracted the DNA,
person who loaded the DNA and sample collection
method. OTUs were collapsed to taxonomic abundances
and Family and Genus levels. All OTU metrics were used
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as response variables in mixed-effects models (as above)
adjusted for age, twin zygosity, BMI and sex, with FFQ
batch as a random effect. Nested models were compared
using ANOVA, and p values were false discovery rate
(FDR) adjusted using the qvalue package [55]. Twin pairs
discordant by greater than one standard deviation and
within different quartiles were identified, and OTU
differences between the two were assessed using paired
Wilcoxon rank-sum tests and FDR adjustment.
Unweighted UniFrac distances were calculated as β

diversity measures using the phyloseq package in R [56].
Ordination plots were also generated using phyloseq, and
the first 10 components from the PCoA (representing the
first 10 axes) were extracted and used as the response
variable in mixed-effects models, as in alpha diversity
analysis. Finally, weighted UniFrac distances between twin
pairs were used as the response variables in regression
models with difference in dietary index, difference in BMI,
and differences in factorial technical variables (person
who extracted the DNA, person who loaded the DNA and
sample collection method) as covariates. Standardised co-
efficients were calculated using the lm.beta package [57].

Additional files

Additional file 1: Supplementary tables. (DOCX 167 kb)

Additional file 2: HEI creation. (ZIP 233 kb)
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