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REGRESSION TO THE MEAN AND JUDY BENJAMIN
RANDALL G. MCCUTCHEON

ABSTRACT. Van Fraassen’s Judy Benjamin problem asks how one ought to update
one’s credence in A upon receiving evidence of the sort “A may or may not obtain,
but B is k times likelier than C”, where {A, B,C} is a partition. Van Fraassen’s
solution, in the limiting case k — 0o, recommends a posterior converging to P(A|AU
B) (where P is one’s prior probability function). Grove and Halpern, and more
recently Douven and Romeijn, have argued that one ought to leave credence in A
unchanged, i.e. fixed at P(A). We argue that while the former approach is superior,
it brings about a reflection violation due in part to neglect of a “regression to the
mean” phenomenon, whereby when C' is eliminated by random evidence that leaves
A and B alive, the ratio P(A) : P(B) ought to drift in the direction of 1 : 1.

1. INTRODUCTION

In this paper, we describe a selection effect at work in the Judy Benjamin problem.
In a limit case, we characterize this effect as “regression to the mean” —probabilities of
surviving cells of a partition trend closer in ratio in response to exposure to unknown
evidence that fails to eliminate either. Citing heuristic arguments based on this
reasoning, as well as a simulation having suitably generic protocols, we accordingly
claim that Judy’s posterior credences must, in the limit, lie between those favored by
two influential extant positions. Our arguments do not pin down an exact solution,
indicating only a rough estimate of what we take to be best policy. Though it follows
that we’ve painted this best policy in somewhat broad strokes, we shall indicate
reasons why no precise canonical solution is likely to emerge.

2. WORKING ASSUMPTIONS

Bas van Fraassen (1981, p. 377) introduces an updating puzzle starring Judy Ben-
jamin (a fictional character from the 1980 film Private Benjamin). Judy is involved

in a war games exercise. Van Fraassen writes:
1
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The war games area is divided into the region of the Blue Army,
to which Judy Benjamin and her fellow soldiers belong, and that
of the Red Army. Each of these regions is further divided into
Headquarters Company Area and Second Company Area. The
patrol has a map which none of them understands, and they are
soon hopelessly lost. Using their radio they are at one point able
to contact their own headquarters. After describing whatever they
remember of their movements, they are told by the duty officer
“I don’t know whether or not you have strayed into Red Army
territory. But if you have, the probability is % that you are in their
Headquarters Company Area.” At this point the radio gives out.

Van Fraassen now asks:

Question: What will be Private Benjamin’s posterior proba-
bility that she is in the friendly Blue Army Region?

Using an information distance method, van Fraassen answers ~ .5327. Grove and
Halpern (henceforth G&H, 1997) and Douven and Romeijn (henceforth D&R, 2011)
argue for the “intuitive” answer, i.e. %

Before proceeding, we need to get straight on what we take the problem to be. We’ll
do this by formulating several “working assumptions”.

Assumption 1: Judy’s prior is

1111
(J(Blue HQ), J(Blue 2nd), J(Red HQ), J(Red 2nd)) - (Z’ 7 Z)'
Assumption 2: Judy regards the duty officer (henceforth HQ) as an expert relative
to her.

There is a choice for our next assumption, which regards the protocol for HQ’s mes-
sage to Judy. Denote HQ’s credence function by P. G&H (1997) employ:

Assumption 3: HQ reports (always and only) the ratio P(Red HQ) : P(Red 2nd).

Van Fraassen’s original prose formulation suggests a different protocol:*> “I don’t
know whether or not you have strayed into Red Army territory” explicitly implies
that HQ has not ruled out Blue.? Hence we’ll also consider the alternative:

1Other possibilities: (1) it is our expectation of Judy’s prior that is (i, i, i, i), and (2) Judy’s

prior is simply (J(Blue), J(Red HQ), J(Red 2nd)) = (1,1, 1) (i.e. suppress subdivision of the Blue
region). Although these alternatives might affect proper analyses in interesting ways, neither would
materially impact occurrence of the qualitative features that constitute our concern here.
2Note however that van Fraassen also gives a “coarsest description” of the problem more along
the lines of Assumption 34. We don’t know which interpretation he intends his solution to address.
3We take P(Blue) # 0 and “HQ has not ruled out Blue” to be equivalent. Also we take HQ to

report a ratio 0 : 0 if and only if he has ruled out Red. Other practices are possible.
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Assumption 3g: HQ reports the ratio P(Red HQ) : P(Red 2nd) and indicates
whether or not Blue has been ruled out (i.e. whether or not P(Blue) = 0).*

These competing third assumptions can yield different answers: if, after learning that
P(Red HQ) : P(Red 2nd) is 3 : 1, Judy were to ask HQ “Have you ruled out Blue?”,
she would upon receiving the answer yes lower her credence in Blue (to zero). This
implies that she would, provided her prior in yes were positive, raise her credence in
Blue upon receiving the answer no. But receiving the answer no leaves her in the
same situation as in van Fraassen’s original prose formulation.

Our interpretation of the above is that the Judy Benjamin problem is a problem in
(expert) reflection. (On “reflection”, see van Fraassen 1984 and especially Schervish
et. al. 2004.) Since HQ is an expert relative to Judy, her credences ought to be the
expectation of his. As Judy’s story is underspecified, however, this expectation runs
“over all possible story completions” weighted in proportion to likelihood, given what
we already know. Exact calculation of such an expectation being impractical, the
solution therefore turns on making an additional, plausibly generic (as used by us,
this term means roughly “representative of the mean”) stipulation, rule or assumption
allowing for direct computation of an expectation.

3. VAN FRAASSEN

Van Fraassen’s attempt at a generic updating rule is introduced in this passage:

Let the agent’s prior belief state be characterised by the prob-
ability function P and his posterior state by P'. Given any
measurable partition X on which P is positive...the relative in-
formation in P' with respect to P...is defined by I(P', P, X) =

Y {P'(A) log% : A € X}. The deliverances of experience

place a constraint on what the posterior P’ should be.... The
Infomin Principle, as I shall call it, now says that the agent
should choose his posterior P’ so as to satisfy that constraint
while minimizing information relative to P.

4Some authors would likely disavow both protocols. D&R (2011), for example, treat HQ’s message

as a conditional rather than as a report of a conditional probability. We find this implausible. Indeed,
we don’t think it is obvious which conditional “if you are in the Red area, the probability is % that
you are in the Red HQ area” is supposed to represent—in particular because we don’t know what
proposition is intended to serve as consequent. (It can’t be “the probability is % that you are in
the Red HQ area”.) One might rephrase to something like “if I were to learn that you are in the
Red area then my posterior probability in Red HQ would be %”, but we don’t see how this would
require analysis different from a conditional probability report. More natural, by far, is to simply

assume that HQ’s message is a (fairly standard) species of vernacular for such a report.



REGRESSION TO THE MEAN AND JUDY BENJAMIN 4

For Judy, the constraint points to a posterior @ of (z, %(1 — ), %(1 — x)) for some
x € [0,1], and the Infomin Principle bids her choose = so as to minimize

HQ,P) = x(logx —log 1)"{'%(1 — ) (log(%(l — 1)) — log 1)

9 4
470~ ) (log(§(1 — ) ~log ).

The minimum occurs at Q(Blue) = z ~ .5327.

We reject the Infomin treatment on the grounds that it violates reflection. Under pro-
tocol 34 this is obvious. For if Judy learns that the ratio P(Red 2nd) : P(Red HQ)
is1:q, g >0, then Judy’s posterior under Infomin is

2q7/(a+1)

QBlue) = 929/ g+ 1 i) =

with equality only at ¢ = 1. (The dubiousness of this was noted in Seidenfeld 1986.)
Ratio reports not of the form 1 : ¢ for ¢ > 0 lead to credences > % as well; van
Fraassen maintains that Judy (by continuity) ought to update her credence in Blue
to % for each of the reported odds ratios 0 : 1 and 1 : 0, and obviously to 1 upon
report of the indeterminate ratio 0 : 0. So unless Judy is also learning that Blue has
not been eliminated (in which case there is an additional scenario where credence in

Blue drops), this is a unidirectional shift in credence, and so a reflection violation.

b

b |

Infomin violates reflection under 3g as well. For maximum generality, we will give
a proof of this that does not depend on any subdivision of the Blue region. First,
we introduce a conservative principle for generic updating in line with the themes we
are promoting. For a region R, let e be Judy’s probability that R is eliminated by
HQ), conditional on —=R. The principle asserts that in the generic (no story) case, if
L and S are atomic regions with J(L) > J(5), then e, < eg. That is, larger regions
are not more likely to be eliminated, should they be non-actual. More generally,
if L (respectively S) is a disjoint union of atomic regions Li,..., L, (respectively
Sty ey Sny n < m) with J(L;) > J(S;), 1 < i < n, one has the same conclusion.

Taking now Blue as an atomic region, let py (respectively p1, pa, ps, ps, Ps, Pg) be the
probability that the set of regions £ eliminated by HQ is ) (respectively {Red HQ},
{Red 2nd}, {Blue}, {Red HQ, Red 2nd}, {Red HQ, Blue}, {Red 2nd, Blue}). By
symmetry we take it that p; = po and p5; = ps. Note that if py = 1 then there’s an
obvious reflection violation; so we assume py < 1.

Applying the former principle to the “smaller, larger” pairs “Red HQ, Blue” and
“Red, = Red 2nd” yields the inequalities p; +ps + ps > %pg +3ps and py > 2p5. Using
now the previous identities and the two inequalities in turn, a %—limiting caser’s
expectation of P(Blue) conditional on there being at least one region eliminated is

%pl + %pQ + D4 B %p1 + D4
pLtp2+p3s+pi+ps+ps  2p1+ps+ pat2ps
>p1+%p3+§p4+§p5 S p1+%p3+%p4+p5 1

T2+ p3tpat2ps T 20+ p3+pat2ps 2

B (P(Blue)le £0) =
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Since Infomin is such and also says E(P(Blue)|E = () > L, it violates reflection.”

4. THE ONE-HALF SOLUTION, PART ONE: DOUVEN AND ROMEIIN
D&R (2011) formulate HQ’s message as follows:

(1) T can’t be sure where you are. If you are in Red territory,
the odds are 3 : 1 that you are in Headquarters Company area.

It is arguable (at least from considerations of conversational implicature) that HQ
communicates, through (1), that he has not eliminated Blue. The formulation of the
limit case is similar:

(2) If you are in Red territory, then the odds are 0 : 1 that you
are in Second Company area

One might claim that the case is slightly different here—(2) does not contain the phrase
“I can’t be sure where you are”—but we still think it likely that (2) communicates
(conversational implicature again) that Blue has not been eliminated. In any event
this is the more charitable reading; the general one-half solution D&R argue for
has it that Judy never changes her credence in Blue in response to a report of the
form “If you are in Red territory, the odds are x : y that you are in Headquarters
Company area”, where at least one of x,y is non-zero. On the other hand, it is
clearly the case that Judy will raise her credence in Blue to 1 when the ratio 0 : 0
is reported. Assuming that Red is eliminated with positive probability, there must
then be an additional scenario where Judy’s credence in Blue drops in order to avoid
a reflection violation. Assuming that HQ will make explicit that he has eliminated
Blue whenever this is true provides the requisite scenario. The upshot is that a
critique of D&R may without loss of generality assume that HQ follows protocol 3g,
and in particular that (2) imparts implicit evidence that HQ has not eliminated Blue.

D&R’s argument is surprisingly direct-they begin by, in effect, brutely stipulating
that @Q(Blue) = 3 (by listing it among their “desiderata” for Judy’s posterior Q).
Against the charge (attributed to Jon Williamson in particular) of begging the ques-
tion, D&R write “...it is entirely unclear how one could beg any questions simply by
registering one’s intuitive verdict (as opposed to giving an argument)...”. We don’t
view the move as question-begging, but as a genericity claim fairly based on first
blush naturalness considerations.

5This argument needn’t vitiate the % limiting case conclusion in general, although it does show
that supporters of such a conclusion must endorse a posterior in Blue strictly less than % at some
middle range(s) of the reported conditional probability P(Red HQ|Red). The 2 limiting case
conclusion would be apt, in fact, for a variant of the problem in which Blue is subdivided into
two regions and HQ reports that both are live. In this case the effect we are studying manifests at
the middle ranges as a “progression from the mean” (Judy raises credence in both Red subregions
above the mean value %) rather than a “regression to the mean”. We reserve the latter notion
(“regression”) for cases in which one learns nothing beyond which cells in some partition survive.
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D&R buttress their intuitions with a contention that “Z limiting casers” treat (2)
as a material conditional, when they ought instead to treat it as an indicative con-
ditional. They then note the existence of indicative conditionals A — B, to accept
which doesn’t cause a change in one’s credence in the antecedent A. They give the
example ‘If it rains tomorrow, we cannot have sundowners at the Westclift’, asserted
upon learning that the Westcliff’s indoor area will be occupied by a wedding party.
For a contrary case, they consider ‘If Henry robbed the jeweler, then he also shot
him’, uttered in a context where one is confident that Henry is no murderer. Here,
acceptance of the conditional does causes one’s credence in the antecedent to fall.

Our “average over all stories” motif suggests that one should, in the generic case,
assume a correlation lying between these extremes. D&R, contrarily, hearken to an
intuition that (2) “does not seem to contain any information relevant to whether she
is in Red rather than in Blue territory...”. The result is that they treat (2) as a
conditional lying at one of the two exhibited extremes (that of “sundowners”).

The policy implied by this practice leads, however, to inconsistency. Recall, HQ’s
protocol is to report the ratio P(Red HQ) : P(Red 2nd) and indicate whether or not
P(Blue) = 0. Imagine now a counterfactual protocol, according to which HQ reports
the ratio P(Red 2nd) : P(Blue) and indicates whether or not P(Red HQ) = 0.
Suppose that HQ sends the following message under the counterfactual protocol:

(2a) If you aren’t in the Red Headquarters area, then the odds
are 0 : 1 that you are in the Red Second Company area

Their treatment of (2) commits D&R to the intuition that (2a) “does not seem
to contain any information relevant to whether she is in Red Headquarters area”.

That indicates a posterior probability of % in Blue upon receipt of (2a). But that

indicates, in turn, a posterior probability of Q(Blue) = % upon receipt of (2) as well,

since HQ’s message under the counterfactual protocol will be (2a) in precisely those
circumstances that HQ’s message under the original protocol will be (2)-namely,

when Red 2nd is eliminated but Blue and Red H() are not.°

The Henry conditional has a story associated with it ensuring that it will induce the
behavior it does (we are told to be confident that Henry is no murderer), as does the
sundowners conditional (we are told that the Westcliff’s indoor area will be occupied
by a wedding party). The unembellished (2) is more analogous to something like:

(3) If Romeo seduces Helena, they’ll be married

60n pain of inconsistency, anyone who subscribes to the general one-half solution must either
deny this seeming truism or claim that Red 2nd is not eliminated almost surely. (Drawing semantic
distinctions between the conditionals (2) and (2a) misses the point, for it is never the semantic
content, of a received message that is conditioned on, but the fact that it was received.) Grove and
Halpern (1997) is the best attempt; we critique their solution in the next section. We concede that
(2) and (2a) are assertible with positive probability and equivalent, both to each other and to (2b)
You are not in the Red Second Company area, asserted by a duty officer whose protocol is to report
the value of P(Red 2nd) and to indicate so if he knows which region Judy is in. Where we differ
from van Fraassen and other % limiting casers is in our admission of regression, whereby Blue and
Red HQ trend closer in probability when Red 2nd is eliminated and they are not.
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What story goes along with (3) is left to the imagination. On one, (3) is to be
interpreted as report of Romeo’s honor; he would not seduce a woman he would not
also marry. Here acceptance of (3) causes credence in no seduction to rise (say from §
to 3). On another, (3) is to be interpreted as report that Helena’s father is standing
by, shotgun in hand, bent on seeing any man who seduces his daughter wed to her
posthaste. Here acceptance of (3) leaves credence in no seduction where it was (say
1

3)- Lacking a story, it appears sensible, contra D&R, to “average over all stories”,

and adopt policies between these extremes.

5. THE ONE-HALF SOLUTION, PART TWO: GROVE AND HALPERN

Our case in the previous section was based in part on a “seeming truism”-that (2)
and (2a) have equivalent assertion conditions under the appropriate protocols-leading
to an apparent inconsistency in the one-half solution brought about by two different
ways of reporting the elimination of the Red 2nd region. Against this, G&H (1997)
present a version of the one-half solution that is “almost surely consistent”. This is
accomplished (in part) by having Judy adopt a model on which the probability of
HQ eliminating Red 2nd (or either of the other two regions) is zero.

The space of probability functions on the algebra generated by
{Blue 2nd, Blue HQ, Red 2nd, Red HQ}
can be identified with the set of quadruples
{(a,b,¢,d) : a,b,c,d >0, a+b+c+d=1}.

This set forms a regular pyramid (convex hull of the extreme measures a =1, b =1,
¢ =1and d = 1) in 4-space. A natural (say G&H) candidate for a generic prior
distribution on the location of HQ’s probability function in this space is the (standard)
uniform one. Their “additional assumption” is thus:

GH: Judy treats HQ’s credence function on
{Blue HQ, Blue 2nd, Red HQ, Red 2nd}

as a uniformly (with respect to the usual measure) distributed random variable on
the convex hull of (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}.

GH is in agreement with Judy’s prior, which, recall, we take to assign probability i
to each of the four regions. Applying now the change of variables x = a + b, y = ¢,
z = d and identifying triples (z,y,2 =1 — x — y) with elements of R = {(z,y) : 0 <
z<1,0<y<1-2x} gives Judy the prior distribution on HQ’s credence function

(P(Blue), P(Red 2nd), P(Red HQ)) = (x,y,1 — x — y)

determined by the density function g(z,y) = 6z. Now when HQ transmits the

message “P(Red HQ|Red) = 3”7 (an event of measure zero), G&H “coarsen” this

message and have Judy condition on “3 — ¢ < P(Red HQ|Red) < 2 + ¢” for some
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small € > 0.” So Judy’s posterior credence in Blue is the expectation of z on

3 Y 3
= - —e< < -
Ry {(Ly)ER 1 e_y+z_4+c}

) G-au-0 <y Gran-n)

Namely,
_ Jpa@r)dz e 1

Bl = ——
Q(Blue) le 6x dx 2 2

G&H implicitly maintain that the % limiting case argument involves a conflation of the
% = 1, with the alternate message P(Red 2nd) = 0.
(Compare (2) and (2b) of the previous section.) A natural coarsening of the latter is
P(Red 2nd) < e. Letting then

Ry={(z,y) e R:y>1—2x— €},
this results in what G&H consider the apocryphal limiting case posterior

x(6x) dx 2¢ — 32 + 263 — Lt 2
Q:(Blue) = lim <M) :lim< S A > = _.
0 fR2 6x dx €0 e — 3e2 + €3 3

message received, namely

P(Red HQ)
P(Red)

By={lm.y) € R: Zo>1=ch={(my):y> (1= -0},

one finds that
1
=5

Our rejection of this treatment is based on several considerations. First, GH is
(extremely) unrealistic. For example, it implies that Judy thinks that HQ’s credence
in Blue is over 390 times as likely to fall in the interval [.267, .268) as it is to fall in
the interval [0,.001). Surely, though, it is far more likely to fall in the latter (as it
will whenever HQ has conclusive or near-conclusive evidence favoring Red).

A proper coarsening of the former, they would say, is > 1 —e¢. Then setting

1o |l\')|>~

Qi Blue) = lim (M> _ lim (

e—0 ng 6 dx e—0

Second, it isn’t obvious how one might generalize GH to situations in which Judy
holds different priors. What, for example, if Judy’s prior probability in Blue is %?
The uniform distribution over quadruples that G&H claim is natural isn’t available
when Judy’s prior isn’t already uniform over the finite partition in question.

7Letting e — 0 would effectively fix Judy’s posterior at the conditional expectation of g(z,y) on
the line segment y = %(1 —x), 0 <z <1, with respect to the o-algebra generated by the triangles
{al—2) <y <bl-—z):0<z<1},0<a<b< 1. The inconsistency encountered in the
last section concerning how to condition on the message P(Red 2nd) = 0 and its various equivalent
formulations would be, on this view, an artifact of the (y = 1 — ) hypotenus’s status as an atom of
at least three different o-algebras of potential interest. G&H take this hypotenus to be a null set, so
Judy’s different values for the conditional expectation of g(z,y) on it with respect to the different
algebras isn’t (so probabilists assure us) any cause for concern. (For discussion of a famous case of

this “paradox”—conditionalization on a great circle-see, e.g., Jaynes 2003.)
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Third, even assuming that Judy’s priors are fixed, it isn’t clear from GH what would
change in response to the information that HQ has more or less expected information
exposure. To illustrate, suppose that there were a second duty officer known by
Judy to be an expert relative to the first. What might be Judy’s distribution over
his credences? More generally, what if there were a nested chain of experts of some
finite length? Which distribution Judy should deem appropriate for HQ’s credence
function depends on how much additional information she thinks he might have. If
HQ’s expected information exposure is small, the distribution ought to be tightly
concentrated around her own prior (J(Blue), J(Red HQ), J(Red 2nd)) = (3,1, 1)
If HQ’s expected information exposure is large, the distribution ought to be tightly
concentrated about the extreme points (1,0,0), (0,1,0) and (0,0, 1).

The purport of the above concerns is clear. Judy needs to employ a three parameter
family of distributions. Two of the parameters would encode her prior (z,y,1 —x —
y), while the third would encode HQ’s expected additional information exposure.
L.R. Goodman and Hung T. Nguyen (1999) suggested that the family of Dirichlet
distributions (i.e. densities of the form f(x,y,2) = kx%y’2¢) can be adapted to this
end. The Dirichlet distributions consistent with the (%, i, i) prior, for example, have
densities f(z,y,z) = kx?~'y!=12t=1 (Here ¢ is the “third parameter”; G&H employ
the ¢ = 1 instance upon elimination of one variable.) Note that as ¢ increases, these
distributions become more and more concentrated around Judy’s prior. High values
of ¢, therefore, should correspond to cases in which Judy does not think HQ has much
more information than she has. Ast decreases, on the other hand, these distributions
become more and more concentrated around the extreme measures. Low values of
t, therefore, should correspond to cases in which Judy thinks there is a very good
chance that HQ has something close to complete information.

What’s lacking, however, is an explanation of why Judy’s distribution over HQ’s
credences would evolve from one Dirichlet distribution to another (or even from one
convex combination of Dirichlet distributions to another) in response to finding out
that HQ had potentially acquired more information. Such explanations are available
for classical applications of Dirichlet distributions. (A famous case is the Laplace
rule of succession, in which one estimates the unknown bias of a coin.) If one’s prior
distribution for the bias of a three-sided die with outcome space {X,Y, Z} is given
by the density function h(z,y,z) = kjz°y°2¢ and one observes X on a sample roll,
one’s posterior density will have the form h(x,y,2) = kyx®1y®2¢ (which is again
Dirichlet). Without such a diachronic tale, we see no reason to think that this family
of distributions is appropriate to the current application.

6. HEURISTICS AND A SIMULATION

In the sense we are interested in, regression to the mean occurs when one learns that
information exposure that might have eliminated the non-actual cells of a partition
has failed to eliminate at least two cells. Specifically, it occurs because smaller cells
are (in the generic case) more vulnerable to elimination, and so receive a greater
boost when they survive. For a simple example, suppose A has B on the ropes, with
98% of the chips, at the final table of a poker tournament. Assuming they are equal
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in ability, B then has a 2% chance of winning. If now you step away from the game
for a few minutes and return to find that (and only that) neither A nor B has yet
been eliminated, you will now assign B posterior win probability greater than 2%.

To see how regression arises in Judy’s case, let E be the event “at least one region
has been eliminated by HQ”. According to the reasoning we have been employing,
in the generic setting larger cells should be considered less vulnerable to elimination,
conditional on their being non-actual.® Letting .J be Judy’s credence function, then,

J(E|Blue) > J(E|Red HQ) = J(E|Red 2nd).
Put another way,
J(E°|Blue) < J(E|Red HQ) = J(E°|Red 2nd) = J(E°|Red).
Since J(Blue) = 1 = J(Red), meanwhile, it follows that J(BlueNE*®) < J(RedNE®).
Imagine now that the message from HQ contains only the information whether or

not at least one region has been eliminated. Judy’s expection in Blue, conditional
on E° (i.e. no region is eliminated) is then
J(Blue N E°) J(E°N Blue) 1
E(Blue|E°) = = < -
(Bluel E¥) J(E°) J(E° N Blue) + J(E° N Red) 2
If now we alter our favored 3g interpretation of the original problem, so that HQ
suppresses the exact value of P(Red HQ)|Red) (noting only that it lies strictly be-
tween zero and one), then the information Judy receives is precisely that E¢ is the
case. It follows that she should adopt posterior in Blue strictly less than %

Any sufficiently realistic genericity assumption should, therefore, elicit regression. We
don’t know of any entirely realistic genericity assumption, but do think that since
HQ’s credences derive from conditionalization on unknown, unpredictable evidence,
an at least interesting model for their evolution is the process that is most often
used to represent the movement of particles, prices or probabilities subject to large
numbers of unknown, unpredictable influences: Brownian motion. Since (not, we
think, fortuitously) Judy’s credences regress under this model, it’s worth a look.

To start, we follow Grove and Halpern in identifying the space of possible HQ cre-
dence functions with the convex hull (a regular pyramid) of the vectors (1,0,0,0),
(0,1,0,0), (0,0,1,0) and (0,0,0,1) in 4-space. We let ((by(t), bs(t), 7n(t),75(t)) be the
barycentric coordinates of a 3-dimensional standard Brownian motion on this pyra-

mid at time ¢, with initial data (b,(0),b5(0),7,(0),75(0)) = (3,3, 3.1). When the

motion reaches a side or edge the motion becomes 2-dimensional or 1-dimensional on
that side or edge, until terminating at an extreme point.

8There is good reason to believe that more “story completions” exhibit this property than exhibit
the reverse. Certainly larger regions are dramatically less likely to be eliminated when they are
“larger by disjunction”, since one must eliminate all disjuncts in order to eliminate a disjunction.
A 2-dimensional Brownian motion model (we explore a 3-dimensional Brownian motion below)
provides another instance; as shown in (Ferguson, unpublished ms.), the probability that such
a motion originating within an equilateral triangle at barycentric coordinates (%, %, i) exits the
triangle out the farthest side is ~ .1421. If such a motion is used to model the movement of HQ’s
credences on {Blue, Red HQ, Red 2nd}, Judy will adopt posterior probability ~ ﬁ ~ .5828 <

% for Blue conditional on a Red subregion being eliminated prior to elimination of Blue.
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For each ¢ > 0 one now obtains a solution (consistent with protocol 3g, which we
favor), namely

Th (t) 3
— T = S Ab(t) + bs(t >0).
ra(t) +rs(t) 4 () +:(0)
This solution assumes that HQ transmits his message having observed the Brownian
motion over the interval [0,¢]. (The parameter ¢ therefore encodes “how much in-
formation” HQ has.) In practice Judy won't know ¢ precisely, but will subscribe to
some continuous distribution over its possible values. For simplicity, we will take the
distribution to be uniform on [0,77] for some value of 7.

O, (Blue) = E(bh(t) + by (#)

We describe a numerical simulation of the above via an ersatz four player poker game.
For each iteration, the players begin with equal balances b, = b, = r, = r, = $250.
For each hand, a small random stake S is computed (we used S = 2(1 +a — b),
where a and b are independent and uniformly distributed on the unit interval, but
not greater than the minimum player balance). Each of the n uneliminated players
antes $S, and a winner is determined by a virtual roll of a fair n-sided die.

For j =0,1,...,499, we put

1 1 j+1 1 j—-11 3§
R; = | [N )U(__—7___7
i =13 % 7000°2 " 1000 2100072 1000

and Rsoo = {0,1}. To simulate a standard Brownian motion over [0, T], one should
choose N so that N hands at the given stake distribution corresponds (in variance)
to the continuous process being simulated at time 7. (We ran simulations for N =
75,000 and N = 250,000.) One then computes, over each hand in a large number of

game iterations, sample averages, for each R;, of by, + b, conditional on rhrjrs € R;.

Data sets for N = 75,000 and N = 250, 000 are depicted in Figure 1; Infomin’s recom-
mendations and the 1 solution are shown for comparison. At P(Red HQ|Red) = 2,
the two simulations indicate posteriors in Blue of =~ .527 and = .492, respectively,
while at P(Red HQ|Red) = 1 the posteriors are ~ .664 at N = 75,000 and ~ .653
at N = 250, 000.° That the latter posteriors fall short of % is an example of what we
have been calling “regression”, though use of this term at the middle ranges of the

reported value P(Red HQ|Red) seems somewhat more dubious (cf. footnote 5).

7. CONCLUSION

Reasons why there cannot be a canonical solution to the Judy Benjamin problem
ought by now to be clear. Since regression kicks in to the degree that Judy is “sur-
prised” by the non-elimination of the various regions, her limiting posterior in Blue
is sensitive to the prior likelihood she attaches to such eliminations. That is, Judy’s
posteriors are sensitive to how much evidence she expects HQ to have acquired—and
it certainly seems clear that there can be no canonical answer to the question of how
much evidence Judy should expect HQ to have acquired.

9The posteriors at Rugy = (0, .001] U [.999,1) were substantially lower, ~ .628 and ~ .597 for
N =75,000 and N = 250,000 respectively.
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Conditionalization on a finite partition, on the other hand, is a “canonical” method of
updating, not because it is appropriate in all circumstances (or even “in the mean”)
where one learns which cell of a partition obtains, but because it is appropriate in
a particular sort of case that one identifies as “standard”—namely the case in which
the agent is told, always and only, which cell of a given partition obtains. Selection
effects like we have been looking at don’t apply in such a case, because there is no
chance of receiving partial or incomplete information'’; each cell is eliminated with

certainty, conditional on its being non-actual.'!
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107¢ is natural to ask whether such effects arise in the incomplete information scenarios where
Jeffrey conditionalization (as developed in R. Jeffrey 1965) is often taken to apply; if HQ reports
that P(Red 2nd) = %, should Judy (as Jeffrey conditionalization suggests) adopt posterior credence
in Blue equal to %, or to something else? If we treat the Blue subregions on par with the Red ones
then the % posterior is warranted by indifference. So such effects, if any, are sensitive to subdivision.
HThanks to Michael Huemer and two anonymous referees for helpful suggestions, and also to the

editors at Synthese for their persistence.
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