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Abstract
Optomechanical systems typically use light to control the quantum state of amechanical resonator. In
this paper, we propose a scheme for controlling the quantum state of light using themechanical degree
of freedom as a controlled beam splitter. Preparing themechanical resonator in non-classical states
enables an optomechanical Stern–Gerlach interferometer.When themechanical resonator has a small
coherent amplitude it acts as a quantum control, entangling the optical andmechanical degrees of
freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-
photon interference via a classically controlled beam splitter. The visibility of the two-photon
interference is particularly sensitive to coherent excitations in themechanical resonator and this could
form the basis of an optically transducedweak-force sensor.

1. Introduction

Over the last decade, the newdomain of engineered quantum systems has attracted considerable research
interest [1–3], the objective of which is to control the quantumworld. Quantumengineered systems are a
promising emergent technology, withmany important applications such as enhanced sensing andmetrology
[4–7], fundamental tests of quantummechanics [8] and quantum information and quantum computation
[9, 10]. Quantum control involvesmanipulating the evolution of a quantum system to steer the system to a
desired state. This is particularly important in quantum information and computation inwhich quantum states
of a qubit, such as a single photon,must be prepared, controlled andmeasured.

In quantumoptomechanics [11], opticalfields are used to both control the state of themechanical systemand
to read it out. In the simplest case, sideband cooling is used to prepare themechanical resonator in its ground state.
From there, various schemes have been devised to steer themechanical resonator intonon-classical states such as
squeezed states [12–14], phononnumber eigenstates [15–18] and cat states [19, 20]by suitable optical control.
Given the ability to prepare amechanical resonator in a non-classical state, we can then consider thepossibility of
using it to control the quantumstate of the light. It is therefore interesting to investigate the control of single
photon states andphoton–photon interactionsmediated by amechanical resonator prepared in a non-classical
statewith possible applications inphotonic quantum information processing [21–23]. In our protocol, the
mechanical state canbeprepared using aRamanprocess verymuch like that used for atomicRamanmemories.

Single photon states [24] are predominantly employed as information carriers in quantum communication
[25] and quantum information processing [26]. This has recentlymotivated the development of single photonic
technologies such as themethods to generate, control, process andmeasure single photons [27–31]. At the heart
of single photon experiments is the interference of two single photons at a beam splitter, a uniquely quantum
featurefirst demonstrated byHong,Ou andMandel and known asHOM interference [32]. It lies at the core of
the power of linear optical quantum information processing [10], demonstratedmost recently in boson

OPEN ACCESS

RECEIVED

23March 2016

ACCEPTED FOR PUBLICATION

19May 2016

PUBLISHED

20 June 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft



sampling experiments [33, 34]. This effect is observedwhen two indistinguishable single photons enter a 50/50
beam splitter where the photons bunch together and both are detected at one output port as a result of quantum
interference. AsHOM interference is a purely quantummechanicalmanifestation of single photon states
interacting at a beam splitter, controlling the beam splitter interactionwould lead to quantumor classical
control of the single photon states.

Langford et al [26] have introduced a controlled beam splitter interaction to coherently control the
conversion of photons between three opticalmodes as a route to generate and process complex,multi-quanta
states for photonic quantum information applications. In this paper, we consider thismodel in an
optomechanical scheme to take advantage of the intrinsic optomechanical nonlinearities for coherent photon
conversion and controlling the non-classical states of light. Ourmodel considers a quantum controlled beam
splitter inwhich amechanical degree of freedom controls a beam splitter interaction between two opticalmodes.
In particular, we show thatwhen themechanical resonator is prepared in a phonon number state it acts as a
quantum controller, entangling the optical andmechanical degrees of freedom; a kind of optomechanical Stern–
Gerlach interferometer.When the coherent excitation of themechanical resonator is increased, the controller
acts as a classical parameter, resulting in a classical beam splitter interaction. The experimental signature of the
transition fromquantum control to classical control is the visibility achievable in aMach–Zehnder (MZ) or
Hong–Ou–Mandel (HOM) interferometer for one and twophoton inputs, respectively. The results we present
demonstrate how an underlying quantum control can be configured as a purely classical control provided the
residual entanglement between the controller and the system can bemade arbitrarily small [35].

The implementation of single photon optomechanics entails a strong coupling between themechanical and
opticalmodes and is not yet experimentally achieved.However, several groups have put some efforts towards
this [29, 36]. For example, photonic crystal (PhC) resonatorsmake it possible to get both localized optical and
mechanicalmodes at the same time. This increases the optomechanical coupling strength between the optical
and vibrationalmode [37, 38]. Therefore, PhCs are promising candidates for engineering strong single photon
optomechanical coupling by providing high-Qnano-cavities. This achievement, together with improvements to
single photon sources [39, 40] and the technology to couple single photons into PhC cavities [27], offers a
platform for novel proposals using single photon optomechanics.

Our proposal is based on adouble cavity optomechanical systemwherein amechanical resonatormodulates the
coherent coupling of the twooptical cavities. Each cavity has a single input–output channel. This systemoffers a
strong intrinsic nonlinearitywhich cannot be achievedusing standard linear optical components. This nonlinearity
canbeused to implementmechanically assisted coherent photon conversionbetween the twodifferent optical
modes and create an effective photon–photon interaction.An example of this kindof systemhas beendevelopedby
thePainter group [38]. Another example is based on a single bulkflexuralmodedrivenby the opposing radiation
pressure forces of twooptical cavitymodes. If the cavitymodes are coupled, transformation tonormalmodes leads
to amodel inwhich the normalmode coupling ismodulated by themechanical displacement [41].

The protocol we describe is based on the ability to prepare themechanical resonator in either a Fock state or
a coherent state by transferring the desired state from the optics to themechanics using one of the opticalmodes.
In essence, this preparation step is using themechanics as a quantummemory and parallels atomic Raman
memory schemes [42]. In this way, we can prepare themechanics in a single phonon state or a coherent state
with varying amplitude. In the second stage of the protocol, we investigate how the preparedmechanical state
controls the beam splitter interaction between two opticalmodes prepared in single photon states.We show that
if themechanical resonator is described classically, this interaction implements a controllable beam splitter
interaction between the input and outputmodes of the optical cavities. As the coherent amplitude of the
mechanical resonator is reduced, the photons become entangledwith themechanical resonator and this is
reflected in a decrease in the visibility of aMZorHOM interferometer. Optical interferometry is thus a probe of
the entanglement between a quantum controller and the target system.

The paper is organized as follows. In section 2, we introduce amodel for amechanically controlled beam
splitter and, using a simple unitarymodel encoding a qubit or a qutrit into the optical degrees of freedom,we
investigate how the state of the controller can be varied to enable quantumor classical control of the optical
systemwith the transition between these extremes determined by the degree of entanglement between the
optical andmechanical subsystems. A simple interpretation is given in terms of ‘which-path’ information stored
in the controller. In section 3, we define continuousmode single photon states of the field. In section 4, we
generalize the simple single frequency analysis from section 2 to amultimode input–output analysis. In
section 5, we showhow the degree of quantum control can be determined using optical interferometry inwhich
themechanical system acts as a controlled beam splitter in place of a conventional beam splitter. The
mechanically controlled beam splitter is comprised of two coupled optical cavities with a coupling rate that
depends on themechanical displacement andwith each cavity coupled to a single inputmode and a single
outputmode. The visibility of the resulting interferometer is shown to be an experimental signature of the
degree of entanglement between the state of themechanical element and the light. As themechanical element
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becomes a classical controller, the entanglement goes to zero and the interferometer visibility goes tomaximum
value. Section 6 discusses the broader implications of ourmodel.

2. Coherent photon conversion

In this section, we provide a simplemodel which qualitatively explainsmany features that arise in the fully
quantummodel presented in section 4. Themodel consists of three single (frequency)mode bosons interacting
via a cubic interactionHamiltonian. Twoof the bosonicmodes describe the optical cavities and the third
bosonicmode describes amechanical system.We show that by preparing themechanical system in various states
(e.g. a Fock or coherent state)we can control the interaction between the opticalmodes.

In section 2.1, we present themodel and review the concept of coherent photon conversion [26]. In
section 2.2, we explicitly show that if themechanical object is prepared in a large amplitude coherent state, to a
very good approximation, it does not encode any ‘which-path’ information about the opticalmode excitations
while a perturbative analysis of the residual quantum correlations between the optical andmechanicalmodes
indicates that which-path information is present at higher orders in the coupling strength. Finally, section 2.3
illustrates that if themechanics is in a quantum state such as a Fock state or a small amplitude coherent state, the
optical andmechanical degrees of freedombecome entangled. This entanglement changes the behavior of the
systemby varying the extent towhichwhich-path information is present for different initial states of the
controller.

2.1. Unitarymodel
The classical beam splitter interaction between two opticalmodes a1 and a2 is defined by the unitary operator

( ) ( )( )† †
q = q- +U e , 1a a a a

BS
i 1 2 1 2

underwhich the optical operators transform as

( ) ( ) ( ) ( ) ( )† q q q q= -U a U a acos i sin , 2BS 1 BS 1 2

( ) ( ) ( ) ( ) ( )† q q q q= -U a U a acos i sin . 3BS 2 BS 2 1

Langford et al [26] introduced the concept of coherent photon conversion based on an ability to coherently
control the exchange of photons between two opticalmodes. TheHamiltonian realized an optical three-wave
mixing process inwhich a strong coherent pumpfieldwas used to create an enhanced nonlinearity in the
nonlinearmedium to convert a single photon into two single excitations in different frequencies. The defining
Hamiltonian for the process is

( ) ( )† † †= +H g a a b a a b , 4I 1 2 1 2

where a1, a2 are the annihilation operators for the bosonicmodeswe seek to control while b is the annihilation
operator of the bosonic controller. In [26], the controller was taken to also be an opticalmode but in this paper
the controller will represent amechanical degree of freedom.Our scheme uses the intrinsic nonlinearity of the
optomechanical beam splitter and does not need a nonlinear crystal.

TheHamiltonian in equation (4)will, in general, dynamically entangle the optical andmechanical degrees of
freedomdepending on the initial states used.Wewill nowdescribe a picture inwhich this entanglement can be
viewed in terms of ‘which-path’ information in a kind of optical Stern–Gerlach device inwhich optical
information is stored in themechanical element.

Wewill assume that theopticalmodes begin in an eigenstate of the total photonnumber † †= +N a a a a1 1 2 2,
while themechanical element is prepared in an arbitrary state ∣fñb. It is convenient in this case to use the twomode
Schwinger representationof ( )SU 2 towrite the joint state of theopticalmodes.Defining the generators of SU(2) as

( ) ( )† †= -S a a a a
1

2
, 5z 2 2 1 1

( ) ( )† †= +S a a a a
1

2
, 6x 2 1 1 2

( ) ( )† †= - -S a a a a
i

2
, 7y 2 1 1 2

with ( )= +S N N2 1 22 .We can then define the joint eigenstates of S2 and Sz in terms of the tensor product
photon number basis formodes ak as ∣ ∣ ∣ñ = - ñ Ä + ñs m s m s m, z 1 2.

The interactionHamiltonian equation (4) can then bewritten in the form

( ) ( )†= ++ -H g S b S b , 8I
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where † †= =+ -S S a a2 1 or equivalently = S S Six y. If the initial state of the entire system is

∣ ( ) ∣ ( ) ∣ ( ) ( )y fY ñ = ñ Ä ñ0 0 0 , 9bO

the total state at time t>0 can then bewritten as

∣ ( ) ( )∣ ( ) ∣ ∣ ( ) ( )å fY ñ = Y ñ = ñ Ä ñ
=-

t U t s m t0 , , 10
m s

s

z m b

with ( ) = -U t e H ti
I and

∣ ( ) ∣ ( )∣ ( ) ∣ ( ) ( )f y fñ = á ñ Ä ñt s m U t, 0 0 . 11m b z bO

Equation (10) is like a Stern–Gerlach device inwhich themechanical controller is keeping track of ‘which-path’
information.Wemake this interpretationmore explicit in section 2.2 below.

Clearly ∣ ( )Y ñt is an entangled state in general. Tracing out the state of the controller, we see that the state of
the optical system is

( ) ( )∣ ∣ ( )år = ñ á
=-

t R t s m s n, , , 12
m n s

s

n m zO
,

,

where

( ) ( )∣ ( ) ( )f f= á ñR t t t . 13nm b n m b

In general, ρO(t) is amixed state representing the degree of entanglement between the optical system and the
controller; a correlation that encodes ‘which-path’ information if the states ∣ ( )f ñtm b are distinguishable.

2.2. Classical control
Wenow consider the case inwhich themechanical element is prepared in a coherent state, ∣bñb, with a large
coherent amplitudeβ.We can use a canonical transformation ¯ b +b b , to include this amplitude in the
Hamiltonianwhile the initialmechanical state nowbecomes the ground state. The new interactionHamiltonian
is

¯ ( ) ( ¯ ¯) ( )† † † † † = + + +H g a a a a g a a b a a b , 14I 1 2 1 2 1 2 1 2

where ¯ b=g g . For simplicity, andwithout loss of generality, we takeβ to be real.
As a coherent statewith large amplitude is a semiclassical state, we expect that as ∣ ∣b becomes large, this

model should reduce to the simple unitarymodel of equation (1). To see this, wefix ḡ to be constant while

letting b  ¥.With this scalingwe can regard
¯
b

= g
g

1as a perturbation parameter in the dynamics

arising from equation (14). Terms arising tofirst and higher order terms in g describe optomechanical
entanglement and a departure from the simple unitary coupling of the opticalmodes described by equation (1).

We define ¯q = gt as the effective beam splitter parameter that can be reached by unitary evolution; for
example, a 50/50 beam splitter has q p= 4. Let the initial state of the optics and themechanics be

∣ ( ) ∣ ( ) ∣ ( )y bY ñ = ñ Ä ñ0 0 , 15bO

where ∣ ( ) ∣ ∣y ñ = ñ Ä ñn m0 O 1 2 is the initial state of themode-1 andmode-2, taken as a product Fock state, and
∣bñb is a coherent state. In terms of the SU(2) operators, ∣ ( )y ñ0 O is an eigenstate of Ŝz . Therefore, equation (11)
can bewritten as

∣ ( ) ( ) ∣ ¯ ( )∣ ( ) ∣ ( )f b q yñ = á ñ Ä ñt D s m U, 0 0 , 16m b z bO

where

¯ ( ) ( ) ( ) ( )† ( ) ( ¯ ¯ )† †
q b b= = q- + - - ++ - + -U D De e , 17gt S b S b S gt S b S bi 2i ix

andD(β) is the displacement operator with the property ( ) ( ) ¯† b b b= +D bD b . To second order in gt, wefind
that

∣ ( ) ∣ ∣ ( ) ∣ ∣ ∣ ( ) ( )∣
( ) ∣ ∣ ( ) ( ( )∣ ∣ ) ( )

f q y b q y b
q

y b b

ñ = á ñ ñ + á ñ ñ

+ á ñ ñ - ñ +

s m U gt s m U S D

gt
s m U S D

, 0 , 0 1

2
, 0 2 2 , 18

m z b z z b

z z b b

BS O BS O

2

BS
2

O

whereUBS is given by equation (1). Substituting this into equation (12), we thenfind that

( ) ( ) ( ) ( ) [ [ ( )]] ( ) ( )†r q q r
q

r q= - +
⎛
⎝⎜

⎞
⎠⎟U

gt
S S U0

2
, , 0 ... 19z zO BS O

2

O BS

with ( ) ∣ ( ) ( )∣r y y= ñ á0 0 0O O . The state of the two optical cavities, after fixed interaction time such that
¯q = =gt constant, is thus given by a completely positive unitalmap of the initial state.We can now see that, up
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to second order correction to the action of a classical beam splitter, we achieve a completely positivemap
corresponding to a dephasing channel thatmight arise, for example, as aweakmeasurement of Sz. This is
precisely what onewould expect if themechanics encoded ‘which-path’ information about the optical
excitations. The classical control given by the beam splitter interactionUBS is composedwith a random relative
phase shift between the two optical cavities. This leads to aweak suppression of the off-diagonal coherence terms
in the Sz basis. This effect can be interpreted as an effectivemeasurement of the relative occupation number of
each cavitymode. The results of thismeasurement are hidden in the quantum correlations between the cavity
modes and themechanical degree of freedomand thus reflects residual entanglement between the controller and
the optical system. This structure is typical of theway inwhich residual quantum entanglement in a semiclassical
controller affects the ideal classical control transformation [35]. The dephasing channel described above is not
the only decoherence phenomena that can happen (to second order in gt). However, this expression shows the
point that oncewe go beyond zero order, the controller gets entangledwith the optical system.

2.3.Quantum control
Wenow consider the opposite limit inwhich themechanical element is a quantum controller for the optical
states. Quantum control necessarily requires that the controller becomes entangledwith the target state for
appropriate states of the controller. For example, in a quantumCNOTgate, preparing the controller in a
superposition of the two computational basis states with the target in one of the computational basis states,
produces a Bell state for the combined system.

As in the previous section, the Schwinger representation allows one to see the kind of quantum control
realized in this system.Wenowwrite theHamiltonian given in equations (4) and (8), in terms of the
(dimensionless) position andmomentumoperators for themechanics

( ) ( )= -H g S X S Y , 20x yI

where ( )† †= + = - -X b b Y b b, i . ThisHamiltonian represents two orthogonal rotations of the pseudo-
spin controlled by two non-commuting operators in the controller. This is the canonical example of quantum
control considered in [43]: it is not possible to represent this kind of control using ameasurement and feedback
protocol from the controller to the optical subsystem.

To proceed, we need tofix the initial optical state. For practical reasons it is unlikely that wewill be able to
prepare states withN>2 in the foreseeable future. The caseN=1 requires a single photon and encodes a qubit
in the two opticalmodes [17]. In the next section, wewill see that this can be done using aMZ interferometer set-
up. The caseN=2 can be done by preparing a single photon in each opticalmode and corresponds to encoding
a qutrit into the optical system. In this case, the initial state of the optical system is ∣ ∣ ∣ñ Ä ñ º ñ1 1 1, 0 z1 2 in the
Schwinger representation. In the next section, wewill see that this suggests aHOM interferometer set-up to
investigate quantum to classical control.

The connection to interferometry can be seenmore clearly bywriting equation (10) for the two casesN=1,
2with the initial optical states ∣ ∣ñ ñ0 11 2 and ∣ ∣ñ ñ1 11 2 respectively

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ( )f fY ñ = - ñ + ñ-t t t1 2, 1 2 1 2, 1 2 , 21z b z b1 2 1 2 1 2

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ( )f f fY ñ = - ñ ñ + ñ ñ + ñ ñ-t t t t1, 1 1, 0 1, 1 . 22z b z b z b1 1 0 1

These two equations indicate that themechanical element acts, in general, as quantum controller of a qubit
(N= 1) or a qutrit (N= 2).

In theN=1 qubit case, it is easier towork in the dressed state basis rather than the tensor product basis as
the dressed states are eigenstates of theHamiltonian. These are defined by ∣ ∣ ñ =   ñH n g n n, ,I , where

∣ ( ) ( )+ ñ = - + -n n n, 1 2 1 2, 1 1 2, , 23/

∣ ( ) ( )- ñ = - - -n n n, 1 2 1 2, 1 1 2, , 24/

where ∣ ∣ ∣ ñ =  ñ Ä ñn n1 2, 1 2, 1 2 b with ∣ ñn b a Fock state of themechanical oscillator. If the initial state is
written in the dressed-state basis as

∣ ( ) ∣ ( ) ∣ ∣ ( )åy fñ Ä ñ = + ñ + - ñ+ -c n c n0 0 , , , 25b
n

n nO

where cn are complex coefficients, the state at a later time is

∣ ( ) ∣ ∣ ( )åY ñ = + ñ + - ñ+ - -t c n c ne , e , , 26
n

n
g n t

n
g n ti i

which is clearly a controlled rotation in the dressed state basis. For example, if the optical system is prepared in
the state ∣ - ñ1 2, 1 2 while themechanical controller is preparedwith a single excitation, ∣ ñ1 b, the state at a later
time is
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∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )Y ñ = - ñ Ä ñ + - ñ Ä ñt gt gti sin 1 2, 1 2 0 cos 1 2, 1 2 1 , 27b b

an entangled state in general.
In the caseN=2, the qutrit case, the corresponding case for the initial state

∣ ( ) ∣ ∣ ( )Y ñ = ñ Ä ñ0 1, 0 1 , 28z b

is

∣ ( ) ( )∣ ∣ ( )∣ ∣

( )∣ ∣ ( )

Y ñ= - ñ Ä ñ + ñ Ä ñ

- - ñ Ä ñ

t gt gt

gt

i
1

3
sin 6 1, 1 0 cos 6 1, 0 1

i
2

3
sin 6 1, 1 2 . 29

z b z b

z b

If wewrite the state of the optical system in formof equation (12), we have

( ) ( )∣ ∣ ( )∣ ∣ ( )∣ ∣ ( )r = ñ á + ñ á + - ñ á -- -t R t R t R t1, 1 1, 1 1, 0 1, 0 1, 1 1, 1 , 30z z zO 1,1 0,0 1, 1

where

( ) ( ) ( ) ( ) ( ) ( ) ( )= = =- -R t gt R t gt R t gt
1

3
sin 6 , cos 6 ,

2

3
sin 6 . 311,1

2
0,0

2
1, 1

2

We see that ( ) =R t 0n m, for ¹n m and there is a complete loss of coherence, due to the entanglement of the
optical andmechanical systems, and perfect which-path information of the optical system is encoded in the
mechanical object. Inspection of equation (29) indicates that this information is stored in the number of
mechanical excitations.

If the optical system is prepared in the same initial state in each caseN=1, 2 but themechanical controller is
prepared in a superposition of ground and single excitation, (∣ ∣ )ñ + ñ0 1b b

1

2
, the state at time t for the case

N=1 becomes

∣ ( ) (∣ ( )∣ ) ∣ ( )∣ ∣ ( )Y ñ = - ñ - ñ Ä ñ + - ñ Ä ñt gt gt
1

2
1 2, 1 2 i sin 1 2, 1 2 0

1

2
cos 1 2, 1 2 1 , 32b b

and for the caseN=2we have

∣ ( ) ( )∣ ( )∣ ) ∣

( )∣ ( )∣ ∣

( )∣ ∣ ( )

Y ñ=
-

ñ + ñ Ä ñ

+ ñ - - ñ Ä ñ

- - ñ Ä ñ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t gt gt

gt gt

gt

i

6
sin 6 1, 1

1

2
cos 2 1, 0 0

1

2
cos 6 1, 0

i

2
sin 2 1, 1 1

i

9
sin 6 1, 1 2 . 33

z z b

z z b

z b

Againwe take the example for the caseN=2 to calculate the state of the optical system in formof equation (12)
as

( ) ( )∣ ∣ ( )∣ ∣ ( )∣ ∣
( )∣ ∣ ( )∣ ∣

( )∣ ∣ ( )∣ ∣ ( )

r = ñ á + ñ á + - ñ á -
+ ñ á + ñ á
+ - ñ á + ñ á -

- -

- -

t R t R t R t

R t R t

R t R t

1, 1 1, 1 1, 0 1, 0 1, 1 1, 1

1, 1 1, 0 1, 0 1, 1

1, 1 1, 0 1, 0 1, 1 , 34

z z z

z z

z z

O 1,1 0,0 1, 1

0,1 1,0

0, 1 1,0

where

( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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i

2 3
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2
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1,1
2

0,0
2 2

1, 1
2 2

0,1 1,0

0, 1 1,0

Figure 1 shows the coefficientsRn,m ( ¹n m)whichmeasure the decoherence. It can be seen that these terms are
not equal to zero at the same time thus there is always some coherence in the systemwhich results in the
reduction of thewhich-path information. These examples show that, by varying the state of the controller, the
degree of entanglement between the optical system and the controller varies and so does thewhich-path
informationwhich affects the reduced state of the optical system.

A coherent state with a very small amplitude, b  1, can also be approximated as an asymmetric
superposition of ∣ ñ0 and ∣ ñ1
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∣ ∣ ∣
∣ ∣

( )b
b

b
ñ

ñ + ñ

+


0 1

1
. 36

2

Therefore, for amechanical systemprepared in coherent state with small amplitude there is less entanglement
between the controller and the optical system than there is for themechanical number state ∣ ∣ñ ñ0 or 1b b, resulting
in less decoherence and less which-path information stored in themechanics. In section 5, we consider the
visibility of the interference pattern, in aMZ interferometer for the qubit case and in aHOM interferometer for
the optical qutrit, as ameasure of this which-path information.

3. Continuousmode single photon states

Wewish to consider the case inwhich thefield driving each cavity ismade up of a sequence of pulses with exactly
one photon per pulse. The positive frequency components of the inputfield operator, ain(t) can bewritten in the
frequency domain as

( ) ˜ ( ) ( )ò w w= w w-

-¥

¥
-a t ae d e , 37t t

in
i

in
ic

whereωc is an appropriate carrier frequency.Wewill work in an interaction picture rotating at the carrier
frequency and ignore the oscillatory pre-factor in equation (37). However, it should be noted thatwhenever we
use single photon states as an input to an optical cavity wewill assume that the carrier frequency is resonant with
the cavity.

We nowdefine a single photon state as a superposition of a single excitation overmany frequencies [44]

∣ ˜( ) ˜ ( )∣ ( )˜ †ò w x w wñ = ñx
-¥

¥
a1 d 0 , 38in

where ˜( )x w is the spectral density functionwith the normalization condition ∣ ˜( )∣ò w x w =
-¥

¥
d 12 . The average

field amplitude of a single photon state is zero

∣ ( )∣ ( )˜ ˜á ñ =x xa t1 1 0. 39in

Wecan interpret this result as an indication of the randomoptical phase of a photon number eigenstate. A phase
dependentmeasurement on the single photon state using, for example, homodyne detectionwould give a null
signal on average. Despite this result, it is clear that the single photon state is a pure quantum state and as such
contains a great deal of quantum coherence. This is revealedwhenwe look at the intensity of the field rather than
thefield amplitude.

The probability per unit time to detect a single photon on an ideal detector is proportional to
( ) ∣ ( ) ( )∣†= á ñx xn t a t a t1 1in in and it is easy to show that

( ) ∣ ( )∣ ( )x=n t t , 402

Figure 1.The off-diagonal coefficientsRn,m versus the interaction time.
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where

( ) ˜( ) ( )òx w x w= w

-¥

¥
-t d e . 41ti

The fact that n(t) appears as themodulus square of a single, complex valued function in equation (40) is a
reflection of the underlying purity of the single photon state. In optical termswewould say that the pulse is
‘transform limited’ althoughwe need to bear inmind that this is highly non-classical state with an average field
amplitude of zero.

4.Optomechanicalmodel

The previous discussion, while a good introduction to the central features of themodel, is not realistic from an
experimental perspective. Typically, we do not have control of the optical state of the two cavityfields directly,
rather we only have control over single photon sources external to the optical cavities. In this setting, we need to
take into account the stochastic nature of the reflection and absorption of photons by the cavities. This situation
cannot be described by a single-mode and purelyHamiltonianmodel. Externally driven optical cavities have, of
course, long been understood in quantumoptics however typically the external fields are coherent or thermal.
Herewewill introduce new techniques for dealingwith the non-stationary input fields that correspond to single
photon sources rather than coherent or thermal sources.

The specificmodel of the bosonic control fieldwe propose is based on an optomechanical systemof two
coupled cavitymodes with an interaction strength that depends upon amechanical displacement coordinate,
although othermodels are possible, e.g. a Raman atomicmemory.Wewillmodel the interaction between the
two opticalmodes and themechanical resonator in terms of the same third order bosonicHamiltonian
discussed in equation (4). Let a1, a2 be the annihilation operators for the optical fields in two cavitymodeswith
resonant frequenciesω1,ω2 respectively, while b is the annihilation operator for amechanical resonatorwith
resonant frequencyωm. TheHamiltonian for this optomechanical system can bewritten as [38]

( )( ) ( )† † † † † †   w w w= + + + + +H a a a a b b g b b a a a a . 42m1 1 1 2 2 2 1 2 1 2

Wenowmove to an interaction picture for both opticalmodes and themechanicalmode. After the rotating
wave approximation, the interactionHamiltonian in the interaction picture including only the resonant terms is

( ) ( )† † †= +H g b a a ba a , 43om 1 2 1 2

wherewe have assumed the resonance conditionω2=ω1+ωm.We further assume that the cavitymodes are
coupled to a single input/output channel.

A nice feature of thismodel is that the optomechanical interaction can be configured to turn themechanical
element into a Raman quantummemory by choosing cavity-1 to be driven by a strong coherent pulse. In the
scheme presented herewe can exploit this feature to prepare themechanical system in various states, for
example, Fock states or coherent states of varying amplitude. Thismechanical coherent state preparation is
explained inmore detail in appendix A.

Once amechanical state, say a coherent state, has been loaded into themechanics, we can then inject single
photon states into the optical cavities. This interaction is then described as a controlled beam splitter interaction
between the opticalmodes controlled by the quantum state previously stored in themechanics.We then repeat
this process to do the interferometry so that, at each step, before injecting the single photons, we need to reset the
mechanics in vacuum state (by active cooling) and then load it with a coherent state. As reported in the state of
the art experiments with PhCoptomechanical systems, themechanical thermalization rate, ¯g nm m, is three
orders ofmagnitude slower than the optical damping rate,κ [45, 46]. Therefore, at each trial, we can assume that
we detect the photons before themechanical resonator is damped andwe neglect themechanical damping in
this work.

The total irreversible dynamics of the optomechanical system is given by themaster equation

[ ] [ ] [ ] ( )† † †  
r

r k r k r= - + + +
t

g a a b a a b a a
d

d
i , , 441 2 1 2 1 1 2 2

where the superoperator  is defined by

[ ] ( ) ( )† † † r r r r= - +A A A A A A A
1

2
. 45

The respective input and outputfields for each cavity are related to the intra-cavity fields by

( ) ( ) ( )k= -a t a t a . 46j j j j,out ,in
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If themechanics begins in a coherent state ∣bñ, we canmake a canonical transformation (a displacement of
themechanics amplitude) as in section 2 to obtain

¯ [ ] [ ¯ ¯ ] [ ] [ ] ( )† † † † †  
r

r r k r k r= - + - + + +
t

g a a a a g a a b a a b a a
d

d
i , i , . 471 2 1 2 1 2 1 2 1 1 2 2

Onemight worry if it is valid to treat the dissipative terms for the field as if therewas no coherent interaction
when ¯ g 1. The coherent interactionwill lead to normalmode splitting of the cavity fields which can indeed
alter how they are coupled to the dissipative environment. However, if the local cavitymodes are coupled to
independent baths (aswe assume), with no cross correlations, also flat enough spectral density, andκ1≈κ2, the
normalmodes are damped at the same rate as the localmodes.

Themechanical system can be prepared in different quantum states by using themechanical subsystem, as a
kind of Raman quantummemory for light.Wewill assume that, before every preparation step, active cooling is
used to prepare themechanics in the ground state.

A strong optical coherent field pulse is directed into one of the input optical waveguides, saymode-1, to
implement a beam splitter interaction betweenmode-2 and themechanicalmode. For example, a coherent
pulse on the input to cavity-2 can then be transferred to a coherent excitation of themechanics while a single
photon pulse input to cavity-2will be stored as a Fock state in themechanics. In this protocol, themechanical
degree of freedom is acting as a quantummemory [42].We thus have the ability to explore the transition from
quantum to classical control described in thefirst part of this paper. Further details on this preparation stage are
discussed in appendix A.

5.Mechanically controlled interferometry

Our objective here is to configure the optomechanical system to act as a controlled beam splitter in an
interferometer.Wewill assume that themechanical systemhas been prepared in a coherent state ∣bñb (see
appendix A).Wewill then take the input fields ( )a tj,in to bemulti-mode single photon states and perform
optical interferometry via aMZ interferometer orHOM interferometer, each using amechanically controlled
beam splitter in place of a conventional beam splitter. These states are injected into one or both of the input
modes to each cavity depending the kind of interferometer (MZorHOM). Thus the total initial state is

∣ ( ) ∣ ∣ ∣ ∣ ∣ ( ) ( )y bñ = ñ ñ ñ ñ ñx0 0 0 1 0 MZ , 48b1 2 1,in 2,in

∣ ( ) ∣ ∣ ∣ ∣ ∣ ( ) ( )y bñ = ñ ñ ñ ñ ñx h0 0 0 1 1 HOM . 49b1 2 1,in 2,in

Where ∣yñi,in is the state of the inputfield.
We nowneed tofind the operating conditions so that the optomechanical system can function as a beam

splitter port in an interferometer.

5.1. Semiclassical limit: open cavities
Aswe demonstrated in section 2.2, the semiclassical limit is obtainedwhen themechanics is prepared in a
coherent state with large coherent amplitude and the coupling constant, g, is small, while the effective
coupling, ¯ b=g g , is constant.We now consider this limit for the case of cavities driven by external single
photon sources.We can then compute the visibility of one and two-photon interferometry and how it
depends on dephasing corrections that appear in equation (19) due to entanglement between the optical and
mechanical sub-systems.

Assume that each cavity is driven by single photon pulse states withwavepacket envelope functions
( ) ( )x ht t, for the input to cavity a1 and a2, respectively, and that the coupling between the cavities is given by the

first term in theHamiltonian in equation (14), the semiclassical approximation. Note that wewill assume that
the carrier frequency of each single photon pulse is resonant with the respective cavity intowhich it is injected.
We do not explicitly see the carrier frequencies here aswe are alreadyworking in an interaction picture.We
further assume the symmetric case forwhich k k k= =1 2 . In the semiclassical regime, we use the quantum
Langevin equations for the opticalfields [47, 48]

( ) ¯ ( ) ( ) ( )

( ) ¯ ( ) ( ) ( ) ( )

k
k

k
k

=- - +

=- - +

a t

t
ga t a t a t

a t

t
ga t a t a t

d

d
i

2
,

d

d
i

2
, 50

1
2 1 1,in

2
1 2 2,in

inwhich the amplitude functions for single photon state inputs in ( )a t1,in and ( )a t2,in are respectively given by
( )x t and ( )h t . The solution to these linear equations is
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( ) ( ) ( ( ) ( ) ( ) ( ))

( ) ( ( ) ( ) ( ) ( ))
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ò

ò

ò
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1,in 2,in
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1,in 2,in
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1,in 2,in

0
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where ( ) ( ¯ )= k-A t gte cost 2 , ( ) ( ¯ )= - k-B t gtie sint 2 , ( ) ( ¯ )= kC t gte cost 2 and ( ) ( ¯ )= kD t gtie sint 2 .
We can nowderive the effective transmission and reflection coefficients when only one photon is incident on

the system. These are defined by

( )

†

†

ò
ò

= á ñ

= á ñ

¥

¥

R a a t

T a a t

d ,

d . 52

t

t

0
1,out 1,out

0
2,out 2,out

For the single photonwith pulse shape ( )x g= g-t e t 2, resulting from the decay of a photon from a cavity,
these are given by

¯ ( )
( ¯ )( ¯ ( ) )

¯ ( )
( ¯ )( ¯ ( ) )

( )

k g k
k g k

k g k
k g k

=
+

+ + +

= -
+

+ + +

T
g

g g

R
g

g g

8 2

4 4
,

1
8 2

4 4
, 53

2

2 2 2 2

2

2 2 2 2

where γ is the single photon bandwidth. Figure 2 shows the transmission,T, as a function ofκ and ḡ in units of γ.
We can use this figure to configure the optomechanical system as one port in an optical interferometer. Of the
two branches in thefigure, the lower branch is of experimental relevance as it enables us to operate with smaller
values of ḡ .

5.2.One photon interferometry:Mach–Zender interferometer
We insert a controlled beam splitter of the type described before byHamiltonian (4) into the output beam
splitter of aMZ interferometer, see figure 3.We inject a single photonwith an exponentially decaying shape,

( )x g= g-t e t1
2 , into the interferometer through the port containing cavity-1. Note that the carrier frequency

of this pulse needs to be set equal to the resonance frequency of cavity-1.We further use dimensionless units
assuming the cavity damping rateκ=1 in numerical simulations.

The initial input state to the optomechanical beam splitter after passing the first beam splitter is

∣ ( ) ( ∣ ∣ ) ( )y ñ = ñ + ñf0
1

2
e 1 , 0 0 , 1 . 54a a a a

i
1 2 1 2

Weuse the solutions to the Langevin equations (50) given in relations (51) to calculate the detection probability
in t to t+dt at the upper detectorD1

( ) ( ) ( ) ( )†+ = á ñP t t t a t a t t: d d . 55u 1,out 1,out

This probability versus detection time and phase shift is plotted infigure 4. For kt 1 the decrease inPu is due
to the transmission of a photonwhich has not interacted strongly with themechanics. This is evident because the
decay ofPu follows ( )x µ g-t e t 2. Infigure 4, it appears that themaximumvisibility of the fringes occurs at
k »t 3, but this can be deceiving. For this reasonwe usePu to calculate the visibility of the interference pattern at
each detection timewhich is given by

( ) ( ) ( )
( ) ( )

( )=
-
+

v t
P t P t

P t P t
, 56u u

u u

max min

max min

where Pu
max (Pu

min) ismaximized (minimized) over the phase shiftf.
For the fully quantummechanical description of the system,we use the unconditional Fock statemaster

equationmethod [49, 50]which for a systemhaving two inputmodes is
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whereH is theHamiltonian given in the equation (4), k=L ai i i and the superoperator  is defined by

[ ] ( ) ( )† † † r r r r= - +L L L L L L L
1

2
. 58

The dynamics is reduced to solving the hierarchy of equations for the operators rm n p q, ; , . These act on the
jointHilbert space of the system and the input fields. The subscriptsm, n refer to the Fock basis for the input to
cavity-1 described by thewave packet ( )x t while p, q refer to the Fock basis of the input to cavity-2 described by
thewave packet η(t). As each input has, atmost, one photon, the indices are restricted to the values 1,0. For
example, if we had a single photon input at each cavitywewould need to solve for dρ1,1;1,1 which couples all the
way down to dρ0,0;0,0 in the hierarchy of coupled differential equations.

After the photon passes through thefirst beam splitter and the phase shifter, the initial state of the input field
incident on the controlled beam splitter is given by equation (54)which is not a pure Fock state. Therefore, the
initial sate of the field has the form

( ) ∣ ∣ ( )år = ñáx h x h
=

¥

c n q m p0 ; ; , 59
m n p q

m n p qfield
, , , 0

, ; ,

The initial conditions are = =c c1,1;0,0 0,0;1,1
1

2
, = q-c e0,1;1,0

1

2
i , = qc e1,0;0,1

1

2
i and all other coefficients are

zero. The initial total state is given by equation (59), as [49]

Figure 2.The transmission coefficientT versus optical cavity damping rate over the input photon bandwidth (κ/γ) and cavity
coupling rate over the input photon bandwidth ( ¯ gg ).

Figure 3. Scheme forMach–Zender interferometer inwhich the first beam splitter is a conventional 50/50 beam splitter and the
second beam splitter is replaced by a controlled beam splitter. There is a phase shifter, shown byf, on the upper arm andwe load the
interferometer with an exponentially decaying single photonwave packet.
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( ) ( ) ( )*år r=
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¥

t c t . 60
m n p q

m n p q m n p qsystem
, , , 0

, ; , , ; ,

Therefore, we solve the hierarchy of differential equations produced bymaster equation (57) for
( ) ( )x h g= = g-t t e t1

2 .We need the solutions for ( ) ( ) ( )r r rt t t, ,1,1;0,0 0,0;1,1 0,1;1,0 and ( )r t1,0;0,1 to calculate
the dynamical state of the optomechanical system given by equation (60).Whenwe use the Fock statemaster
equation approach, a different phase convention to the input–output relation (46) is used (see sectionfive of
[48]) such thatwe have

( ) ( ) ( ) ( )k= +a t a t a t . 61j j j j,out ,in

To calculate the detection probability at the top detector,D1, which is defined in equation (95), one also
needs the action of the operators a1, in(t) and ( )a t2,in on twomode Fock states

( )∣ ( ) ∣

( )∣ ( ) ∣ ( )

x

h

ñ = - ñ

ñ= - ñ

x h x h

x h x h

a t n q t n n q

a t n q t q n q

; 1 ; ,

; ; 1 . 62

1,in

2,in

We then use equation (56) to calculate the visibility of the interference pattern for different values of the coherent
state amplitude shown infigure 5. This figure demonstrates that asβ increases, the corrections due to thefirst
and higher order terms in g, whichwas discussed in section 2, becomenegligible andwhenβ is large enough, we
recover a semiclassical interactionwithout any entanglement between the optical andmechanical degrees of
freedom.

In practice, photo detector operates with afinite integration time. Therefore, it ismore convenient to
integrate over time to calculate the detection probability atD1 as

( ) ( ) ( )†ò= á ñ
¥

P a t a t td , 63u
0

1,out 1,out

which gives a detection probability and an interference visibility independent of the detection time as onewould
expect in an experiment. This visibility is plotted infigure 6 versus coherent state amplitude prepared in the
mechanics. Thisfigure shows that by enhancingβ, the visibility saturates to the value obtained in the
semiclassical limit. The interference visibility of aMZ interferometer can be used as a sign to show the transition
fromquantum control to classical control that is obtained for a certain value ofβ.

5.3.HOM interferometer
The scheme for our systemworking as a beam splitter inside aHOM interferometer is shown infigure 7.We
send one photon to each of themodes a1 and a2. The single photons are specified by the same amplitude function
except one is time shiftedwith respect to the other

( )
( ) ( )( )

x g

h g

=

=

g

g t

-

- -

t

t

e ,

e , 64

t

t

1
2

1
2

and, as before, we assume that they have carrier frequencies resort with their respective cavities.We can then use
differential equations (50) togetherwith the input–output relation (46) to analytically calculate the probability of
the joint photon counting atD1 andD2 in the semiclassical regime [7]which is defined as

Figure 4.Probability of detecting the photon at the upper detector,D1, versus phase shift caused in one of the interferometer’s arms
(f) and the normalized detection time (κt), in the semiclassical regime ( g 0, b  ¥) forκ=γ=1 and ¯ =g 1 3which give a
transmission ofT=0.4. Thefigure shows the interference pattern created at the output of theMach–Zender interferometer.
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Figure 5. Interference visibility of aMZ interferometer versus detection time for different values of themechanical coherent state
amplitude forκ=γ=1, ¯ =g 1 3. For large enoughmechanical coherent state amplitude,β>6, visibility transits towards that one
obtained in the semiclassical regime.

Figure 6. Interference pattern visibility versusmechanical coherent state amplitude forκ=γ=1, ¯ =g 1 3.With these parameters,
the visibility obtained for the effective beam splitter in the semiclassical regime is 0.646.

Figure 7. Scheme forHong–Ou–Mandel interferometer using amechanically controlled beam splitter. Input single photons have
exponentially decaying pulse shapes entering the optical cavities with a time shift τ.
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In the quantum regime, oneway to calculate this two-time correlation function is to use the quantum regression
theorem, forwhich one needs to solve the unconditionalmaster equation.However, for this two-mode, two-
input photon case, this becomes complicated. Anotherway is to numerically simulate aHOMexperiment using
the stochastic theory of quantum jumps.We choose the latter approach in this work, the details for whichwill be
given later in this section. Before that, we start with a simpler calculation to give some physical insight into
testing the quantum to classical control by employing aHOM interferometer.

We consider the physically idealistic case of coincidence detection at a specific detection time t by calculating
the coincidence detection rate ( ) ( ) ( ) ( ) ( )† †t k k= á ñC t a t a t a t a t, 1 2 1 1 2 2 . This expectation value can be computed
using the Fock statemaster equation (57) as

( ) [ ( )] ( )† †t k k r=C t a a a a t, Tr . 661 2 1 1 2 2 1,1;1,1

This coincidence rate is plotted infigure 8(a) versus detection time and the time shift between the input photons
for the semiclassical regime.However, we get qualitatively the same plot for the quantum regimewith aHOM
dip forming around the τ=0 point. TheHOMdip can be clearly seen in this figure atfixed detection times.We
choose k =t 4.7 for which theHOMvisibility in the semiclassical regime is 1 and then plot the coincidence rate
versus the time shift between the input photons for different values of coherent state amplitude,β, changing
froma quantum regime,β=1, to very strong amplitudes, as can be seen infigure 8(b). One feature we observe
in thisfigure is the asymmetry in theHOMdip in the quantum regime, which arises from the asymmetry in
interactionHamiltonian given in equation (4). By increasingβ, this asymmetry is gradually removed since as we
increaseβ, there is a gradual transition to the semiclassical regimewith a symmetric interactionHamiltonian
between the opticalmodes. This figure also suggests that the change in theHOMdip can be used as ameasure of
the transition from the quantum control regime to the classical control regime.

We calculate the visibility of theHOM interference pattern as

( )
( ) ( )
( ) ( )

( )
t
t

=
-

+
v t

C t C t

C t C t

, , 0

, , 0
, 67

max
negative

max
negative

Figure 8. In thesefiguresκ=γ=1, ¯ =g 1 3. (a)Coincidence rate versus detection time (κt) and the time shift between the entering
photons for themechanical state in the semiclassical regime. As thefigure shows, theHOMdip changes for different interaction times.
(b)HOMdip for different values of initial coherent state amplitudes. Asβ becomes close to the semiclassical limit the asymmetry in
theHOMdip disappears. (c)Visibility versus detection time forβ ranging from small values in fully quantum regime to larger values
in the semiclassical regime. (d)HOM interference visibility for different values of initial coherent state amplitudes (β) atκt=4.7.
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which gives theworst case visibility for each curve. Figure 8(c) showsHOMvisibility versus the detection time.
For the chosen parameter regimes of γ and ḡ in this figure,maximumvisibility occurs atκt=4.7, the detection
time thatwe choose to plot visibility versus coherent state amplitude prepared in themechanics infigure 8(d).
Thisfigure also shows thatHOMvisibility can be an indicator to test the transition form the quantum control to
the classical control inwhich the visibility saturates to amaximumvalue.

In the next step, we perform the calculation using themore realistic definition of the joint detection
probability given in equation (65). As discussed earlier, we perform aMonte-Carlo simulation using the
stochastic version of the Fock statemaster equation to simulate theHOM interference which shows the ratio of
coincident photo-detections over the total number ofmeasurements versus the time shift, (τ).We need tomodel
the conditional evolution of the system. Following the same procedure as introduced for unconditional Fock
statemaster equation [49], we derive the conditionalmaster equation (formore details see [51]) describing the
dynamics of the system given vacuumdetection in bothmodes up to time t
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where ˜ ( )( )r tm n p q, ; ,
0 ,01 2 is the conditional un-normalized state of the system inwhich ni in the superscript ( )n n,1 2 is the

number of counts at detectorDi. The top level generalized density operator ˜ ( )( )r t1,1;1,1
0 ,01 2 is the physical state of the

system and is used to calculate the normalization factor: [ ˜ ( )]( )r +t tTr d1,1;1,1
0 ,01 2 , which is in fact the probability for a

vacuumdetection occurring in the time interval ( ]+t t t, d
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The conditional state of the system given that one photon is detected atD1 in the time interval ( ]+t t t, d ,
should be updated as
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and for a count occurring atD2 in t to t+dtwe have
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The associated normalizationwith the states given in equations (70) and (71) gives the probability for a photo-
detection occurring in the time interval ( ]+t t t, d at detectorsD1 andD2, respectively

( ) ( [ ( )] ∣ ( )∣

( ) [ ( )] ( ) [ ( )]) ( )

( ) †

† *

r x r

x r x r

= +

+ +

P t t L L t t

t L t t L t

d Tr

Tr Tr , 72

1 ,0
1 1 1,1;1,1

2
0,0;1,1

1 0,1;1,1 1 1,0;1,1

1 2

( ) ( [ ( )] ∣ ( )∣

( ) [ ( )] ( ) [ ( )]) ( )

( ) †

† *

r h r

h r h r

= +

+ +

P t t L L t t

t L t t L t

d Tr

Tr Tr . 73

0 ,1
2 2 1,1;1,1

2
1,1;0,0

2 1,1;0,1 2 1,1;1,0

1 2

Weperform the two-jumpMonte-Carlo simulation in four steps as follows: (1) start with the
optomechanical initial state ∣ ( ) ∣ ∣ ∣y bñ = ñ ñ ñ0 0 0 b1 2 and inject two single photons, with a time shift τ, to the cavity
inputs. (2)Generate a randomnumber, rand, in the range 0–1. If ( )( ) + >P t t t: d rand0 ,01 2 , no jump occurs
and the normalized state of the system at the end of the interval should be updated as
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If ( )( ) + <P t t t: d rand0 ,01 2 , a jump occurs andwe choose a second randomnumber randJ to decide if the
jumpoccurs inmode one or inmode two.
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(3)We repeat step (2) until we have detected both photons. (4)We repeat steps (1)–(3) for a large number of
trajectories.

Figure 9 shows the probability of having one count at each of detectorsD1 andD2. The solid line shows the
analytical results for the semiclassical regime as a solution to equation (65) [7]. Blue squares show the numerical
results for the semiclassical case obtained by usingMonte-Carlo simulation. For each τ, we performed 1200
trajectories. For other values ofβ in the quantum regime, we only compute the joint detection probability at
τ=0 sincewe are limited by our computation resources. However, this plot clearly shows the trendwe expect
to see; a decrease in theHOMdipwith increasingmechanical coherent state amplitude, as we observed in the
previousfigures.

In the semiclassical limit, there is an offset from zero in theHOMdip for totally indistinguishable photons.
Considering the fact that with the chosen parameters the effective beam splitter is performing atT=0.4, we also
give a full description of the behavior of the effective beam splitter in the semiclassical regime implemented in
bothMZ andHOM interferometers in appendix B. The analysis fully include all the phenomena involved in the
visibility reduction in this effective beam splitter which are not involved in a conventional beam splitter
interaction.

6.Discussion and conclusion

In this paper, we have specified an optomechanical scheme inwhich the quantum state of amechanical
resonator can be used as a quantum controller for single photon excitations in each of twowaveguidemodes.
Themechanical resonator controls the exchange of photons between two coupled cavities evanescently coupled
to optical waveguides. TheHamiltonian of ourmodel realizes a three-wavemixing process via a cubic
optomechanical nonlinear interaction. By controlling the quantum state of themechanical resonator we can
realize a quantum controlled beam splitter for the two input opticalmodes. Themodel we implementmakes
extensive use of a recently developed formalism for dealingwith non-stationary input Fock states to optical
cavities and serves a non-trivial application of this tool.

We have demonstrated that, when themechanics is prepared in a deep quantum state, the controlled beam
splitter instantiates a kind of opticalmechanical Stern–Gerlach interferometer for an optical qubit (one-photon
case) and qutrit (two-photon case).We have shownhow increasing the degree of coherent excitation in the

Figure 9. Joint detection probability versus the time shift between the entering photons to the interferometer forκ=γ=1,
¯ =g 1 3. The solid line shows the analytical results for the semiclassical regime. Data points with error bars are the results achieved by
solving the conditional stochastic Fock statemaster equation in aMonte-Carlo simulation. Each data point is the result of simulations
for 1200 trajectories except forβ=1, inwhich 400 trajectories were performed. In the semiclassical limit we observe a very good
agreement between the analytical calculations using Langevin equations and the numeric done using Fock statemaster equation. The
error bars are two standard deviation of a Bernoulli distribution.
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mechanical resonator leads to a decrease in the entanglement between the optical andmechanical degrees of
freedomand further showhow thismay bemonitored usingHOM interferometry of the input optical photons.
Infigure 5, we see that theminimum visiblity for normalized detection timesκt>1, is sensitive to the amplitude
of themechanics coherent state. Specifically the visibility varies rapidly when themechanics is acting as a
quantum controller i.e. ∣ ∣b < 2.When ∣ ∣ b 2 themechanics is essentially classical. Similar conclusions can be
drawn fromfigure 9.We see ( )( )G 02 varies rapidly for ∣ ∣b < 2. Both of these effects are therefore signatures that
themechanics is behaving as a genuine quantum controller. This decrease in entanglement is explained in terms
of the Stern–Gerlach analogy by the gradual loss of which-path information stored in themechanical resonator.
Further, these effects could be used as a weak force sensor if theweak force drives the coherent excitation of the
mechanical resonator. Given the ability to prepare themechanical degree of freedom in coherent states of
varying amplitude, thismodel demonstrates the emergence of classical control from anunderlying quantum
mechanicalmodel.

Acknowledgments

Authorswish to thank IanWalmesly and BenBaragiola for useful discussions.We acknowledge the support of
the Australian ResearchCouncil Centre of Excellence for EngineeredQuantumSystems, CE110001013. SBE
also acknowledges TheUniversity ofQueensland international scholarship. JCwas supported in part by
National Science FoundationGrantNo. PHY-1212445 and byOffice ofNaval ResearchGrantNo.N00014-11-
1-0082.

AppendixA. Preparation of themechanical system

Themechanical system can be prepared in a coherent state in twoways. In bothmethods, first a laser cooling
scheme prepares themechanical oscillator in the ground state. Firstmethod is to apply a classical resonant force
to themechanics to drive it to a steady state which is a coherent state. Second approach is based on the
mechanical degree of freedomoperating in a quantummemorymode [42]. In this approach, we drive one of the
opticalmodes by a strong continuous coherent field to implement a beam splitter interaction between the
mechanics and the other opticalmode. Thenwe send a strong coherent pulse to the second opticalmode. This
coherent field can then be transferred to a coherent excitation of themechanicalmode as a result of the beam
splitter interaction between themechanics and opticalmode-2. In both approaches, we have the potential to
prepare themechanics in coherent sateswith different amplitudes,β. Belowwe study the lattermethod inmore
details.

Supposewewish to load a coherent state into thememory. In that case the input to both optical cavities are
coherent time dependent pulses. The input pulse to cavity-1 will be taken to be a very strong coherent pulse and
wewill refer to this as the read/write (R/W) pulse. The input R/Wpulse is assumed to be in a coherent state with
complex amplitude ( ) t which is an externalfield to the cavity so the pulse intensity, ∣ ( )∣ t 2, must have units of
flux (s−1).We nowmake a canonical transformation

¯ ( ) ( )a= +a a t , 771 1

whereα(t) is the time dependent complexfield amplitude of the control pulse inside the cavity. The interaction
Hamiltonian is thenwritten as

( ( ) ( )) ( ¯ ¯ ) ( )† † † † †* a a= + + +H g a b t a b t g a a b a a b . 782 2 1 2 1 2

In order to operate as a quantummemorywewould like R/Wcavity field (a1) to respond quickly to the input
pulse, ( ) t so thatα(t) is slaved to ( ) t (the adiabatic approximation)

( ) ( ) ( )
a

k
=t

t2
. 79

1

In order to swap the state of the cavitymode-2 to themechanics, the strong control pulse should be always on
over the time required towrite to thememory. In this case,α(t) is very large over the interaction time between
the signal and thememory, sowith a good approximationwe can ignore the second term in equation (78)
compared to thefirst term.

The outputfluctuationfield (i.e. the output fieldminus the coherent component) is thus given by

( )†
k

=
-

+a
g

a b a
2i

. 801,out
1

2 1,in

If we assume that k g 11 , the output R/Wfield is virtually the same as the input R/Wfield, i.e. coherent, and
the entanglementwith the other degrees of freedom can be neglected. It is possible to account for the residual
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entanglement between theR/Wmodes in the adiabatic approximation by themaster equation, in the interaction
picture

[ ( ) ( ) ] [ ] [ ] ( )† † †*  
r

a a r r k r= - + + G +
t

g a b t a b t a b a
d

d
i , , 812 2 2 2 2

where

( )
k

G =
g4

. 82
2

1

The second last termdescribes a correlated quantum jump via the jump operator †a b2 wherein thememory is
accidentally excited and one photon is absorbed from the cavitymode-2. In order to use this system as a
quantummemorywe require that over the timeT of the RWpulse

( )G T gA, 83

where ( )ò a=A t td
T

0
is the pulse area, so that we can neglect the residual entanglement described by the

second term in equation (81) over the times required towrite or read to thememory.
We now assume that cavitymode-2 is continuously driven by a coherent drivingfield, with amplitude  ,

resonant with the cavitymode. The time dependent interactionHamiltonian for reading andwriting to the
memory is

( ( ) ( )) ( ) ( )† † †* *  a a= + + +H g a b t a b t a a . 84m 2 2 2 2

The corresponding quantum stochastic differential equations for thememory are
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2 2
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Prior to the R/Wpulse switching on, the cavitywill have reached a steady statewhich is in fact a coherent state
∣a ñ0 with coherent amplitude

( )
a

k
=

-2i
. 870

2

Wedefine a change of variable according to

( ) ( ) ( )òq a= ¢ ¢
-¥

t
A

t t
1

d . 88
t

Thus θ(t) is a sigmoidal function between 0 and 1 and centered on the R/Wpulse.
We now assume that the temporal width of the R/Wpulse,T, is sufficiently short that k T 12 . Thismeans

that over the time that the R/Wpulse is significantly different from zerowe can neglect the decay of the cavity. In
that case, we can approximate the dynamics over the time of the pulse by

˜ ( )
q

= -
b

ga
d

d
i , 892

˜ ( )
q

= -
a

gb
d

d
i , 902

where the dimensionless coupling constant is given by ˜ =g gA andwith initial condition set as ∣ ∣a ñ Ä ñ0 b0 2 . The
solution to these equations is given by a unitary transformationwith generator ˜( )† †= +G g a b ab . If we choose
˜q p=g 2wefind that the initial state thus evolves to

∣ ∣ ∣ ∣– ( )a añ Ä ñ = ñ Ä ñp-e 0 0 i , 91G
b b

i 2
0 2 2 0

so thatwe have swapped the steady state coherent amplitude in the optical cavity into thememory, with aπ/2
phase change.We thusfind that at the end of the first step of the protocol we have prepared thememorymode b
in the coherent state ∣bñb where b k= -2 2. At this point in timewe turn off the driving field on cavity-2
allowing it to relax back to the vacuum state. This completes the first step of the protocol.

Appendix B. Characterization of the effective beam splitter inMZandHOM
interferometers in semiclassical regime

The light detected in the reflection/transmission port of the effective beam splitter comprises of two parts as
shown infigure 7: (1) thefield that bounces off the cavity and directlymoves from the source to the detector
without entering the cavity (dashed blue line infigure 7) and (2) thefieldwhich is detected fromwithin the cavity
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(solid blue line infigure 7). To characterize this effective beam splitter having this inmind, we use the cavity
beam splitter in twomodel system interferometers: a classicalMZ interferometer and a quantumHOM
interferometer.Wewish to study the visibility of the interference pattern to obtain some intuition as to how this
effective beam splitter can be compared to a conventional beam splitter.

B.1. Characterization of the beam splitter in aMach–Zender interferometer
We inject a single photonwith an exponentially decaying shape into the interferometer already described in
figure 3. The visibility of the interference pattern is given by the relation

( )=
-
+

v
P P

P P
, 92u u

u u

max min

max min

where

( )†ò= á ñ
¥

P a a td , 93u t
0

1,out 1,out

is the probability to detect a single photon at any time in the upper detectorD1. The input state incident on the
effective beam splitter (second beam splitter shown infigure 3) after passing the conventional 50/50 beam
splitter (first beam splitter shown infigure 3) is

∣ ( ) ( ∣ ∣ ) ( )y ñ = ñ + ñf0
1

2
e 1 , 0 0 , 1 . 94a a a a

i
1 2 1 2

Therefore, Pu becomes
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2
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This relation gives the typical interference pattern for aMZ interferometer shown infigure B1 (a). The
interference visibility is given by

( ( ))
( )( ( ) )

( )k k k g
k k g

=
- +

+ + +
v

g g

g g

8 4

4 4
. 96

2

2 2 2 2

Figure B1(b) shows theMZvisibility for different values of k g and ¯ gg .
For aMZ interferometer inwhich the first beam splitter is a conventional 50/50 beam splitter and the second

beam splitter is a conventional beam splitter with reflectivity/transmissivity  , the visibility of the
interference is 2 . For = 0.5, the visibility is one. The red dashed line infigure B1(b) shows the
parameter regimewhere according tofigure 2, the transmission is 0.5. In this case, to compare the cavity beam
splitter with a conventional 50/50 beam splitter, we need to achieve a visibility as close as possible to 1. This
figure shows that to achieve a visibility greater than 0.9, in the case ofT=0.5, one needs towork in regimes

Figure B1. (a)Detection probability at detectorD1 versus phase shift. This figure shows the interference pattern for γ=1,κ=5 and
¯ =g 1.2 which results in a beam splitter reflectivity ofR=0.5 and interference visibility of v 0.91MZ . (b)MZvisibility for different
regimes ofκ and ḡ in units of γ. The red dashed line shows the parameters forwhich the transmission of the effective beam splitter
T=0.5.
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where k g  1. However, one can see that for values ofT other thanT=0.5, the overlap of the corresponding
transmission contour given infigure 2with the expected visibility value can be achieved in regimeswhere
k g  1or k g < 1.

In the next section, we use the effective beam splitter in aHOM interferometer which demonstrates a fully
quantumphenomena.

B.2. Characterization of the beam splitter in aHOM interferometer
The scheme for aHOM interferometer implementedwith the cavity beam splitter is shown infigure 7.We send
one photon into each of the cavities a1 and a2. The single photons are specified by the same amplitude function
but one of the input photons is time shiftedwith respect to the other

( )
( ) ( )( )

x g

h g

=

=

g

g t

-

- -

t

t

e ,

e . 97

t

t

1
2

1
2

The joint photon counting probability is given by equation (65). For the initial state ∣ ( ) ∣y ñ = ñx h0 1 1a a, ,1 2
this

joint detection probability becomes [7]
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where
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and

( ) ( ) ( ) ( )k g k dt g k dt= - - + + + -F g g g g g12 cos 2 4 3 sin .2 2 2 2 2 2

Figure B2 (a) shows theHOM interference pattern for some arbitrary parametersκ, and g. For τ=0, where
input photons are indistinguishable, quantum interference results in photon bunching andwe see theHOMdip.
The visibility is defined as

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
dt
dt

=
 ¥ -
 ¥ +

v
G G

G G

0

0
. 99HOM

2 2

2 2

Figure B2. (a)HOMdips for γ=1, ¯ =g 2 and the shown values ofκ. According tofigure 2, the optical parameters ḡ ,κ and γ given
for the red curve illustrate an effective beam splitter having the reflectivity ofR=0.5. The interference visibility of this curve is 0.81.
(b)HOMvisibility presented for different regimes of beam splitter parametersκ and ḡ in units of γ.
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Figure B2(b) showsHOMvisibility for different values ofκ/γ and ¯ gg .We see that compared towhatwe had in
the case of aMZ interferometer, HOMvisibility ismore sensitive to changes in ḡ andκ.Moreover, towork in
regimewhereR=0.5 and visibility>0.9, we need a largerκ/γ compared to those needed inMZ interferometer
case.We also need towork in stronger coupling regimes. The red dashed line shows the parameters for which the
transmission of the effective beam splitterT=0.5.
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