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Abstract  

This paper presents a 3D bonded discrete element and lattice Boltzmann method for 

resolving the fluid-solid interaction involving complicated fluid-particle coupling in 

geomaterials. In the coupled technique, the solid material is treated as an assembly of 

bonded and/or granular particles. A bond model accounting for strain softening in normal 

contact is incorporated into the discrete element method to simulate the mechanical 

behaviour of geomaterials; whilst, the fluid flow is solved by the lattice Boltzmann method 

based on kinetic theory and statistical mechanics. To provide a bridge between theory 

and application, a 3D algorithm of immersed moving boundary scheme was proposed for 

resolving fluid-particle interaction. To demonstrate the applicability and accuracy of this 

coupled method, a benchmark called quicksand, in which particles become fluidized 

under the driving of upward fluid flow, is first carried out. The critical hydraulic gradient 

obtained from the numerical results matches the theoretical value. Then, numerical 

investigation of the performance of granular filters generated according to the well-

acknowledged design criteria is given. It is found that the proposed 3D technique is 

promising, and the instantaneous migration of the protected soils can be readily 

observed. Numerical results prove that the filters which comply with the design criteria 

can effectively alleviate or eliminate the appearance of particle erosion in dams. 

 

Keywords  

Discrete element method; Lattice Boltzmann method; Fluid-particle coupling; Bond model; 

Immersed moving boundary 
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List of notation  

m         is the mass of the particle; 

I          is the moment of inertia of the particle; 

c           is a damping coefficient;  

a          is the acceleration; 

          is angular acceleration respectively;  

cF         is the contact force independent of bond; 

cT          is the corresponding torques; 

fF        is the resultant hydrodynamic force;  

fT        is the torque caused by the hydraulic force; 

b

nF        is the normal bond force; 

b

tF        is the tangential bond force; 

b

nK  is the normal stiffness for the cement; 

b

tK        is the tangential stiffness for the cement; 

bnF  is the critical tensile force; 

btF  is the critical shear strength; 

δ          is the normal overlap; 

tδ         is the tangential displacement; 

sfK       is the stiffness for softening period; 

 
1δ        is the overlap corresponding to critical bond strength; 

2δ         is the overlap corresponding to bond breakage; 

μ          is the friction coefficient; 

if          is the fluid density distribution functions; 

 x          is the coordinate;  

t             is the time; 

Δt          is time-step increment; 

           is  the collision operator; 

            is the relaxation time;   

eq

if         is the equilibrium distribution function; 
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ie            is the discrete speed of ith component of each node; 

v             is the macroscopic velocity of each node;  

iω           is the weighting factors;  

ρ            is the macroscopic fluid density; 

            is the kinematic viscosity; 

P            is the fluid pressure;  

SC           is termed the fluid speed of sound; 

C             is the lattice speed;  

h             is the lattice spacing; 

υ             is the kinematic viscosity of the fluid; 
B             is a weighting function;  

             is the local solid ratio;  

SV            is the nodal volume occupied by the solid particle; 

NV           is the whole nodal volume;  

iF            is the body force term;   

SU             is the velocity of the solid node; 

u              is the velocity of the fluid part at the node; 

PU           is the translation velocity;  

             is the angular velocity of the solid particle; 

D15(F)        is the diameter through which 15% of filter material will pass; 

D15(S)        is the diameter through which 15% of soil to be protected will pass; 

D85(S)        is the diameter through which 85% of soil to be protected will pass; 

erosionR      is the erosion ratio; 

1
N            is the numbers of eroded particles; 

N            is the total number of the base soil; 

ir              is the radius of the particle; 

sG           is the specific gravity.  
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1. Introduction  
 
The fluid-solid coupling has been an active research topic in various engineering disciplines 

(Ladd and Verberg, 2001, Kafui et al., 2002, Zhu et al., 2008, Wu and Guo, 2012). The 

complexity of the fluid-solid interaction in porous media originates from the microscopic 

interactions at the grain level, which makes it more challenging. Much progress has been 

achieved in solving such problems during the past fifty years.  One way is to treat the porous 

medium as a continuum and the macroscopic behaviour is governed by a set of partial 

differential equations (Li et al., 1990, Zienkiewicz et al., 1999). In this up-bottom approach, the 

fluid flow and the fluid-solid interaction are governed by the seepage theory which combines the 

Darcy law and the equation of continuity. Both the fluid and solid can be solved by the 

continuum-based approach, e.g. finite element method (FEM). The major strength of this 

approach is its high computational efficiency. Another class is the bottom-up approach, in which 

the porous medium is treated as an assembly of granular particles (Hakuno and Tarumi, 1988, 

El Shamy, 2004, Goodarzi et al., 2015). The macroscopic behaviour is obtained by resolving the 

microscopic/mesoscopic inter-particle forces in discrete element method (DEM). The fluid-solid 

coupling and fluid flow in pores can be approached by the mesoscopic particle-based methods, 

such as smoothed particle hydrodynamics (SPH) (Alejandro, 2008) and lattice Boltzmann 

method (LBM) (Cook et al., 2004, Strack and Cook, 2007, Feng et al., 2007, Feng et al., 2010, 

Leonardi et al., 2016). In these fluid solvers, the governing equations of fluid flow are algebraic 

equations rather than differential equations. Compared to LBM, the principal shortcoming of 

SPH is the tentative and immature treatment of complex boundaries. Due to the obvious 

advantages, including the Lagrangian characteristics, nature of parallelism and ease of complex 

boundary treatments, the LBM coupled with DEM is being attracting an increasing interest of 

researchers from engineering, mechanics and physics. Unlike the continuum-based approaches 

which assume the porous media as a macro-scale continuum, the coupled DEM-LBM technique 

is devoted to resolving the fluid-solid coupling at the microscopic grain level. Therefore, the 

computing cost of this fully particle-based method is rather expensive. The third class is the 

combination of particle-based DEM and the continuum-based computational fluid method 

(CFD). In the early DEM-CFD approach (Tsuji et al., 1992), the fluid-particle systems consist of 

large-sized fluid cells with small-sized particles submerged in them. For an isolated particle in a 

fluid, the equation to determine the drag resistance force is well established in CFD. However, 

for a particulate system, the presence of other particles reduces the space for fluid, generates a 

high fluid velocity gradient and, as a result, yields an increased shear stress on the particle 

surface. The effect of the presence of other particles can be considered in terms of local 

porosity (Di Felice, 1994, Kafui et al., 2002). Hu (1996) proposed a direct numerical simulation 

(DNS) technique, i.e. a fine resolution of CFD for fluid flow, where the fluid field is resolved at a 

scale comparable with the particle spacing and the particles are treated as discrete moving 

boundaries. The DEM-CFD is attractive because of its computational convenience. Recent 
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application of DEM-CFD in geomechanics can be found in references (Zhao, J. D. & Shan, T. 

2013, Jing et al., 2015, Zhao et al., 2017). However, the weakness of this method is the 

treatment of complicated fluid-particle coupling based on a set of semi-empirical equations.  

Although great efforts have been made in the past half century, our understanding of certain 

special coupling problems, such as the initiation and propagation of hydraulic fractures in 

petroleum engineering, internal soil erosions of granular filters in hydraulic engineering and the 

liquefaction analysis in geotechnical engineering, are still far from enough. In aforementioned 

problems, the intractability almost arises from the microscopic fluid-particle interaction. This 

characteristic makes the micro-scaled technique more fruitful than the continuum-based 

method, as the former can provide local and detailed response of porous media.  Given these 

reasons, the coupled DEM-LBM emerged as an effective numerical tool, a good complement of 

the continuum-based methods. This coupled technique treats the porous medium as an 

assembly of granular particles. In the real geomaterials, the bond or cementation existing 

between bonded particles is of paramount importance in their macroscopic mechanical 

characteristics (Delenne et al., 2004, Jiang et al., 2012). The bonded particle method (BPM) 

(Potyondy and Cundall, 2004), so-called bonded DEM, can simulate the cohesion force 

between bonded particles through bond models.  

The initially proposed bond model is referred as the contact bond model (Itasca Consulting 

Group Inc, 2002, Potyondy and Cundall, 2004) in Figs. 1 and 2. It approximates the physical 

behaviour of cohesion as a pair of elastic springs (or a point of glue) with constant normal and 

shear stiffness acting at the contact point. These two springs have specified shear and tensile 

strength. It is unable to reproduce some complicated behaviour of porous media, thus more 

advanced bond models are required (Potyondy and Cundall, 2004, Potyondy, 2007). Delenne et 

al. (2004) proposed a bond model where rolling contact was considered. The treatment of 

normal and tangential contact forces is the same as the contact bond model. The rolling 

resistance is similar to tangential component in the contact bond model. When moment of force 

reaches a critical value, the rolling resistance is then removed (Jiang et al. 2006 & 2012). For 

other advanced bond models, readers can refer to the references (Kazerani et al., 2010, 

Obermayr et al., 2013, Wang, 2016). 

Recently, a two-dimensional bonded particle and lattice Boltzmann method (BPLBM) has been 

proposed and well demonstrated (Wang at al., 2016, Wang at al., 2017a). This work aims to 

develop a three-dimensional computational framework for BPLBM, which couples the bonded 

particle method and the lattice Boltzmann method, for resolving the fluid-solid coupling in 

geomechanics. Currently, brittle failure bond models are utilised in most simulations of cohesive 

geomaterials. For geomaterials, the sudden loss of energy is unrealistic in the brittle failure 

bond model (Kazerani at al., 2010). In most of DEM simulations in geomechanics, the particle 

size adopted is up-scaled, hence one particle can be treated as a cluster which can be 

envisioned as an element in FEM. The macroscopic stress-strain relation is supposed to apply. 

Therefore, to alleviate the rate of energy dissipation during bond breakage, the normal bond 
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force model with softening effect is adopted in this work. Furthermore, a novel 3D algorithm of 

immersed moving boundary (IMB) scheme is proposed to resolve fluid-particle interaction. It 

includes efficient calculation of nodal solid ratio and identification of fluid and solid boundary 

nodes. The remainder of this paper is organized as follows. In section 2, the theory and general 

computational procedures of BPM and the formulations of bond models are illustrated firstly, 

which is followed by a brief elaboration of the lattice Boltzmann method. Next, the coupling 

algorithm of the immersed moving boundary scheme is presented in more detail in section 3. To 

quantitatively validate the accuracy of BPLBM, a benchmark called quicksand, in which particles 

become fluidized under the driving of upward fluid flow, is first given. Then, numerical examples 

of the transport of fine particles within granular filters in dams are investigated and validated by 

well-acknowledged design criteria in section 4. Finally, a brief conclusion and potential future 

work are given in section 5. 

 

2. Computational Methodology  

In this coupled method, the solid material is treated as an assembly of bonded and/or granular 

particles and the macroscopic behaviour of the solid is the comprehensive reflection of the inter-

particle interactions. The bond model is utilised to handle the cohesive force between bonded 

particles, and the treatment of the contact between granular particles is the same as that in 

DEM. In the meantime, the fluid flow is solved using the lattice Boltzmann method, and the fluid-

solid interactions are resolved through the immersed moving boundary (IMB) scheme (Noble 

and Torczynski, 1998) which is commonly used in the coupled DEM-LBM. 

 

2.1 Bonded particle method 

It has been well understood that the bonds existing between adjacent particles can resist both 

traction and shear forces. It will break due to excessive tension and/or shear forces (Delenne et 

al., 2004, Jiang et al., 2012). Nowadays BPM is being extensively used for simulating 

construction materials i.e. soil, rock and concrete.  

The principal problems in BPM are the calculation of contact forces and the contact detection. 

The processing of contact forces will be introduced in the following section. As there has been 

considerable research on the contact detection algorithm, detailed discussion of this part will be 

skipped and it can be found in the literatures (Feng and Owen, 2002, Munjiza, 2004). Given the 

efficiency in terms of CPU and memory, we used the no binary search (NBS) (Munjiza, 2004) 

contact detection algorithm for dense-packed samples in our in-house code BPLBM3D. 

The motion of a particle is governed by Newton’s second law 

mgFFcvma fc                                                             (1)  

fc TTθI                                                                       (2)  
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where m  and I  are respectively the mass and the moment of inertia of the particle; c is a 

damping coefficient; a  and   are the acceleration and angular acceleration respectively; 
cF  

and 
cT  are, respectively, contact forces and the corresponding torques, 

fF  and 
fT  are the 

hydrodynamic forces and the corresponding torques. 

 

In BPM, there are two interactions between solid particles: the particle-particle contact existing 

between granular particles and the cohesion between bonded particles. As the treatment of 

particle-particle interactions is the same as that in DEM and can be found in our previous work 

(Wang at al., 2016, Wang at al., 2017a), only the introduction of the treatment of cohesion, 

which is simulated by bond models, will be given in this section. 

 

2.1.1 Bond models    

Currently, brittle failure bond models are utilised in most simulations of cohesive geomaterials. 

For soils the bond is rather soft compared to rock bond. Even for rock, the sudden loss of 

energy is unrealistic in the brittle failure bond model (Kazerani at al., 2010). To alleviate the rate 

of energy dissipation during bond breakage, a normal bond force model with softening effect is 

adopted (see Fig. 3). In the tangential direction, a history dependent Coulomb friction model is 

used. They can be described as follows 
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where sfK  , 
1δ  and 

2δ are the stiffness for softening period, overlap corresponding to critical 

bond strength and overlap corresponding to bond breakage, respectively. μ  is the friction 

coefficient. 
tδ  

is a vector of tangential displacement, and the over-dot denotes a derivative of time. 

  

2.1.2 General algorithm of BPM 

To overcome the difficulty from the theory of BPM to its numerical implementation, a brief 

computational procedure of the bonded particle method is given in Table 1.  

 

Table 1 Algorithm of BPM 
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(1) First contact detection and record bonded particle pairs and corresponding initial 

distances  

(2) Install bonds between bonded particles. Relax sample if required. 

(3) Global contact detection and calculate overlap between particles in contact 

(4) Calculate the particle-particle interaction independent of bonding 

(5) Compute cohesion forces for bonded particles and break the bond if its critical value is 

exceeded 

(6) Update the position and velocity of each particle  

(7) Set t=t+△t; go to (3) 

 

In step (1) the first contact detection is performed for building up a bond list of bonded particles. 

The initial distances between bonded particles are record to obtain a fast relaxation process of 

the initial particles, when bonded models are applied. Here we propose a reduced-overlap 

method to ensure a fast relaxation of initial samples. In this method, the deformation of the bond 

for each pair of bonded particles is subtracted by the initial overlap at each time step. Therefore, 

the sample should be in equilibrium when bonds are installed. 

 
 
2.2 Lattice Boltzmann method   

The lattice Boltzmann method (Chen et al., 1991) is a class of computational fluid 

dynamics (CFD) methods. Unlike the traditional CFD methods, which solve the conservation 

(Navier-Stokes) equations of mass, momentum, and energy numerically. LBM treats the fluid as 

an assembly of mesoscopic particles. The propagation and interaction of those particles are 

governed by the lattice Boltzmann equation (see Eq. 5). The primary variables of LBM are fluid 

density distribution functions instead of pressure and velocity in the conventional CFD. This 

approach has both Eulerian and Lagrangian nature in the computational point of view. Due to its 

particulate nature and local dynamics, LBM has several advantages over other conventional 

CFD methods, especially in dealing with complex boundaries and parallelization of the 

algorithm.  

 

2.2.1 Bhatnagar-Gross-Krook (BGK) model 

Given the computational efficiency and ease in programming, the BGK model is the most 

adopted. It can be characterised by the following lattice Boltzmann equation: 

iiii Ωt,fΔttΔt,f  )()( xex                                      (5) 

where if  is the primary variables (so-called fluid density distribution functions); t,x  are the 

coordinate and time, respectively; Δt  and iΩ  are the time-step increment and the collision 

operator.  
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In the BGK Model, iΩ  
is characterised by a relaxation time   and the equilibrium distribution 

function ),( txf eqi  

 )()( t,ft,f
τ

Δt
Ω

eq

iii xx                                          (6) 

 

The D3Q15 model is the most popular 3D one and it uses a cubic lattice with 15 discrete 

velocity directions. The fluid particles at each lattice node move to their 14 neighbouring nodes 

with discrete velocities ei, (i =1-14). A proportion of the particles, with velocity e0, remain at the 

node. The 15 discrete velocity vectors are given in the following E matrix where rows represent 

directions: 
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The corresponding equilibrium distribution function can be defined as 
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v  is the macroscopic velocity of each node; the lattice speed C  and weighting factors iω  are 

defined as: 

Δt

h
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   where h  is the lattice spacing; Δt  is the time step and determined by 
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3

h
Δt

2


                                                       

(11) 

 
  is the kinematic viscosity. 

The macroscopic fluid density and velocity can be calculated from the distribution functions 





14

1i

ii

14

0i

i ef,fρ v                                      (12) 

The fluid pressure is given by 

3ΔρCp 2                                                     (13) 
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For more computational details of the implementation of turbulent models and body forces, 
readers can refer to our previous work (Feng et al., 2007, Feng et al., 2010). 
 
 
2.3 The fluid-solid coupling 

In the 1990s, the LBM was first applied to simulate the fluid-particle coupling problems (Ladd, 

1994, Zhang et al., 1999, Ladd and Verberg, 2001). In their method, the modified bounce-back 

rule (Ladd, 1994, Mansouri et al., 2009, Delenne et al., 2011, Lominé et al., 2013) was used to 

achieve the no-slip condition at the fluid-particle interface. The particle is divided into a large 

number of solid nodes by fluid grids. The fluid boundary nodes, exterior to particle surface, and 

the solid boundary nodes, interior to particle surface, are assumed to be connected by links. 

The particle boundary is represented by the mid points of links. Apparently, the stepwise lattice 

representation of the surface of a circular particle is neither accurate nor smooth unless a 

sufficiently small grid is used. More seriously, when the particle is in motion, its boundary nodes 

will continually change, which has serious impact in the computed hydrodynamic forces (Feng 

and Michaelides, 2004, Feng et al., 2007). In order to resolve the aforementioned problem, 

three approaches have been proposed. The first one is the so-called interpolation-based 

approach (Filippova and Hänel, 1998, Mei et al., 1999, Mei et al., 2002, Lallemand and Luo, 

2003, Yu et al., 2003). It is reported that the interpolation routines used to solve the distribution 

functions near the curved boundary result in a loss of mass conservation, which reduces the 

accuracy of the computed momentum transfer at the boundary (Lallemand and Luo, 2003, Kao 

and Yang, 2008). Later, the interpolation-based approach was improved by treating curved 

boundaries using an appropriate local refinement grid technique (Kao and Yang, 2008). The 

second approach is the immersed moving boundary (IMB) scheme proposed by Noble and 

Torczynski (1998). The hydrodynamic forces at the moving boundary are accomplished by 

introducing an additional collision term for nodes covered partially or fully by the solid and a 

weighting function involving the solid fraction within a computational cell. Because of its precise 

representation of the particle boundary, well computational stability and efficiency, the IMB has 

been widely used in the coupled DEM-LBM technique where a few thousand particles immersed 

in the fluid can be considered (Cook et al., 2004, Feng et al., 2007, Strack and Cook, 2007, 

Feng et al., 2010, Owen et al., 2011, Han and Cundall, 2013, Cui et al., 2014, Leonardi et al., 

2016). The immersed boundary (IB) scheme, the last approach, was introduced to the lattice 

Boltzmann method by Feng and Michaelides (2004) and examined by a couple of researchers 

(Peng et al., 2006, Shu et al., 2007, Dupuis et al., 2008). It is indicated that the non-slip 

boundary condition is not fully enforced and the choice of spring constants is arbitrary in the 

initial IB-LBM. Recently, Shu et al. (2007) proposed an implicit velocity correction based IB-LBM 

scheme in which the velocity correction should be determined in such a way that the velocity at 

the boundary interpolated from the corrected velocity field satisfies the non-slip boundary 

condition. It was then improved in terms of the accuracy of hydrodynamic forces (Wu and Shu, 

2009, Wu and Shu, 2010) and computational efficiency (Dash et al., 2014). Considering the 
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applicability and accuracy (Han and Cundall, 2011, Han and Cundall, 2013), the IMB scheme is 

adopted for solving the fluid-solid interaction in our program (BPLBM3D). 

 

2.3.1 Formulation of IMB 

The immersed moving boundary scheme was proposed by Noble and Torczynski (1998) to 

overcome fluctuations of hydrodynamic forces calculated by the modified bounce back 

technique. In this method, the particle is represented by solid nodes, including the solid 

boundary nodes and interior solid nodes. The fluid nodes near solid boundary nodes are 

defined as fluid boundary nodes. To facilitate the illustration of the 3D IMB scheme, a cross-

section through the centre of a sphere is given in Fig. 4. Four sorts of nodes, solid boundary 

nodes, interior solid nodes, fluid boundary nodes and normal fluid nodes, are, respectively, 

marked in red, yellow, green and blue. In order to retain the advantages of LBM, namely the 

locality of the collision operator and the simple linear streaming operator, an additional collision 

term, S
i , for nodes covered partially or fully by the solid is introduced to the standard collision 

operator of LBM. The modified collision operator for resolving the fluid-solid interaction is given 

by 

S

i

eq

iii BΩB)Δt(1t)],(ft),(B)[f(1
τ

Δt
Ω  iFxx               (14) 

where B is a weighting function that depends on the local solid ratio  , defined as the fraction 

of the nodal volume.  

When B is zero, the collision operator is reduced to standard one for fluid. The simplest form of 

B is that it is equal to the local solid ratio  . 

To eliminate Knudsen layer effects (Noble and Torczynski, 1998) appeared in the simplest form, 

the following form was proposed and a very good accuracy was obtained. 

)5.0()1(

)5.0(









B                                          (15) 

NS VV /                                                     (16) 

SV  is the nodal volume occupied by the solid particle and NV  is the whole nodal volume.  

The body force term 
iF  is determined by the commonly used Guo’s method (Guo et al., 2002). 

The additional collision term is based on the bounce-rule for non-equilibrium part (Zou and He, 

1997) and is given by 

)(ρ,f)(ρ,ft),(ft),(fΩ
eq

i

eq

iii

S

i uUxx S                         (17) 

where 
SU  is the velocity of the solid node, and u  is the velocity of the fluid part at the node. if   

is used to denote the bounce-back state from if . 

The velocity of the solid node accounting for the effect of particle rotation is described by 
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))z(z)y(y)x(x(ll 2

P

2

P

2

PPP  PS UU                  (18) 

PU  and   are the translation velocity and angular velocity of the solid particle. 

The resultant hydrodynamic force and torque exerted on the solid can be calculated through the 

momentum theorem, and they are given by 

   
n i

n )(BCh i
s
if eF                                         (19) 

   )(B)(Ch
i

n

n

  i
s
iPf exxT                             (20) 

 

2.3.2 Algorithm of IMB 

There are mainly three parts in the implementation algorithm: a) Sorting out fluid boundary and 

solid boundary nodes; b) Computing the solid ratio   for boundary nodes associated to the 

solid particle; c) approaching the interaction between fluid boundary and solid boundary nodes. 

Among them, the identification of fluid boundary and solid boundary nodes and computation of 

their solid ratio   are computationally expansive. Therefore, how to efficiently identify both fluid 

and solid boundary nodes and compute their solid ratio are of great importance for a particle-

fluid coupling simulation involving a number of particles. Although there have been lots of 

papers on the theory and application of IMB, its implementation is seldom reported (Wang at al., 

2017b). 

The detailed procedures are given below. 

1) Set the centre of sphere as the geometry centre, generate a circumscribed cube of (

h irr ) side length. h is the lattice size. Loop over all nodes within this cube, record 

potential fluid boundary and solid boundary nodes lying between a large circle ( h irr ) and 

a small circle ( h irr ). 

 
2) Different to the solid nodal area computed in the 2-D problem, the calculation of the solid 

nodal volume is very challenging. Hence, the Monte Carlo method is adopted for the calculation 

of solid fraction within one cubic lattice in this work (see Fig. 5).  

Loop over each potential boundary node, a great many points (𝑁𝑚) are generated randomly 

within the cube the boundary node under consideration locates.  

Then, the total number (𝑁𝑠) of the random points within the solid particle is determined by the 

geometry relation. The ratio of the number 𝑁𝑠 to the total number 𝑁𝑚 is the approximate solid 

fraction  . To examine the error of the computed solid fraction, different total number of points 

(1000, 5000, 10000 and 50000) are generated in one unit cube, respectively. Five samples are 

generated for each 𝑁𝑚. The random error is given in Fig. 6.  
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3) Finally, applying the IMB collision operator (Eq. 14) to achieve the coupling between fluid 

boundary and solid boundary nodes. Meanwhile, the hydrodynamic forces can be calculated by 

Eqs. 19 and 20. 

 

2.3.3 Two-way coupling procedure 

The two-way coupling of BPM and LBM is achieved by the IMB scheme. At each coupling 

process, the particle geometry, location and movement information is passed to IMB from the 

solid field; In the meantime, the variables, including density distribution function, velocity and 

body forces, of the fluid are send to IMB. Once the relaxation of fluid boundary and solid 

boundary nodes are approached by the collision operator (Eq. 14), then the updated fluid 

density distribution functions of the node and hydraulic forces applied to the solid particle are 

respectively transferred to LBM and BPM. The BPM-LBM coupling schematic is given in Fig. 7. 

 

 
3. Numerical Examples  
 

To evaluate the accuracy and applicability of the proposed coupled method, two test examples 

are carried out. First, quicksand problems of a single column of spheres with and without bond 

driven by upward seepage flow are carried out and discussed; Then, a small-scaled granular 

filter–soil system involving the soil erosion is given to further validate the BPLBM using a well-

acknowledged design criterion. 

 

3.1 Quicksand of a single column of spheres 

In the first benchmark, a single column of spherical particles of diameter 0.02 m are immersed 

in water. In the first model (0.02 m × 0.02 m × 0.08 m) shown in Fig. 8, the top three spheres in 

red are moveable. To make it comparable to model 2, the bottom sphere in blue is fixed. To 

obtain upward fluid flow, pressure boundary conditions are applied at the bottom and top of the 

model. The top fluid pressure is 0.0 Pa. To find the critical hydraulic gradient, simulations with 

bottom pressures, 7.84 Pa, 78.4 Pa, 3920.0 Pa and 7840.0 Pa, are respectively carried out. The 

corresponding hydraulic gradients, computed by Eq. 21, are 0.01, 0.1, 1.0, 5.0 and 10.0, 

respectively. It has been reported when the size ratio of particle diameter to lattice size is 

greater than 20, an accurate solution can be guaranteed. Hence, the grid size is selected as 

0.001m, dividing the domain into 20×20×80 lattices, so that the diameter of the particle covers 

20 lattices. The relaxation parameter   is 0.5000005. Other parameters, such as density, 

kinematic viscosity of fluid and contact stiffness of solid, are given in Table 2.  

 

ΔP/hi                                                                (21) 

 

Under the driving of upward fluid flow, the increasing hydrodynamic force gradually offsets 

downward resultant force of gravitational and buoyancy forces. The evolution of the acceleration 
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of top three particles under different hydraulic gradient is given in Fig. 9. Then, the 

corresponding accelerations at equilibrium state are shown in Fig. 10. Through computing the 

intersection, so-called critical hydraulic gradient at which the particle becomes fluidized, of X 

coordinate and the fitting curve, the critical hydraulic gradient obtained from numerical 

simulations is found to be 0.887. The analytical critical hydraulic gradient (Craig, 2013) can be 

determined by  

      
e1

1G
i s
cr




                                                             (22) 

The specific gravity sG  of particles is 2.75 and the void ratio of the column packing is 1.099. 

Then, the analytical critical hydraulic gradient, marked in blue in Fig. 10, is calculated to be 

0.834. It is found that the analytical vale and numerical results are very close.  

 

To validate the bond model, the second model with hydraulic gradient of 5.0 is undertaken. In 

model 2, the top three moveable particles are pined together and they are not allowed to 

separate; at the meantime, the fixed bottom particle and adjacent particle are bonded together. 

The bond stiffness and strength are given in Table 2. Other parameters are the same as those 

in model 1. The hydrodynamic forces applied to three moveable spheres in both models are 

given in Fig11. Comparisons of corresponding accelerations can be seen in Fig. 12. The 

resultant force of gravitational and buoyancy forces of three moveable spheres is 0.2155 N. It is 

found that in the first model the acceleration becomes positive after 10000 time steps when the 

hydrodynamic force exceeds 0.2155 N. While in the second model with bond, the acceleration 

is around zero until the hydrodynamic force exceeds 0.2275 N, which is the sum of the resultant 

force and bond strength, after about 24000 time steps. Then, the bond breaks, and the 

acceleration becomes positive suddenly.  

 
 

Table 2 Parameters for the solid and fluid  

Parameter Value Parameter Value 

Particle density (kg/m3) 2750 Fluid density (kg/m3) 1000 

Friction coefficient 0.3 kinematic viscosity (m2/s) 1.0×10-6 

Particle contact stiffness (N/m) 5.0×107 Bond normal stiffness (N/m) 5.0×105 

Bond strength (N) 0.012 Bond shear stiffness (N/m) 1.0×105 

 

3.2 Erosion in granular particle-soil system 

In the geotechnical engineering a granular filter is the typically well-graded sand or sandy gravel 

(Craig, 2013). It is an effective way to eliminate or alleviate this risk of seepage erosion 

occurring in dams and embankments, and it has been adopted in practice engineering for 

almost a hundred years. However, the behaviour of granular filters is still not well understood 

and the designing of granular filters are made according to the design criteria derived from 

experiments which are still the most important methods in the research of granular filters.  
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In this section, the applicability of the coupled bonded particle and lattice Boltzmann method will 

be demonstrated by modelling the performance of granular filters of different particle size 

distribution designed according to the design criteria.  

 

3.2.1 Design criteria (Terzaghi and Peck, 1948, Zou et al., 2013, Huang et al., 2014) 

In practice, the grain-size distribution of the filter should be properly manipulated to avoid the 

potential danger. Generally speaking, two conditions should be satisfied: 

a) The size of the voids in the filter material should be small enough to hold the larger 

particles of the protected material in place. To be specific, the effective diameter 15(F)D   

in the filter should be less than 4 × 85(S)D  of the protected soil.  

4
D

D
R

85(S)

15(F)

1                                                          (23) 

b) The filter material should have a high hydraulic conductivity to prevent build-up of large 

seepage forces and hydrostatic pressures in the filters. It means the effective pore 

diameter 15(S)D  is about 0.2* 15(F)D  to 0.25* 15(F)D  of the filter.  

5
D

D

15(S)

15(F)
                                                        (24) 

where D15(F) - diameter through which 15% of filter material will pass; 

           D15(S) - diameter through which 15% of soil to be protected will pass; 

           D85(S) - diameter through which 85% of soil to be protected will pass. 

 

3.2.2 Numerical model  

The base soil-filter system is modelled by a cubic sample (0.1m×0.1m×0.2m). The lateral 

boundaries are fixed walls, a stationary wall only effective for solid particles is exerted to 

support base soils and the granular filter, whilst, the upper surface of the granular filter is fixed. 

Apparently, the setup of soil-filter system (see Fig. 13) includes two parts: the base soil at the 

lower part and the filter layer.  

The base soil, the so-called protected soil, is comprised of 1500 various-sized particles. The 

cohesive force is considered through the bond models. In order to demonstrate the feasibility 

and accuracy of the proposed method, three filters, with different size ratios R1= 2.29, 3.43 and 

4.29, are constructed. The particles size distribution curves of filters and protected soils are 

given in Fig. 14. Two of filters comply with the design criteria and the last filter disobeys it. 

During the whole simulation, a continuous hydraulic loading is applied at the bottom. It has been 

reported when the size ratio of particle diameter to lattice size is 20, an accurate solution can be 
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achieved in the first test case. In the simulation involving thousands of solid particles, especially for 

3D problem, to increase the computing efficiency, the size ratio of particle diameter to lattice size 

cannot strictly satisfy as large as 20. In this example, to reduce the computing cost, the lattice 

space adopted is 1.0 mm, thus the problem domain is divided into 100×100×200 grids. The 

relaxation parameter   is 0.5000005. The time step of LBM, determined by Eq. 11, is 

1.667×10-5 s. Other model parameters are the same as those in the previous example except 

the critical bond strength of 10 N. 

 

3.2.3 Results  

During the whole simulation of the performance of granular filters, the transport of base soils 

and the evolution of hydraulic pressures can be successfully observed. The snapshots of the 

fluid-particle system with the representative ratio R1=3.43 at different instants are shown in Fig. 

15. It is found that at the initial stage the soil particles will move upward under the driving of 

hydraulic loading. Once these particles start to penetrate into the filter large-sized particles will 

be blocked by the filter. Finally, only the small-sized particles can pass through the filter. 

Detailed transport of soil particles within this filter can be seen in Fig. 15.  

From Fig. 16, it can be found that both fine and coarse particles of the protected soil pass 

through the large filter with R1=4.29. While, only part of fine particles can flow out from the 

medium filter with R1=3.43, and few soil particles penetrate into the small filter with R1=2.29. To 

provide insight into the progress of soil erosion, a quantitative erosion ratio is introduced and it 

is defined as the percentage of the mass of eroded particles over the total mass of the base soil 

(see Eq. 25). The soil particles flow out of the granular filter are treated as eroded particles. 








N
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3
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N
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i

soil

erosion
erosion

r

r

Mass

Mass
R

1

                                      (25) 

where 1
N  and N  are respectively the numbers of eroded particles and total number of the 

base soil. ir  is the radius of the particle under consideration. 

Fig. 17 gives the evolution of erosion ratio with normalised time where t=t/t0-1. t0 is the initiation 

time of erosion. At the early stage of simulations soil particles transport at a low speed and no 

eroded particles can be detected. A certain time (t0) later, the erosion ratio of protected soils in 

large filter grows up rapidly; while, the speed of particle erosion in medium is much lower. The 

final erosion ratios for filters are 10.0% for the large filter, 0.5% for the medium filter and 0.001% 

for the small filter at the end, respectively. Thus, the medium and small filters, which comply 

with the design criteria, can effectively alleviate or eliminate the appearance of particle erosions. 
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It is noticed that to simulate the natural sand, small bond strength is applied to above filters. To 

evaluate the effect of bond on erosion ratio, another two simulations with critical bond strength 

100 N and 1000 N are carried out for the large filter. The final erosion ratio for different bond 

strengths is shown in Fig. 18. With the increase of bond strength, some bonded particles, which 

undertake hydrodynamic forces smaller that the bond strength, become hard to break.  

In the modelling of the transport of soil particles in granular filters, the movement and 

distribution of soil particles at any instants can be readily captured at the pore level. Three filters 

samples are prepared for tests, and the numerical results match the design criteria well. For 

detailed simulation accounting for the effect of hydraulic gradient and other factors can be seen 

in our previous work (Wang at al., 2017c). Compared to the continuum-based methods, this 

novel approach can provide a microscopic insight into the particle erosion process, thereby 

furthering the engineers’ understanding of particle erosion problems in such fluid-particle 

systems.  

 

It is found that the selection of fluid viscosity and relaxation parameter should be very careful 

when the fluid is water. If the fluid is oil in DEM-LBM/BPLBM coupling, the simulation is more 

robust. If the fluid is water, to obtain a stable simulation the relaxation parameter   should be 

greater than and greatly approaching 0.5, because the kinematic viscosity of water is much 

smaller. At the meantime, to avoid a very small time step, kinematic viscosity should not be too 

small. Because the time step is proportional to kinematic viscosity.  

 

4. Conclusions 

 

This paper presents a 3D bonded particle and lattice Boltzmann method for resolving the fluid-

solid coupling problems in geotechnical engineering. It can be treated as an extension of DEM-

LBM where a bond model accounting for strain softening in normal contact are incorporated to 

investigate the influence of cementation between fine particles. In addition, a novel 3D algorithm 

of immersed moving boundary scheme was also proposed to resolve fluid-particle interaction. 

This mesoscopic/microscopic coupling method can process fluid-particle interactions at the 

grain-level which commonly ranges from hundreds of microns to several centimetres.  

Numerical simulations of the quicksand case of a single column of spheres and the 

performance of granular filters have well demonstrated the feasibility and accuracy of the 

coupled BPLBM approach. It gains further insight into the fine particle erosion in dams. Besides, 

the instantaneous state of the migration of soil particles can be readily observed. However, this 

coupled technique with high resolution is computationally expensive. The simulation of each 3D 

granular filter takes about 2 days. Therefore, the parallelization of BPLBM becomes an essence 

for 3D large-scaled simulations. 
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Figures  

 

Fig. 1 Contact bond model: normal component 

 
Fig. 2 Contact bond model: tangential component 
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a. Normal bond model with strain softening 

 
b. History dependent Coulomb friction model 

Fig. 3 Advanced bond model 
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Fig. 4 IMB scheme 

 
Fig. 5 Solid volumetric fraction in each nodal volume 

 
 

Fig. 6 Analysis error of Monte Carlo method 
 
 
 

 
Fig. 7 BPM-LBM coupling procedure 
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Fig. 8 Numerical model of quicksand 

 

 

Fig. 9 Evolution of the acceleration under different hydraulic gradient 
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Fig. 10 Accelerations at equilibrium state under different hydraulic gradient 

 

 

Fig. 11 Evolution of hydrodynamic forces 
 

 

Fig. 12 Evolution of the acceleration 
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Fig. 13 Setup of a soil-filter system 

 
 

 
Fig. 14 Particles size distribution curves 
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Fig. 15 Snapshots of the performance of medium filter (R1=3.43) 
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Fig. 16 Final distribution of soil particles in three filters 

 

 
Fig. 17 Variation of erosion ratio in three filters 

 

 
Fig. 18 Final erosion ratio versus critical bond strength in the large filter 

 


