
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

JMIR Mental Health

                                   

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa39946

_____________________________________________________________

 
Paper:

del Pozo Banos, M., John, A., Petkov, N., Berridge, D., Loxton, K., LLoyd, K., Jones, C., Spencer, S. & Travieso, C.

(2018).  Using neural networks with routine health records to identify suicide risk. JMIR Mental Health

http://dx.doi.org/10.2196/10144

 

 

 

 

 

 
Released under the terms of a Creative Commons Attribution License CC-BY 2.0. 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/157696911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa39946
http://dx.doi.org/10.2196/10144
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Using neural networks with routine health records to identify 
suicide risk

Abstract

Background: Each year, approximately 800,000 people die by suicide worldwide, 
accounting for 1–2 in every 100 deaths. It is always a tragic event with a huge impact
on family, friends, the community and health professionals. Unfortunately, suicide 
prevention and the development of risk assessment tools have been hindered by the 
complexity of the underlying mechanisms and the dynamic nature of people’s 
motivations and intent. Many of those who die by suicide had contact with health 
services in the preceding year, but identifying those most at risk remains a 
challenge.

Objective: To explore the feasibility of using artificial neural networks (ANNs) with 
routinely collected electronic health records (EHRs) to support the identification of 
those at high risk of suicide when in contact with health services.

Methods: Using the Secure Anonymised Information Linkage Databank UK, we 
extracted those who died by suicide between 2001 and 2015 and paired controls. 
Looking at primary (general practice: GP) and secondary (hospital admissions) 
EHRs, we built a binary feature vector coding the presence of risk factors at different
times prior to death. Risk factors included: GP contact and hospital admission; 
diagnosis of mental health issues; injury and poisoning; substance misuse; 
maltreatment; sleep disorders; and the prescription of opiates and psychotropics. 
We trained basic ANNs to differentiate between the suicide cases and paired 
controls, and interpreted the output score as the estimated suicide risk. We assessed
system performance with 10x10-folds repeated cross-validation, and studied its 
behaviour by representing the distribution of estimated risk across the cases and 
controls, and the distribution of factors across estimated risks.

Results: We extracted a total of 2,604 suicide cases and 20 paired controls per case. 
Our best system attained an error rate of 26.78% ± 1.46 (64.57% of sensitivity and 
81.86% of specificity). While the distribution of controls was concentrated around 
estimated risks < 0.5, cases were almost uniformly distributed between 0 and 1. 
Prescription of psychotropics, depression & anxiety and self-harm increased the 
estimated risk by ~0.4. At least 95% of those presenting these factors were 
identified as suicide cases.

Conclusions: Despite the simplicity of the implemented system, the proposed 
methodology obtained an accuracy similar to other published methods based on 
specialized questionnaire generated data. Most of the errors came from the 
heterogeneity of patterns shown by suicide cases, some of which were identical to 



those of the paired controls. Prescription of psychotropics, depression & anxiety and
self-harm were strongly linked with higher estimated risk scores, followed by 
hospital admission and long-term drug and alcohol misuse. Other risk factors such 
as sleep disorders and maltreatment had more complex effects.

Keywords: suicide prevention; risk assessment; electronic health records; routine 
data; machine learning; artificial neural networks

Introduction

Background
The World Health Organization (WHO) recognizes suicide as a public health priority.
WHO Member States are committed to working towards the global reduction of 
suicide rates in countries by 10% by 2020 [1]. In Wales alone, around 300 people die
each year by suicide, accounting for about1% of all deaths, and three times the rate 
of fatalities following road traffic accidents [2]. The suicide rate has barely altered 
over the last decade, and any change that has occurred has  generally seen an 
increase [3]. Each death by suicide in the UK is estimated to cost in excess of 
£1,370,000 (direct and indirect costs) [4]. In light of these observations, adopting a 
public health approach to suicide prevention “has to be a national priority” [5].

Unfortunately, suicide risk prediction has proven to be a challenging problem for 
epidemiological studies and their application to health care practice. The pathways 
to suicide are mediated by highly complex processes, integrating a large number of 
risk factor variables which are interdependent [6-9]. This creates difficulties around 
the positive identification of the relatively small number of individuals who will take 
their own lives from the much larger group of people in whom some or all of the 
various risk factors have been identified. Assessment of immediate suicide risk 
requires a clinical evaluation. However, the majority of those who take their own 
lives present to health services other than those specialised in mental health in their 
final year. .  The identification of those who are at risk - so that appropriate 
questions could be asked in relation to suicidality - would support ongoing suicide 
prevention efforts across a range of health services.

Short-term suicide risk prediction (i.e. days, weeks or months) would be particularly
useful for targeted interventions; but less is known about the processes underlying 
short-term suicidality  than longer-term presentations [10]. Distal, or identified 
long-term risk factors, have been found to have complex effects on short-term risk 
and therefore separate, specific research is needed.

At the same time, we now have databanks curating a wealth of electronic health 
records (EHRs), and administrative information which, when linked, could provide a 
representative picture of the biological, societal and health status of an individual at 
any point in time. Use of this data at scale is expected to make a pivotal contribution 
to the study of many diseases [11], especially those with complex longitudinal 
histories such as suicide. However, the sheer volume of data and the complexity of 



the suicide factors-risk model have proven to be a challenge for traditional 
epidemiological and statistical modelling methods. As a result, existing screening 
tools are reportedly inefficient [12].  Thus, advanced artificial intelligence (AI) 
techniques are currently better positioned to tackle the combined challenges of big 
data and suicide risk prediction.

Prior Work
Although the application of AI techniques in different areas of medicine is extensive 
[13, 14], the difficulties of processing routinely collected EHRs and big data in 
general have been reported elsewhere [15-18]. These include the volume, 
complexity, heterogeneity and changing nature of medical data as well as its poor 
mathematical characterization; the importance of physician’s interpretations; and 
the legal, ethical and social implications. It is only recently that we have had the 
resources to record, maintain and analyze routinely collected EHRs with millions of 
records. 

In the last decade, the use of machine learning (a branch of AI) to analyse EHRs has 
grown dramatically, spurred in part by advances in artificial neural networks (ANNs)
and deep learning [19]. Miotto and colleagues [20] created a deep ANN that received
hospital diagnosis codes and created a ‘patient representation’ vector of 500 
features. This vector was fed to a random forest to predict 78 different diseases, 
including mental disorders such as schizophrenia. . This model generated an 
accuracy of more than 90% for in excess of  76,000 patients, but suicide risk was not 
part of the study.

Indeed, the application of AI in psychiatry is a field that has received relatively little 
attention, but has great potential for innovation [11]. Some proposals found in the 
literature are optimization of the delivery of momentary cognitive-behavioural 
interventions [21], early identification of post-traumatic stress disorder [22], and 
analysis of social-network information for mental health research [23]. AI studies 
specifically focusing on suicide risk estimation are more recent and scarce.

Passos and colleagues [24] administered questionnaires to 144 participants with 
major depressive disorder or bipolar disorder to extract risk-factor information. 
Suicidality was estimated based on a previous history of suicide attempts. This data 
was then fed into various machine learning algorithms with the aim of identifying 
those at high risk of attempting suicide. A best performance of 72% accuracy was 
obtained with a relevance vector machine. 

Kessler and colleagues [25] used a population cohort of non-deployed U.S. Regular 
Army soldiers who had a diagnosed mental disorder and at least one outpatient 
visit. Their cohort included 147 deaths through suicide. Between 10 and 14 factors 
were extracted after outpatient visits followed by suicide (cases) and visits not 
followed by suicide (controls), and used to build a logistic regression with elastic net
regularization to predict suicidality in the 5 weeks subsequent to these visits. Their 
system obtained a sensitivity of 48% and a specificity of 84% when predicting 



suicidality. The authors concluded that their system “outperformed mental health 
professionals to a large margin”.

Goal of This Study
We aim to explore the use of ANNs with routinely collected EHRs to estimate suicide 
risk within the general population. This approach builds on Passos et al’s and 
Kessler et al’s research, taking it a step further by relying on routinely collected 
EHRs across health settings rather than mental health questionnaires. Hence, our 
system would not depend on information that is collected only in specific 
circumstances (e.g. outpatient visits or hospital admissions), and could therefore be 
used to screen the entire population without increasing the workload of health care 
practitioners. 

Our system aims to improve, not only the quality of suicide risk assessment, but also 
its coverage. This is a crucial factor when considering that of those who died in 
Wales by suicide between 2010 and 2015, only 35% were admitted to hospital in the
year prior to death, and around 40% had an emergency department admission. 
Furthermore, of those who died in Wales by suicide between 2001 and 2015, 40% 
had never had a mental health record before their death; 65% if we focus on the year
prior to death. However, around 83% of these suicide cases had at least one contact 
with their GP during that period. Therefore, our system seeks to utilize these 
contacts in order to assess suicide risk and increase population coverage.

In addition, our system has the potential to be able to perform risk assessment 
continuously over time and in the background (i.e. without human intervention) 
across healthcare settings. Rather than using this as an assessment of immediate ‘at 
risk’ or ‘not at risk’, it will be used to flag patients, even those attending for reasons 
other than mental health, so that appropriate questions can be asked of them. The 
UK National Institute for Health and Care Excellence recommends that risk 
assessment tools and scales should not be used to predict future suicide or 
repetition of self-harm [26]. This is because of the dynamic nature of suicide risk. An
individual assessed as ‘not at risk’ on one occasion could subsequently become ‘at 
risk’, but professionals may not be as responsive to these changes due to the labelling
effects. The proposed system aims to flag at risk individuals upon any contact with 
health services so that relevant questions are asked and appropriately acted upon. 

The goal of this study is to test the feasibility of this concept, validating the 
methodology from functionality (performance) and medical (validity of factors-risk 
model) points of view. Using an oversimplified system (shallow ANN) we ensure 
conservative results regarding model complexity and performance. We combine 
data from primary and secondary care, use repeated cross-validation during 
evaluation,  and explore the distribution of factors across different levels of 
estimated suicide risk to describe the system’s behaviour.

In the remainder of this article, we describe the data sources used, how we defined 
our cohorts of suicide cases and controls, and the risk factors used during 



experimentation. Then  a brief introduction to ANNs is provided, followed by a 
detailed description of the models evaluated here. We detail the analyses that were 
run to assess raw performance and the resulting factors-risk model.. Following the 
presentation of  the results, we discuss their interpretation as well as the potential of
the proposed model, how it compares with the current state of the art approaches, 
its limitations and implications for practice, and our conclusions.

Methods

Materials

Data Sources
We used data available within the Secure Anonymised Information Linkage (SAIL) 
Databank [27].  Ethical approval was granted from the HIRU Information 
Governance Review Panel (IGRP), an independent body consisting of a range of 
government, regulatory and professional agencies, which oversees study approvals 
in line with permissions already granted to the analysis of data in the SAIL databank 
[28; 29] under the SID-Cymru project [30] (approval number 0204).

For this study, we linked and analysed the National Statistics Annual District Deaths 
Extract (ADDE), the Welsh Demographic Service (WDS), the Welsh Primary Care GP 
dataset (WGP), the Patient Episode Database for Wales (PEDW) and the Emergency 
Department Data Set (EDDS). While all datasets were used to define the study case-
control cohort, only WDS, WGP and PEDW were used to build the feature vector for 
experimentation. 

Data availability varied across individuals and databases. While ADDE and PEDW 
datasets have a nationwide coverage, WPG contains data from 348 out of 474 (73%) 
GP practices in Wales. This variation was reduced by restrictions applied during the 
cohort definition (see below). At the same time, while the WGP and PEDW datasets 
were available over the full study period [2001 - 2015], ADDE was only available 
from 2009. However, ADDE data was used only to determine a key date before death,
not to train or test the ANN system, and therefore we do not expect this  has biased 
our results significantly.

Cohort Definition
We extracted our cohort from SID-Cymru, a population based electronic case-control
study on completed suicide in Wales between 2001 and 2015 defined within SAIL 
[30]. There are approximately 32,000 deaths of Welsh residents registered each 
year, of which around 350 are suicides or events of undetermined intent. It is 
conventional research practice to include the latter in the definition of suicide [31]. 

The case-control study cohort was built according to the following steps:

1. We identified those that died through suicide at age 10 or older between 
2001 and 2015. Deaths of undetermined intent in those under 10 years of age
may be related to abuse or neglect and thus were excluded.



2. We followed individuals’ health histories retrospectively from their death 
date to identify the full calendar of health services’ contact leading up to 
death (CLD). This could include multiple entries within the WGP, PEDW and 
EDDS databases (e.g. attendance at A&E, admission to hospital, transfer to 
another hospital, and finally GP letters received from hospitals notifying of 
deaths). A maximum CLD duration of 1 month was considered to avoid 
including unrelated hospital stays. The CLD was subsequently removed from 
the analysis to avoid using information directly linked with the death of cases.

3. Only those residing in Wales at the time of their death, with GP data available 
for at least 80% of the 5 years prior to CLD were included in the study. This 
ensured that similar data coverage was available for all cases and controls. 
The value of 5 years was chosen to strike a balance between the length of 
health history and number of cases retained.

4. For each case, 20 controls were randomly selected, without replacement and 
excluding cases, after matching by gender and week of birth (±1 year). During
control selection, those with a similar time period of Welsh residency and GP 
data coverage were prioritised to ensure similar coverage quality. Although 
this number is unnecessarily large for traditional paired case-control studies, 
the proposed methodology benefitted from increased data availability during 
training.

We identified a total of 2,604 suicide cases - 2,012 (77.3%) of which were males, and
58,080 controls. These had a perfect (deterministic) or very high (probabilistic) 
linkage score (between 0.95 and 1) within SAIL.

Feature Vector
Only data from WDS, WGP and PEDW were used during experimentation.  Not all 
events recorded in WGP and PEDW represent face-to-face contact with the patient, 
and a single event may have multiple associated entries (e.g. multiple diagnoses).

We categorized each entry in WGP and PEDW into types of health event: depression  
anxiety; other common mental disorders (CMD); other mental health; non-
intentional injury & poisoning; self-harm; alcohol misuse; drugs misuse; possible 
maltreatment; physical sleep disorders; non-physical sleep disorders; and ‘others’. 
We also identified the prescription of opiates and psychotropics from WGP (PEDW 
has no prescription information) and recorded whether there were any entries 
recorded in WGP or PEDW (representing a hospital admission). This made a total of 
15 factors (11 diagnoses, 2 prescriptions, WGP entries and hospital admissions). 

The above categories were defined in terms of ReadCodes for WGP and ICD10 for 
PEDW with the help of expert clinicians and based on previous publications when 
available (depression & anxiety [32], other common mental disorders [33], non-
intentional and intentional (self-harm) injury and poisoning [34; 35], alcohol misuse



[36], drugs misuse [36, 37], possible maltreatment [38] and psychotropics [39]). Full
code definitions can be seen in Tables A1 and A2, Multimedia Appendix 1.

We identified the presence of the above 15 health events during 4 non-overlapping 
time-frames: 

1M: Between CLD and 1 month before CLD [CLD – 1 month, CLD].

6M: Between 1 and 6 months before CLD [CLD – 6 months, CLD – 1 month).

1Y: Between 6 and 12 months before CLD [CLD – 1 year, CLD – 6 months).

5Y: Between 1 and 5 years before CLD [CLD – 5 years, CLD – 1 year). 

The final feature vector also included age at CLD and sex, resulting in length 62: 1 
float age + 1 binary sex + 15 binary health events * 4 time-frames. This feature 
vector does not include data directly related to the CLD. Interactions between these 
factors are automatically designed by the ANN.

System Design

Artificial Neural Networks
Artificial neural networks (ANNs) are biologically inspired computing systems 
capable of learning tasks through examples/experience, without the need of 
programming task-specific rules or any a priori knowledge of the solution [40]. 

ANNs are typically composed of an input layer, one or more optional hidden layers 
and an output layer (Figure 1). Each neuron in the input/output layer corresponds 
to one dimension of the input/output vector respectively, with each dimension 
corresponding to one input/output variable. The complexity of the input-output 
model is governed by the activation function of neurons, the number of hidden 
layers, the number of neurons in each layer and the connection between 
neurons/layers.

The term ‘black-box’ is sometimes used to describe ANNs. This has contributed to 
the widespread misconception of ANNs not being transparent, which in turn has 
gained them a bad reputation in fields such as medicine, where understanding how 
and why decisions are taken is important. However, ‘black-box’ alludes to the fact 
that the input-output model generated by the network is too complex to be 
expressed by a set of simple rules that are syntactically meaningful to us. Such a 
model can nevertheless be expressed as a mathematical equation. For example, a 
simple ANN composed of no hidden layers and a single output neuron with a logistic
activation function is equivalent to the logistic regression model

y=S(b+∑
∀ i

w ji x i) ,



where xi are each of the input neurons (i.e. variables), wji are the weights from the i-
th input to the j-th neuron, b is a bias term, S(∙) is the sigmoid function and y is the 
output neuron (i.e. result). Typically, the input-output equation quickly grows in 
complexity, and therefore we opt not to represent it.

Evaluated Architecture
We implemented a simple ANN with 7 different configurations: no hidden layers 
(nn0), 1 hidden layer of size 10, 50 or 100 (nn10, nn50, nn100) and 2 hidden layers 
with sizes 10, 50 or 100 (nn10-10 , nn50-50, nn100-100). All layers were fully 
connected (i.e. each neuron in layer i was connected with all neurons of the previous
layer i-1). The input layer was composed of the feature vector described above (i.e. 
50 neurons). Hidden layers, when present, had a tanh activation function. The 
output layer had a single neuron with a sigmoid activation function, returning the 
score r of a sample belonging to a (suicide) case (r=1) or a control (r=0). A decision 
threshold of 0.5 was used, i.e. samples with r>0.5 were classified as cases while 
samples with r≤0.5 were classified as controls. We interpreted this score r as the 
estimated risk of suicide, differentiating between very low risk (VLR; r≤0.17), low 
risk (LR; 0.17<r≤0.33), moderate-low risk (MLR; 0.33<r≤0.5), moderate-high risk 
(MHR; 0.5<r≤0.67), high risk(HR; 0.67<r≤0.83) and very high risk (VHR; r>0.83).

The mean square error was adjusted to account for data imbalance (20 controls per 
case) and the cost of both classes (case and control) was equal to 1. The final cost 
included l2 weight regularization with scale 0.01.

All ANNs were trained with the gradient descent algorithm and exponential learning
rate decay starting at 1. Training was performed sequentially with 3 different batch 
sizes: 25, 100 and all cases and their respective controls (i.e. total batch size 525, 
2100 and full). The learning rate was reset with every change in batch size. Training 
within each batch size continued until a maximum number of epochs was reached, 
the change of cost function evaluated on the validation set was lower than a 
threshold or the change was in the negative direction (i.e. not improving). 

Using the oversimplified system (i.e. small number of features and shallow ANNs) 
described above, we favoured obtaining conservative results in terms of model 
complexity and performance, which we hope would counteract some of the 
limitations of the study (described below). In addition, in a practical application the 
cost of misidentifying suicide cases and controls will probably not be the same. 
Whether the system should be tuned to have a high sensitivity at the cost of low 
specificity or vice versa depends on many factors and is beyond the scope of this 
study. For simplicity, we equalized this cost to be the same for cases and controls. All 
experiments and ANNs were designed and executed using TensorFlow in Python. 



Statistical Analysis

System Performance
We followed a 10x10-folds cross-validation approach to evaluate the performance of
the ANNs. On each iteration, 1 fold was used for testing, 1 for validation (used to 
inform the early stopping training algorithm) and 8 for training. Cases were 
randomly distributed across folds, followed by their respective controls so that case-
control pairs were maintained at all times during partitioning (this partitioning rule 
was also applied during batch partitioning in training).

On each iteration, as well as measuring the classification error obtained with the 
threshold resulting from training, we varied the threshold to compute the receiving 
operating characteristics (ROC) curve and the area under the ROC curve (AUC). We 
compared performance between systems using a corrected resampled t-test [41] 
based on the average over sorted runs [42] for 10x10-folds, and P-values were 
further adjusted (Q-values) for multiple testing using the false discovery rate 
Benjamini and Hochberg (FDR-BH) method [43].

Finally, we repeated the above analysis shuffling the labels of each samples, i.e. we 
randomly assigned the label ‘case’ to one of the 20 paired controls of a case and 
rebranded the original case as ‘control’. This aims at evaluating whether our initial 
results are due to real relationships between labels and data, rather than to random 
idiosyncratic patterns in the data.

System Behaviour
In addition to measuring system performance, we attempted to assess the factors-
risk model obtained by the best performing ANN. Due to the dimensionality of the 
feature vector (i.e. number of input factors) and the freedom of the ANN to build 
complex models with numerous non-linear interactions, getting the full 
representation of the factors-risk model was not practical. However, the following 
results allowed us to gain some insights into how large a role each factor played in 
the computation of the risk score:

 The histogram of the number of cases and controls across estimated risk scores. 
This will provide information additional to the performance measurements 
about the classification capability for cases and controls.

 The histogram of the estimated risk difference when turning specific factors ‘on’ 
and ‘off’ across the whole dataset. This will show an estimated role of each 
individual factor in the computation of the risk score, and how it varies due to 
interactions with other factors.

 The distribution of each factor (i.e. individuals presenting a factor) across 
estimated risk scores. This will work in conjunction with the previous point to 
draw an estimate of the role of each individual factor.

 The incidence of each factor within estimated risk scores. This will allow us to 
compare incidences across risk levels and cases/controls.



Results of this analysis refer to the factor-risk model built by our ANN and do not 
necessarily agree with the real factor-risk model. Our confidence of how similar 
these two are depends on the size and quality of the testing data and on the 
performance of our system. This is true for any AI application, but it is especially 
important in medical applications such as the one proposed here.

Results

System Performance
The error rate of the described ANNs decreased slightly from 28.9% to 26.8% when 
increasing the number of hidden layers from 0 to 2 (Table 1). Overall, nn0 performed
worse than the rest. The performance difference between networks with 1 and 2 
hidden layers, although small, is statistically significant (q<0.05) (Table A3 of 
Multimedia Appendix 1). 

Table 1: Mean and standard deviation of the error rate (Err.), sensitivity, specificity 
and AUC obtained on the 10x10-folds experiments for each neural network.

ANN model Err. Sensitivity Specificity AUC

nn0a 28.89% ± 1.47 57.28% ± 2.97 84.94% ± 0.54 0.78 ± 0.02

nn10b 27.12% ± 1.42 64.19% ± 2.94 81.57% ± 0.57 0.79 ± 0.02

nn50c 27.09% ± 1.42 64.25% ± 2.92 81.57% ± 0.58 0.79 ± 0.02

nn100d 27.11% ± 1.42 64.18% ± 2.93 81.61% ± 0.61 0.79 ± 0.02

nn10-10e 26.78% ± 1.46 64.57% ± 3.00 81.86% ± 0.58 0.80 ± 0.02

nn50-50f 26.83% ± 1.43 64.52% ± 2.92 81.82% ± 0.59 0.80 ± 0.02

nn100-100g 26.83% ± 1.47 64.54% ± 3.04 81.79% ± 0.61 0.80 ± 0.02
aNo hidden layers; b1 hidden layer with 10 neurons; c1 hidden layer with 50 neurons; d1 hidden layer with 
100 neurons; e2 hidden layers with 10 neurons; f2 hidden layers with 50 neurons; g2 hidden layers with 100
neurons.

Figure 2 shows the ROC curve of the best performing network for each number of 
hidden layers (i.e. nn0, nn50 and nn10-10). ROC curves of nn10, nn50 and nn100 
were virtually identical, as were curves of nn10-10, nn50-50 and nn100-100. In the 
false positive rate (fpr=1-specificity) range between 0 and 15%, nn50 and nn10-10 
perform better than nn0. Past this point, the ROC curves get closer together and for 
fpr>30% they become virtually identical. Despite the similarity between ROCs of 
nn50 and nn10-10, the difference in AUCs between them is statistically significant 
(q<0.05) (Table A4 of Multimedia Appendix 1). In general terms, nn10-10 and nn50 
are capable of obtaining better sensitivity for more restrictive specificity values than
nn0, but perform similarly well for higher specificity.



Crucially, results after shuffling the labels were characteristic of a random process, 
i.e. 50% error rate and 0.5 AUC.

System Behaviour
The distribution of cases and controls across estimated risk scores reflects the 
results of Table 1 (Figure 3). Controls were mostly concentrated on scores below 0.5 
(hence, high specificity). Cases on the other hand were almost uniformly distributed 
(hence, low sensitivity). Overall, few individuals received an estimated risk score 
≤0.2. 

Prescription of psychotropics, depression & anxiety and self-harm seem to have the 
strongest effect on the estimated risk, increasing r by ~0.4 when changing from ‘off’ 
to ‘on’ across all time-frames (Figure 4). Most of the risk increase from prescription 
of psychotropics and depression & anxiety came on the first 6 months before CLD 
(∆r≈0.3), while self-harm had a more linear effect across time-frames. The 
distribution of ∆r for prescription of psychotropics was the most concentrated 
around the peak. These 3 factors were followed in strength by hospital admissions 
and alcohol misuse, with ∆r≈0.25. WGP entries, on the other hand, reduced the 
estimated risk by around 0.2.

Most samples were assigned a risk below the 0.5 threshold, with only 70 individuals 
resulting in a risk r≤0.17 (Table 2). In contrast, as many as 1,366 individuals 
obtained a very high estimated risk (r>0.83). Age and gender distributions were 
virtually identical across risk levels, except for the very low risk range (r≤0.17) 
which was mainly composed of women (Table 2). 

Table 2: Number of individuals, gender and mean age for controls, cases and 
estimated risk levels from very low to very high.

Description # Individuals # Males (% [95% CI]) Mean age

Controls 52080 40240 (77.37% [76.9%, 77.6%]) 48.04

Cases 2604 2012 (77.27% [75.9%, 78.6%]) 48.04

VLRa 70 4 (5.7% [2.6%, 12.1%]) 54.32

LRb 25744 17884 (69.5% [68.9%, 69.9%]) 48.07

MLRc 17818 15850 (88.9% [88.6%, 89.3%]) 46.52

MHRd 6011 4765 (79.3% [78.4%, 80.1%]) 49.31

HRe 3675 2703 (73.5% [72.3%, 74.7%]) 53.03



VHRf 1366 1046 (76.6% [74.6%, 78.4%]) 47.75

aVery low risk (r≤0.17); bLow risk (0.17<r≤0.33); cModerate-low risk (0.33<r≤0.5); dModerate-high risk 
(0.5<r≤0.67); eHigh risk (0.67<r≤0.83); fVery high risk (r>0.83).

Looking at how factors (individuals with factors ‘on’) were distributed across risk 
scores (Figure 5, and Tables A5 to A8 of Multimedia Appendix 1), in the month 
before CLD, 97% of those with a prescription of psychotropics, 96% of those with 
depression & anxiety and 95% of those with self-harm were classified as being at 
risk of suicide (r>0.5) (Figure 5). More than 78% of those presenting with one of 
these factors or drugs or alcohol misuse across most of the considered time-frames 
(i.e. 1M, 6M, 1Y and 5Y) were classified as at risk. Moreover, more than half of the 
individuals with recorded self-harm in the 5 years before CLD, or depression & 
anxiety or alcohol/drugs misuse in the month before CLD, received a very high 
estimated suicide risk score (r>0.83).

In terms of incidence (Figure 6, and Tables A9 to A12 of Multimedia Appendix 1), 
prescription of psychotropics across time-frames had an incidence between 77% 
and 90% on those with very high risk (r>0.83), and lower than 7% on those not at 
risk (r≤0.5), except on the 5Y period, which had an incidence of 22% on those with 
moderate-low risk (0.33<r≤0.5) (Figure 6). In comparison, between 35% and 48% 
of actual cases presented this factor. More than 70% had a depression & anxiety 
event and a hospital event between 1 year and 5 years before CLD.

Discussion

Principal Results
The presented oversimplified system successfully differentiated between 2,604 
suicide cases and 52,080 matched controls in 73.22% of tested instances during 
10x10-folds cross-validation. It achieved this using only routinely collected EHRs 
from GP and hospital admissions in the 5 years before the case’s CLD. 

The reduction in error rate as the number of hidden layers increased is 
representative of the complexity of the underlying suicide factors-risk model. In our 
case, results barely changed when the number of neurons in the hidden layers 
increased. In fact, performance differences between networks with the same 
number of layers came from a better tuning of the output scores resulting in an 
operational point closer to the optimal (i.e. equal error rate). Overall, we expect the 
advantages of having more layers and neurons to become obvious when more 
factors are fed into the model.

The disparity that was observed between sensitivity and specificity and on the score
distribution between cases and controls highlights the variation in the level of 
difficulty experienced when analysing both groups. Controls seem to follow more 
uniform patterns and are therefore easier to identify, hence the higher specificity 
and the clustering of controls below a 0.5 score. On the other hand, patterns of the 



cases are more heterogeneous, with some having feature vectors identical to 
controls, which explains the lower sensitivity and the almost uniform distribution of 
cases across risk scores.

The presented behavioural evaluations do not unequivocally explain the factor-risk 
model built by the network. However, they do provide a general idea of what is 
driving the output score upwards. The input factors prescription of psychotropics, 
depression & anxiety, and self-harm, and, to a lower degree, drugs and alcohol 
misuse, were strongly linked with increasing estimated risk scores. This is in 
keeping with previous literature [6-8] and provides evidence for proof of concept 
and the feasibility of identifying high risk individuals using ANNs and routinely 
collected EHRs. Similarly, gender and age were not related with risk estimation, also 
in line with findings of short-term risk studies [10]. 

On the other hand, some risk factors identified in the literature did not exhibit the 
same behaviour in our results. Physical sleep disorders seemed to decrease the 
estimated risk rather than increase it. Due to the relatively low incidence of this 
factor in our data, its effect may be attenuated by and highly dependent on more 
active factors. This would also explain the dispersion of its effect on estimated risk 
score (Figure 4). Furthermore, possible maltreatment also seemed to reduce the 
estimated risk. However, after a closer look, its effect seems to change sign as the 
maltreatment gets further away from the CLD, with possible maltreatment in the 5Y 
time-frame increasing the estimated risk. This may be related to long lasting effects 
of maltreatment and/or with help and support received in the first year after the 
maltreatment.

Due to the non-perfect specificity and relatively low sensitivity obtained, results 
from the behavioural analysis should not be directly extrapolated to the real world 
factor-risk model. Having said that, the remarkable agreement between our model 
and the existing literature works as an indication of the feasibility of our proposal. In
addition, we expect to substantially improve performance with a more complex 
system design, which will in turn increase our confidence in the validity of the 
obtained factors-risk model.

Potential of the Proposal
Perfect estimation of suicide risk using EHRs will never be possible, mainly because 
some individuals take their own life without ever seeking help or without presenting
to health care services with signs of being at risk. In addition, of those that seek help 
or present with evidence, signs may be missed or inaccurately/insufficiently 
recorded. Others may simply present insufficient evidence to distinguish them from 
controls (i.e. having exactly the same pattern as controls).

According to our data, around 90% of those that died through suicide in Wales had 
one or more contacts with health services in the year prior to their CLD, and 
approximately 30% of them had a contact related to their mental health. Therefore, 
the proposed methodology still has a good scope for application.



Comparison with Prior Work
To our knowledge, Passos’ [24] and Kessler’s [25] are the only two publications to 
date with proposals comparable to ours. They reported 72% and 66% of accuracy 
respectively, compared to 73% obtained by our best system. However, these results 
cannot be directly compared due to differences in the application setting, data used 
and evaluation process. Firstly, they applied and tested their systems on a hospital 
setting with only mental health patients. Secondly, their systems used smaller 
datasets and data extracted from questionnaires or outpatients visits with a 
specialist. Here we used diagnoses in primary and secondary care which are less 
specific, and primary care records have little indication of severity.

Interestingly, while Kessler’s method also suffered from low sensitivity, Passos’ 
system obtained comparable sensitivity and specificity. This may be due to the latter 
using data from the questionnaire Structured Clinical Interview for DSM-IV axis-I 
Disorders, which records highly specific diagnoses. In addition, Passos’ system 
aimed at differentiating previous suicide attempters from non-attempters, rather 
than identifying future risk.

Limitations
The results presented here are limited by the purposely oversimplified system 
design used both in terms of the number of factors considered (only 15 over 4 time-
frames) and the design of the ANN (2 hidden layers maximum). Still, our system 
improved chance identification by almost 50%. As we move from feasibility to pilot 
study and increase the complexity of the system we expect to increase performance 
substantially.

The problem of suicide risk estimation suffers not only from a highly complex 
factors-risk model, but also from a lack of a quantitative measure of the real risk of 
suicide which is only known with certainty within a short time span before a 
recorded attempt. At any other time point, we do not know the real risk for any 
individual. Someone at risk may refrain from ever attempting suicide, whereas 
another person may become at risk and attempt suicide within a very short period 
of time. This will have implications for a more practical evaluation (compared to the 
feasibility analysis presented here), as we will need to find ways to assess 
performance fairly without knowing the real risk ourselves.

Without properly labelled data, we need to rely on clinicians to assess the factors-
risk model constructed by the algorithm. In our case, most of the individuals with a 
self-harm event were classified as cases or as being at risk (i.e. r > 0.5). Some of 
them actually belonged to the control group, and we considered these as errors in 
our evaluation. However, should all these instances be considered errors? The 
answer to this question is not trivial, and has technical, clinical and ethical 
implications that we need to explore in more depth.



Implications for Practice
Our proposal will be most practical in settings where professionals do not have 
specialist mental health training but are in contact with individuals at risk of suicide.
Nurses, emergency department staff, ambulance services, police and prison workers
would be amongst the ones benefiting the most from the tool proposed here. These 
professionals face both the challenge of seeing large numbers of people where it is 
difficult to discern those at risk, and of assessing the suicidality of individuals often 
without having received sufficient training and under staff shortages [44; 45]. As a 
result it can be a challenge to identify individuals for appropriate assessment and 
care [46]. Having an advanced assessment tool with complex factors-risk models 
that produces good estimations would be invaluable in these cases.

Conclusions
Prescription of psychotropics, depression & anxiety and self-harm were strongly 
linked with higher estimated risk scores, followed by hospital admissions and long-
term drugs and alcohol misuse which is in keeping with the current literature. Other 
risk factors such as sleep disorders and maltreatment had more complex effects.

The system presented here is an oversimplified one, using a short feature vector and
shallow ANNs to assess the practicality of using EHRs in this way. As a feasibility 
study, we were more interested in (a) confirming the existence of discriminant 
information, and (b) validating the proposed methodology, than on obtaining high 
accuracy rates. Nevertheless, our system obtained an accuracy similar to other 
published methods based on specialized questionnaire data.

Prescription of psychotropics, depression & anxiety and self-harm were strongly 
linked with higher estimated risk scores, followed by hospital admissions and long-
term drugs and alcohol misuse. Age and gender had no effect on risk. Interestingly, 
possible maltreatment had opposite effects in the short and long terms, decreasing 
risk when recent and increasing it when more than a year before CLD.

The promising performance obtained with a basic ANN, and the fact that the 
resulting factors-risk model was in line for the most part with the literature, 
supports the hypothesis of the possibility of building a tool capable of estimating 
suicide risk in the general population using only routinely collected EHRs. We are a 
long way from employing such methods in clinical practice, but this is a first step to 
harness the potential of routinely collected electronic health records to support 
clinical practice in real time.
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