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Abstract One of the main challenges in the study of social
networks in vertebrates is to close the gap between group
patterns and dynamics. Usually scan samples or transect data
are recorded to provide information about social patterns of
animals, but these techniques themselves do not shed much
light on the underlying dynamics of such groups. Here we
show an approach which captures the fission-fusion dynamics

of a fish population in the wild and demonstrates how the gap
between pattern and dynamics may be closed. Our analysis
revealed that guppies have complex association patterns that
are characterised by close strong connections between indi-
viduals of similar behavioural type. Intriguingly, the prefer-
ence for particular social partners is not expressed in the length
of associations but in their frequency. Finally, we show that
the observed association preferences could have important
consequences for transmission processes in animal social
networks, thus moving the emphasis of network research from
descriptive mechanistic studies to functional and predictive
ones.
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Introduction

Networks have become a popular approach to study the social
fine structure of animal groups or populations in recent years
(Krause et al. 2007; Croft et al. 2008; Wey et al. 2008). There
is an increasing realisation that for the investigation of patterns
of cooperation, mate choice or dominance hierarchies, we
need to consider the complex relationships of multiple indi-
viduals that interact with many different conspecifics over
time and for which the social network approach provides an
ideal framework (Croft et al. 2006; Santos et al. 2006; Sih et al.
2009). Networks have been used as both descriptive and, to a
lesser extent, predictive tools to better understand the social
organisation of many different taxonomic groups [e.g. social
insects: (Naug 2008; Sendova-Franks et al. 2010); reptiles:
(Godfrey et al. 2009); teleost fishes: (Croft et al. 2004; Pike
et al. 2008; Croft et al. 2009); sharks: (Guttridge et al. 2011);
birds: (McDonald 2007; Oh and Badyaev 2010); cetaceans:
(Lusseau 2003; Williams and Lusseau 2006); pinnipeds:
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(Wolf et al. 2007); primates: (Flack et al. 2006; Henzi et al.
2009a; Ramos-Fernandez et al. 2009); bats: (Kerth et al.
2011); ungulates: (Sundaresan et al. 2009); rodents: (Lea
et al. 2010); herpestids: (Madden et al. 2009)]. Currently,
however, three major issues hamper the use of the network
approach.

First, in many biological systems we are not only interested
in whether an interaction between individuals occurs but also
how often it occurs and who initiated it. Typical network
metrics such as path length and cluster coefficient, however,
become difficult to interpret biologically if we take interaction
frequency and directedness into account (Croft et al. 2008).
Furthermore, the effect of missing individuals is largely un-
known in network studies and as such, it can be difficult to
interpret network metrics if 5 or 10 % of the group or popu-
lation are not observed (Marschall 2007; Perreault 2010; Croft
et al. 2011b; Cross et al. 2012). Given the interconnected
nature of a network even a few missing individuals that
occupy important positions (e.g. very central ones) can change
the properties of the entire network.

Second, in order to better understand the evolution of
social systems it would be highly desirable to make
comparisons between networks (for example, of popula-
tions that have evolved under different ecological con-
ditions). However, it turns out that it is difficult to make
meaningful comparisons if the networks have different
numbers of individuals and interactions between them
(Croft et al. 2008). Unfortunately under field conditions
(where group size and interaction frequency cannot be
controlled), this is often the case.

Finally, other long-standing issues with the social network
approach are the problems of how best to sample them and
how to relate pattern and dynamics (Croft et al. 2008; Franks
et al. 2009; Krause et al. 2009). Most network studies on
vertebrates are based on relatively infrequent surveys (ungu-
lates: Sundaresan et al. 2007), transects (dolphins: Lusseau
2003), scan samples of individual associations [primates:
(Henzi et al. 2009b), scan sampling every 30 min (Ramos-
Fernandez et al. 2009)] and once-per-day captures (fish: Croft
et al. 2004). Sampling at such a coarse-grain temporal scale
can provide some information regarding social patterns but
sheds little light on the underlying dynamics (which generate
the patterns). The dynamics, however, are crucial for develop-
ing an understanding of processes such as cooperative behav-
iours or disease transmission that take place on time scales of
just minutes or seconds. Furthermore, in most studies on social
networks the information gleaned from coarse-grain temporal
sampling is then accumulated to produce networks, therein
losing the details of internal social dynamics. The reason for
the convention of such coarse-grain sampling can in some cases
be traced back to the randomisation approach developed by
Manly (1995), which is used for data analysis and requires
independence of observations (Sundaresan et al. 2007), but in

other cases it is due to the difficulty of making continuous field
observations.

Here, we describe an approach which is based on Markov
chains (MC) that has the potential to circumvent some of the
above problems with the network approach. In a MC the
future state of a system depends solely on its current state
(although higher order MCs can take finite state histories into
account). Similarly, we selected MCs because they represent
the simplest possible form of an individual-based model. MCs
have been used frequently in animal behaviour studies to
identify social patterns (e.g. Cane 1978; Metz et al. 1983;
Harcourt et al. 2010). However, the main aim of this study
was to bridge the gap between pattern and dynamics of social
networks by developing a MC model of short-term social
interactions that can be used to (a) investigate the social
organisation of fish (i.e. Trinidadian guppy, Poecilia
reticulata) and (b) act as a blueprint for studies of social
networks in other species. We used focal follows of individual
fish whose nearest neighbour we recorded every 10 s over a
period of 1.5 min and thereby built up information on the fine-
scale temporal association patterns of fish in the wild. From
this information we developed a MC model of the social
dynamics of guppies which allowed us to characterise their
fission-fusion behaviour and social network structure (in the-
ory, however, this approach could also be used to add other
behaviours such as foraging, sexual and cooperative behav-
iours). Furthermore, we used this information to explore what
impact the social dynamics could potentially have on impor-
tant transmission processes (e.g. disease or information).
Finally, the sampling process we described above (i.e. fre-
quent recording of associations of focus individuals to devel-
op MCs) is particularly suitable for (a) species with small to
medium group sizes, (b) where focal follows of individuals
are possible in the wild and (c) laboratory studies on social
dynamics in general.

Methods

We caught and marked, using fluorescent elastomer (Croft
et al. 2004), all adult female guppies (P. reticulata) (N=18)
in a pool (approx. 47.5m2) of the Lower Turure river, Trinidad
(10° 40′ 51.5″ N 61° 10′ 4.5″W). Predation in this section of
the river is mainly attributable to the presence of large pisciv-
orous predators (e.g.Hoplias malabaricus) in the area, includ-
ing within our observation pool.

Quantifying behavioural and environmental variables
in the wild

Due to intrinsic difficulties associatedwith being able to locate
and track all marked individuals during the same observation
day or period, we recorded phenotypic attributes of all
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individually marked guppies only once to allow for a better
estimate of each trait for our model (see below). Observations
on different days may not have included all individuals and
would likely have included variance in environmental condi-
tions, perhaps resulting in the inclusion of an unknown bias to
our calculations due to differences in behaviour. At the onset
of each 10-min observation period, a focal individual was
selected, and a range of behavioural and environmental attri-
butes were characterised. Behaviourally, we recorded activity,
shoaling tendency and foraging. Activity was characterised as
the total time spent active (s) over the observation period.
Time spent holding position in the water column or at rest
on the bottom was not included in the activity measurement.
Shoaling tendency was quantified as the total time spent
within four body lengths of a conspecific female during the
observation period (Krause and Ruxton 2002). Time spent in
close proximity to a conspecific male was not included in our
measure of shoaling tendency due to potential confounding
effects associated with mating attempts by males. We quanti-
fied foraging behaviour as the total number of feeding at-
tempts made by a focal fish, as evidenced by actual bites on
substrate, during the observation session.We also recorded the
number of mating attempts by males which was characterised
by the total number of copulation attempts (gonopodium
thrusts) made by males on the focal female during the obser-
vation session. All behaviours were observed simultaneously
by three observers. Each observer was responsible for the
same phenotypic attribute for all fish.

We quantified two environmental aspects of each focal
individual’s behaviour: maximum depth and total area trav-
elled during the observation session. Following the comple-
tion of each observation session, the maximum water depth
for each focal fish was recorded as well as the total area
covered (m2). Total area was quantified by measuring the
maximum length and width travelled within the pool by each
fish during the observation session.

Social interaction: data collection

We focused our attention on a location within the observation
pool where fish naturally aggregated (i.e. a social ‘hotspot’,
5.4 m2). The hotspot occupied about 11 % of the total area of
the pool but contained on average 40% of all fish at any given
time. We collected information on conspecific associations by
following fish of known identity for 90 s and by recording the
identity of their nearest neighbour every 10 s, where applica-
ble. A fish was regarded as having no nearest neighbour if
there was no conspecific present within four body lengths of
itself during a given observation point. Given the small size of
the hotspot and the density of fish, 10 s was deemed an
appropriate time interval because a fish could switch partners
within a few seconds at any time. In addition, previous work
on a different guppy population had shown that focal

individuals encounter conspecifics every 14 s (Croft et al.
2003) which would provide opportunities for switching part-
ners at a rate lower than our observation frequency. Once we
had concluded the 1.5-min focus period for a given marked
fish, we identified and tracked a new marked individual (that
had not yet been observed as a focus fish) until all marked fish
present in the hotspot had been observed. Once an observation
period was completed in this way, we gently cleared the
hotspot of all fish by using a large branch and subsequently
left the hotspot unobserved for 10min. This was done tomake
certain that our subsequent observations of the hotspot were
independent of each other (but not result in major disruption of
the fish or observation environment, see Results). Following
this wait period, we then started collecting data for a new
network as above. We repeated this process 6 times in a day
from about 9.00 a.m. to 2.00 p.m. We had 5 such observation
days which were spread over a period of 15 days. The number
of marked fish that we observed during a given observation
period varied from 5 to 11 fish. From the data on focal fish
follows we constructed a fission-fusion model (see below).

Markov chain

Models

We constructed 3 models of increasing degree of detail using a
data-driven approach (i.e. we tried to build the simplest pos-
sible models that explain our observations and made assump-
tions only when necessary). These models, described as the
‘simple model’, the ‘more detailed model’ and the ‘individual
specific model’, are explained in the next paragraphs.

Simple model In this first step of our analyses we sought to
describe the general social behaviour of our fish by looking at
the patterns common to all focal individuals. If we do not
distinguish between individuals, our observation sequences
can be written in an abstract way using the symbols x and i to
indicate whether the focal fish was alone (no conspecific
within four body lengths) or whether it was social (with a
conspecific). For example, the sequence x, x, i, i, i, x, repre-
sents an observation session where the focal fish was initially
swimming around on its own for two successive points in
time, then with a neighbour for the next three time points and
lastly, on its own for the last time point.

In principle, a very simple model for these types of se-
quences could be constructed that consists of a single param-
eter, the probability p(i) of observing i at the next time point.
This model, however, makes the unlikely assumption that the
behaviour at a time point is independent of the behaviour at
preceding time points. As such, this very simple model could
not explain our observations (Fig. S1 in the Supplementary
material). We therefore extended our model by using condi-
tional probabilities p(i|x) and p(i|i) such that the behaviour at
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the next time point depended on the individual’s current
behaviour. The process that generates the x/i-sequences can
then be regarded as a (first-order) MC, where x and i are the
states of the MC, and the probability of going from state x to
state i is given by p(i|x). In the below section regarding the
goodness of fit for our models, we show that this modified
‘simple model’, which consists of only two parameters [since
p(x|i)=1−p(i|i) and p(x|x)=1−p(i|x)], can explain our obser-
vations of x/i-sequences. The simple MC model is shown in
Fig. 1a, where the probability of going from state i (x) to state x
(i) is denoted by p2 (p3).

More detailed model In a sequence of i’s (i.e. a period where
the focal fish is consistently social), the nearest neighbour to
the focal fish may change from one observation to another.
This more detailed model takes this factor into account and
extends the simple model by distinguishing between different
nearest neighbours. This means, the state i of the simple model
is split up into sub-states i1 … ik, where k is the number of
potential nearest neighbours of the focal fish. The resulting
model can then describe sequences like x, x, i2, i2, i2, i5, x, for
example, where the focal fish, after initially swimming around
on its own, had individual 2 as its nearest neighbour for three
time points and then individual 5 for just one time point.

As above, we again tried to find general patterns common
to all individuals. Along these lines, we found that a more
detailed model could be constructed by adding a single pa-
rameter to the simple model that specified the act of switching
between different nearest neighbours. This was possible be-
cause the mean time a focal individual spent with a certain
nearest neighbour per contact phase did not depend on the
neighbour’s identity. This means that although the state i of the
simple MC model is replaced by k states i1 … ik in the more
detailed MC model, only the probability for retaining the
current nearest neighbour needs to be added (which is the
same for i1 … ik), while the other probabilities can be carried
over from the simple MC model.

The more detailed MC model is shown in Fig. 1b, where
the probability of retaining the same nearest neighbour is
denoted by q1. When the contact with this neighbour ends, a
new neighbour is chosen among the remaining k−1 neigh-
bours with equal probabilities, where the sum of these prob-
abilities and q1 must equal q2 (the probability of retaining the
social state). The parameters of this model (i.e. the transition
probabilities q1, p2 and p3) were determined by a maximum-
likelihood estimation (see Supplementary material). We used
the data from all sessions for this estimation and constructed a
time-homogeneous MC model (i.e. we assumed that the

Fig. 1 Egocentric fission-fusion
model of social behaviour in the
guppy. a A fish can either be
social (with a conspecific)
denoted by i or alone (no
conspecific within 4 body
lengths) denoted by x. p2 and p3
indicate the respective
probabilities for changing states
and q2=1−p2 and q3=1−p3 those
for retaining current states. b A
detailed model of state i in the
presence of k potential nearest
neighbours. An individual is in
the sub-state ig of i, if individual g
is its nearest neighbour. If a focal
individual has chosen a nearest
neighbour it stays with it with
probability q1
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probabilities did not change between the sessions which is
justified by the goodness of fit of our model). Since this model
uses the same probabilities for all individuals, it can be used
for our study system as a null model of no personal prefer-
ences between pairs of individuals.

Individual specific models Although the length of the contact
phases in our observations followed a global pattern, we found
that preferences differed between individuals regarding the
number of contact phases. More precisely, when going from
state x to state i or when switching to a different neighbour, the
focal individual ‘picked’ a neighbour with individual-specific
probabilities.

Based on our detailed model (see above) we constructed
individual-specific models for our study system, wherein the
focal individual picks neighbours according to the observed
preferences. The preference of an individual for another indi-
vidual was measured by the overall number of contact phases
of these individuals divided by the number of sessions where
both individuals were present. The probabilities of choosing
particular nearest neighbours were then distributed propor-
tionally to these preferences. The probabilities p1, p2 and p3
of the detailed model, which do not depend on individual
preferences, remained unchanged.

Goodness of fit Based on the observations of individual fish
we constructed a simple and a more detailed egocentric
fission-fusion model (Fig. 1a, b, respectively) as described
above. Simulations based on our models reproduced the ob-
served distributions of the lengths of social contact and of
contact with a particular nearest neighbour very accurately
(Fig. 2). Figure 2d demonstrates another aspect of the good-
ness of fit of our model by showing that the observed frequen-
cies of being social lie within the model’s 90 % tolerance
intervals for all 10 time points. Furthermore, after adding
individual preferences to these general models the resulting
individual specific models very accurately reproduced the
observed values of certain network measures (degree and Y-
measure) as is shown in the results.

Tests

We performed different Monte Carlo tests using either
randomisations of our observations or simulations based on
our models (see Supplementarymaterial for a detailed descrip-
tion). For most tests we used simple test statistics which are
specified in the results. However, in our analysis of assortment
by behavioural traits or attributes we computed the percentage
of contact phases each focal fish had with other fish that were
similar to it regarding a given trait or attribute. The weighted
sum of these percentages determined the value of the test
statistic, where the weights were defined by the number of
times a fish was observed as focal fish. The similarity was

defined using a tolerance level t. For example, for a tolerance
level of 0.1 and the attribute ‘body length’, all fish were
regarded as similar to the focal fish that had a body length
that did not deviate bymore than 10% from the body length of
the focal fish. Given that there are individual preferences (see
Results section), we used different tolerance levels to deter-
mine the range of significant assortments for each behavioural
trait or attribute that can explain the preferences. There is no
clear criterion for the size that the range of significant toler-
ance levels should have in order to regard an attribute as an
explaining factor. As such, we decided that the corresponding
range of percentages for individuals being regarded as similar
should be at least 10.

Results

The guppy social network which is obtained when combining
observations from all 5 days is shown in Fig. 3. Some pairs of
fish interacted very frequently (up to 78 times), whereas about
20%were never seen together (of the latter only 2.9 % are due
to the fact that the fish were never observed together at the
hotspot at the same time).There was no tendency for particular
pairs of fish to be present at the hotspot at the same time
(Markov chain Monte Carlo test, N=108, test statistic sum of
squares of numbers of co-occurrences, p=0.062). Fish spent
about 40 % of their time being social (i.e. associating with one
or more conspecifics), and the average length of social contact
(which includes 1.6 different nearest neighbours on average)
lasted about 31 s. The average length of contact with a
particular nearest neighbour was 19.6 s.

Social dynamics

Using the more detailed model (with equal transition proba-
bilities for all individuals) as a null model to perform a Monte
Carlo test, we found that there were no significant differences
among fish in their lengths of social contact (model-based
Monte Carlo test, N=10,000, test statistic variance of mean
lengths of contact, p=0.292). This means that the model does
not require individual-specific transition probabilities to pre-
dict the individuals’ lengths of social contact.

Based on the theory of Markov chains, our model predicts
that after entering a hotspot containing 10 fish, in the absence
of any individual preferences, it would on average take 145±
60 time steps (approx. 24.1±10.0 min) until all 10 individuals
had been the nearest neighbour of the focal fish at least once.

An analysis of the association strength (i.e. number of
contacts between individuals) using the above model showed
that individuals have preferred nearest neighbours (model-
based Monte Carlo test, N=10,000, test statistic sum of
squares of relative association strengths, p=0.0001) regardless
of whether the association strength is measured in terms of the
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cumulated durations of social contact (i.e. the sum of lengths
of successive 10-s intervals with the same partner; Fig. 3a) or
whether each succession of contacts with the same partner is
regarded as a single contact phase (Fig. 3b). This suggests that
the relevant information for preferred conspecifics is not
contained in the duration of social contact but in the number
of times an individual is chosen as nearest neighbour.

A more detailed analysis of the social fine structure of our
fish population revealed that guppies were positively assorted
by foraging frequency, area use and preferred water depth
(Table 1). Body length assortment was also observed which
is surprising given the small body length variation between
fish (mean=28 mm±0.30 sd). Two behavioural variables
(activity and shoaling) were also recorded. For these variables
we found only very small or no significant ranges, which
suggests that neither variable explains much of the observed
network associations (Table 1). Data on mating attempts by
males showed that females of high attractiveness to males
were often found together (Table 1).

Generating networks from a dynamic model

The aim here was to generate networks from our dynamic
models and to compare the model output with our field
observation of social structure to test whether our models
successfully capture the main features of guppy shoaling
behaviour.

We constructed two undirected networks, an unweighted
one and a weighted one, from all 5 observation days by adding

an edge (i1, i2) between two nodes representing the individuals
i1 and i2, respectively, whenever one of the two individuals
was observed to be nearest neighbour of the other. Weights
were assigned according to the number of contact phases
between the individuals i1 and i2. To focus on individuals that
were found frequently in the hotspot, only the 15 fish that
were observed as focal individuals at least three times were
included in the networks. This filtering process reduced the
amount of observation data by about 3 %. The mean degree
(i.e. mean number of different neighbours) of the unweighted
network was 11.2 and was significantly lower than expected
(compared to networks generated by our detailed model with-
out individual preferences, model-basedMonte Carlo test,N=
10,000, test statistic mean degree, p=0.0003, mean degree=
12.4±0.3 sd). For the weighted network we computed the Y-
measure (Boccaletti et al. 2006), which measures the spread of
edge weights of a node by computing the sum of squares of
the normalised edge weights (i.e. edge weights divided by the
node strength). The mean Y-measure of the weighted network
was 0.138 which was significantly greater than expected
(compared to networks generated by our detailed model with-
out individual preferences, model-based Monte Carlo test,
N=10,000, test statistic mean Y, p=0.0001, mean Y=0.114±
0.004 sd). The differences between the observed and the
simulated values of both the mean degree and the mean Y-
measure can be explained by the fact that our general model
does not take individual preferences into account. However,
our individual-specific models (described in the Methods)
yielded the samemean degree (model-basedMonte Carlo test,

Fig. 2 Frequency distributions of
a the lengths of contact with a
particular nearest neighbour, b the
lengths of social contact, i.e. the
numbers of successive times a
focal individual stayed next to
some nearest neighbour, and c the
lengths of being alone in the
observed data (grey diamonds)
and in the simulation of a MC
(black circles). d Observed (grey
diamonds) and theoretically
expected (black circles)
frequencies of state i (social) at
each time point within the focus
periods of 90 s. The grey bars
mark the 5 and 95 % percentiles
of the expected frequencies. The
theoretic values were computed
based on the observed states at
time point 1
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N=10,000, p=0.474, mean degree=11.3±0.4 sd) and Y-mea-
sure (model-based Monte Carlo test, N=10,000, p=0.472,
mean Y=0.139±0.006 sd) as the observation. Furthermore,
in model-based tests using the individual specific models,
none of the above mentioned assortments could be found.
This suggests that our individual-specific models capture both
the general mechanism that determines the lengths of contact
phases and the individual preferences that influence the num-
ber of contact phases with particular neighbours.

Predicting disease transmission

Our approach can potentially be used to make predictions about
the spread of infectious parasites/diseases or the transmission of
socially learnt information. For example, if we had information
on how long two fish need to be close to each other to transmit
ectoparasites (e.g. Gyrodactylus, see Croft et al. 2011a) to one
another, we could make quantitative predictions with our
models for the time it would take for an individual to get
infected depending on how many conspecifics already carry
the ectoparasite. Using our Markov models we carried out a
simulation (explained in more detail in the Supplementary
material) which makes basic assumptions about the proportion
of infected fish in the hotspot and the number of contacts that it
takes between two fish for an ectoparasite to be transmitted. We
ran this simulation (N=10,000) with and without personal pref-
erences of fish and found that the presence of personal prefer-
ences generally increases the time that it takes for an uninfected
fish that enters the hotspot to become infected (Fig. 4).

Discussion

Our approach demonstrates how information gained from
direct observations of focal individuals can be used to develop
a model which captures the dynamics by which network
patterns arise. The two probabilities that characterise our
simplest two-state MC were typical of all the fish (and not
just some individuals) that visited the hotspot meaning that
they identify details of the fission-fusion dynamics which are
typical of this population. Likewise we find that the dynamics
of how they switch between different social partners is typical
of all fish (Fig. 1b). However, when it comes to which fish
they have repeated interactions with, we detect ‘personal
signatures’ of individuals which are the result of specific
association patterns (Table 1) and potentially also cooperative
relationships (Croft et al. 2009). Therefore the MC approach
has the potential for developing models of social behaviour
that are typical of the individual, the population and the
species (for the latter also see Herbert-Read et al. 2013).

In this context another major advantage of the MC ap-
proach for generating networks becomes apparent. Missing
individuals or differences in observation frequencies between

Table 1 Assortative behaviour within the social network was tested for a
number of behavioural traits in the wild. Indicated are the range of
tolerance levels (i.e. by how much individuals were different regarding
a given behavioural trait) where the test yielded significant p values, the
percentage of pairs of individuals that were regarded as similar given the
tolerance level and the associated p values. We also included information
on mating attempts by males directed towards females in this table

Behaviour Tolerance level % individual pairs
within tolerance

p value

Activity 0.36–0.42 82–87 0.006–0.046

Shoaling – – –

Foraging 0.24–1.60 20–85 0.001–0.044

Area use 0.28–4.04 17–81 0.001–0.035

Depth 0.00–0.10 17–47 0.001–0.042

Body length 0.04–0.14 36–68 0.001–0.039

Mating attempts 0.66–0.87 41–60 0.001–0.048

b

a

Fig. 3 The social network obtained after combining observations from
all 5 days (including 30 observation sessions). In a edge weights are given
according to the total number of 10-s intervals at which two individuals
were observed as nearest neighbours. Contact frequencies between pairs
range from 0 to 78 with a mean of 8.1. In b consecutive associations were
disregarded and the number of contact phases used for edge weights.
Contact frequencies between pairs range from 0 to 26 with a mean of 4.5.
Node size corresponds to body size, and spring embedding was used for
the layout of the nodes
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individuals are often a problematic issue in social network
studies and widely discussed in the network literature
(Marschall 2007; Cross et al. 2012). Our MC approach shows
that at least some aspects of the social dynamics (see Fig. 1)
are not individual specific but reflect a more general behaviour
or fission-fusion process underlying social networks. This
means that missing observations on some individuals have
no influence on the MC model (and the networks that are
derived from it) because theMarkovmodel captures dynamics
that reflect general properties of the social system (and not
individual preferences). We showed in our analysis that we
can plug the individual preferences of fish as a separate
‘module’ into the model which then reflects this property of
the fish as well and has potentially important consequences for
transmission processes in the network.

Our approach of collecting information on focal individ-
uals (i.e. egocentric networks) that are observed with high
frequency is particularly suitable to species that live in small
to medium groups where individuals can be followed over
extended time periods. This might be difficult for most free-
ranging birds but likely applies to many primate species (Lee
1999), some ungulates and captive animals in general (be-
cause groups tend to be small to medium in size and individ-
uals can be seen at all times) where this method would allow a
non-invasive, rapid accumulation of data on association pat-
terns in groups or populations.

We observed strong positive associations by a number of
different characteristics (foraging, area use, mating, water depth
and body length) in the wild. Assortment by foraging and water
depth might suggest that individuals of similar metabolic rates
associate with others that take similar levels of risk (see also
Croft et al. 2009). Similarly, individuals with comparable habitat
preferences might require or exploit similar foraging areas which
might explain assortment based on area use. Femaleswhichwere
popular with males were often found together. One possibility is
that females that preferred shallower water were also exposed to
more sexual harassment by males. However, we found no such
correlation between water depth and mating attempts.

The Monte Carlo approach which we used for measuring
associations by behavioural type uses randomisations but still
provides some idea of effect size. Conventional statistics (such as
GLMMs) routinely produce effect sizes but create the danger of
violating assumptions of independence of data because individ-
uals in networks are interconnected (Croft et al. 2011b). In
contrast Monte Carlo-type randomisations which circumvent
the problem of dependent data do not normally allow for the
calculation of effect sizes in networks (and only give p values).
Therefore the approach we show in Table 1 might be useful for
future studies on social networkswhere effect sizes are of interest.

Social preferences (for particular conspecifics) were only
detected in terms of the frequency of contact and not its
duration between guppies. This result raises the question of
whether it is more generally the case in different species. Data
on human contact patterns should be readily available in this
context, and the question is, for example, whether we talk more
often with ‘close/important contacts’ rather than talk for partic-
ularly long periods? Mobile phone and email data should be
useful to shed some light on this topic. A study on 94 individ-
uals (who agreed to having their proximity data and calling
patterns identified) and their contact patterns found that recip-
rocal friendships were mainly identified by social context (i.e.
time spent together outside work, Eagle et al. 2009).

The example of mobile phone data raises again the issue of
directedness and frequency of interactions which we briefly
mentioned as a problem in current network analysis. When
analysing network patterns with the notion of understanding
processes on networks (regarding information or infectious
diseases), researchers have often used network metrics such as

Fig. 4 Mean time it takes for a focal individual to get infected among 10
potential neighbours a as a function of the length of contact necessary for
the transmission of a parasite/disease under the assumption that 30 % of
the neighbours are infected and b as a function of the percentage of
infected potential neighbours under the assumption that a contact length
of 40 s is necessary for the transmission of a parasite/disease. The curves
show simulation results of our model without individual preferences
(black circles) and with individual preferences of two actually observed
individuals (grey squares and grey triangles) in a session with 11 indi-
viduals, i.e. where each focal individual had 10 potential neighbours. The
triangles (squares) represent the individual with the highest (lowest)
values of all individuals in this session
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the path length or the cluster coefficient to make predictions
(Watts and Strogatz 1998; Krause et al. 2007; Croft et al.
2008). However, once we have identified the interaction dy-
namics of a social system usingMCs, we no longer need these
metrics because the MC model can potentially be used to
make such predictions much more accurately. It remains a
challenge, however, to pick the right observation frequency
for individuals to get the time scale of the sampling procedure
right to fit the transmission process that we want to model. In
the case of our guppies, for example, wemade sure to select an
observation frequency which is more fine scale than the
encounter frequency with conspecifics (Croft et al. 2003).

In Fig. 1a we constructed the simplest MC with just two
states (social and solitary) and two transition probabilities.
This in itself is already an advance on the conventional mea-
sure of shoaling/grouping tendency in a population (Krause
and Ruxton 2002) because it allows additional insight into the
underlying dynamics of the behaviour. For example, two
populations that have the same average shoaling tendency
could have different social dynamics because the same level
of shoaling tendency can be an outcome of different combi-
nations of transitional probabilities. If we take into account
that this approach can be extended to how fish select particular
conspecifics (Fig. 1b) then the MC provides a promising tool
for making comparisons between populations where differ-
ences in ecological factors have selected for different behav-
iours and life history traits (Magurran 2005). For example,
some populations of the shortfin molly, Poecilia mexicana,
inhabit both surface and cave habitats (Riesch et al. 2011). Our
approach could be used to compare the social networks of
both ecotypes to provide new insight into how molly social
behaviour on the surface has changed and adapted to a cave
environment. In addition, some network comparisons have
previously been complicated by the fact that the number of
nodes (i.e. individuals) and edges (i.e. connection between
individuals) differs between networks (Croft et al. 2008).
However, the MC approach shown in this study makes it possi-
ble to directly compare probabilities regarding state changes. As
a note of caution, we should mention that differences in popula-
tion density may have an influence on these probabilities. That
said, we did not detect such an influence in our data set despite
the fact that fish number in the hotspot varied from5 to 11 (which
indicates that our approach is probably robust against small
variations in density). Nevertheless we expect that the MC
approach will be a promising tool for network comparisons.

Our study was based on the behaviour of female guppies at
a local hotspot where most of the interactions between fish in
the pool took place. Further study has indicated that our MC
approach for modelling social interaction can also be applied
to entire pools (i.e. small populations) and is not restricted to
hotspots.

The sociological literature contains several examples of
analyses of dynamic social networks (see Pinter-Wollman

et al. 2013 for a review of approaches in both the social and
biological sciences). Sociologists usually study social net-
works by using questionnaires asking people, for example,
who their friends are. The structure of social relationships can
thus be quantified directly in humans, and these relationships
tend to be stable over time. These features allow for modelling
approaches such as stochastic actor-based models to be used
to study the temporal dynamics of social relationships
(Snijders et al. 2010). In contrast, in studies on animal social
networks, relationships and social structure have to be inferred
from information on patterns of social associations or interac-
tions. Traditionally these data tend to be aggregated over time,
and social structure is quantified as a static network (Croft
et al. 2008). This static abstraction, however, is restrictive, as it
does not allow us to ask questions relating to the temporal
dynamics of structure (Blonder et al. 2012). The approach that
we have developed allows us to infer the social structure of the
population from the temporal dynamics of the social interac-
tions. Given that self-reporting is restricted to humans and that
animal networks are often very dynamic and social interac-
tions short lived, we feel that this approach has great potential
for unravelling the social structure and dynamics of non-
human animals.

As a final point we would like to stress that the aim of this
paper was not to prove that the behaviour of fish is Markovian
but to demonstrate that simple MCs may capture enough of
the fission-fusion dynamics to be a useful tool to make pre-
dictions (Fig. 4). Although we did not use the MC approach to
its full potential in our own study (by restricting it to shoaling
behaviour), it is clear that direct observations on a whole range
of behavioural states (e.g., foraging, sexual activity, aggression)
can be directly made. This opens up the possibility to create
more complex models of behaviour with important implica-
tions for processes such as cooperation, sexual selection and
information and disease transmission in groups and popula-
tions. Regardless of whether our MC approach will be fruitful
for other taxonomic groups, it is clear that the conceptual step
of closing the gap between dynamics and social patterns (as
shown in this article) will be necessary in the future to increase
our understanding of social systems. In conclusion the MC
approach we developed could be used to move the emphasis
of animal social network studies from mechanistic questions to
more functional ones, and from description towards prediction.
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