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Group living in animals is a well-studied phenomenon, having been documented extensively in a wide range of terrestrial, freshwater, 
and marine species. Although social dynamics are complex across space and time, recent technological and analytical advances 
enable deeper understanding of their nature and ecological implications. While for some taxa, a great deal of information is known 
regarding the mechanistic underpinnings of these social processes, knowledge of these mechanisms in elasmobranchs is lacking. 
Here, we used an integrative and novel combination of direct observation, accelerometer biologgers, and recent advances in network 
analysis to better understand the mechanistic bases of individual-level differences in sociality (leadership, network attributes) and diel 
patterns of locomotor activity in a widespread marine predator, the lemon shark (Negaprion brevirostris). We found that dynamic mod-
els of interaction based on Markov chains can accurately predict juvenile lemon shark social behavior and that lemon sharks did not 
occupy consistent positions within their network. Lemon sharks did however preferentially associate with specific group members, by 
sex as well as by similarity or nonsimilarity for a number of behavioral (nonsimilarity: leadership) and locomotor traits (similarity: pro-
portion of time swimming “fast,” mean swim duration; nonsimilarity: proportion of swimming bursts/transitions between activity states). 
Our study provides some of the first information on the mechanistic bases of group living and personality in sharks and further, a 
potential experimental approach for studying fine-scale differences in behavior and locomotor patterns in difficult-to-study organisms.
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INTRODUCTION
Understanding why animals move and how the spatial and tem-
poral structures of  these activities relate to their ecology and evo-
lution has been a long-standing research challenge in behavioral 
biology (Patterson et  al. 2008). Of  particular value to researchers 
are experimental or conceptual approaches that attempt to ascer-
tain the links between individual-level differences in movement and 

other aspects of  an animal’s behavioral repertoire (i.e., personal-
ity, Cote et  al. 2010; Wilson and Godin 2010) including, in gre-
garious species, their social dynamics (Wilson, Krause, et al. 2014). 
However, these approaches, particularly when attempted in nature, 
are commonly beset by a number of  logistical problems. Free-
ranging animals are often secretive, cryptic, and/or highly mobile 
making data collection difficult if  not impossible in many instances 
(Altmann 1974; Costa and Sinervo 2004). As a possible solution to 
the conundrum of  observing animals when they cannot be “seen,” 
electronic tagging technologies (both biotelemetry and biologging Address correspondence to A.D.M. Wilson. E-mail: alexander.wilson@ymail.com.
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platforms) are frequently used to quantify habitat use and activity 
patterns in a diverse range of  species and environments (Cooke 
et  al. 2004; Brown et  al. 2013). Similarly, innovations in biologi-
cal sensor tags that quantify aspects of  animal “state” (i.e., heart 
rate, body temperature, tissue biochemistry and appendage activ-
ity) offer new opportunities to quantify individual-based dynamics 
(Cooke et  al. 2004; Payne et  al. 2014). Although these data offer 
exceptional value with respect to spatial ecology, they are often dif-
ficult to interpret in terms of  ecological data that involves interindi-
vidual interactions (mating, agonistic, cooperative and competitive 
exchanges) (Jacoby, Brooks, et al. 2012).

Social network analysis, in conjunction with electronic tags, offers 
a valuable and novel opportunity to study patterns of  social affili-
ation in both “seen” and “unseen” free-ranging animals within the 
context of  their natural environment (Krause et  al. 2011; Jacoby, 
Croft, et  al. 2012; Brown et  al. 2013). Network analysis acknowl-
edges the complex nature of  relationships between multiple inter-
acting individuals and provides both descriptive, and more recently, 
predictive tools to better understand the social dynamics of  group 
living species (Wilson, Krause, et al. 2014). Moreover, recent con-
ceptual and analytical advances have made it possible to circumvent 
troublesome obstacles for network research in the wild including 
1) dealing with missing or unseen individuals in network observa-
tions, 2)  enabling comparisons of  networks with different proper-
ties (e.g., number of  individuals, interactions), and 3) relating social 
patterns to underlying mechanistic dynamics (Wilson, Krause, et al. 
2014). Such advances are imperative for studies of  large or highly 
mobile and free-ranging species where direct observations and data 
collection might only be possible through transects, scan-sampling 
or infrequent surveys/captures, and where missing data points 
or individuals are highly probable when sampling. Additional 
advances in network research have made it possible to study net-
work attributes (e.g., network position) in the context of  personal-
ity (Wilson et  al. 2013), adding a significant investigative layer by 
which to study individual-based differences in behavior and how 
these relate to social processes (e.g., frequency and longevity of  
social relations) (Krause et al. 2010; Wilson, Croft, et al. 2014).

Despite the conceptual innovations and enormous application 
potential of  electronic sensor tags for ecological research, as yet 
none to our knowledge have attempted to use such tags in conjunc-
tion with direct observations of  personality and network analysis in 
an aquatic species (but see Jacoby, Brooks, et al. 2012; Jacoby, Croft, 
et al. 2012). This gap in our current state of  knowledge is directly 
attributable to the sampling difficulties mentioned above (crypsis, 
high mobility) or in the case of  many predatory species—high lev-
els of  crepuscular or nocturnal activities. That said, many species, 
including some sharks (Wilson, Croft, et al. 2014), are amenable to 
this type of  integrative framework, particularly those species which 
show relatively high site fidelity and long-term residency (Morrissey 
and Gruber 1993; Pratt and Carrier 2001; Guttridge et  al. 2011; 
Mourier et al. 2012).

Here, using the lemon shark (Negaprion brevirostris), a compara-
tively well-studied and gregarious species (as juveniles in nursery 
areas) known to preferentially assort based on body size (Guttridge 
et  al. 2011) and prefer groups of  conspecifics over heterospecifics 
(Guttridge et  al. 2009), we combined direct observation, acceler-
ometry, and network analysis to better understand the mechanis-
tic bases of  sociality by characterizing individual-level differences 
in behavioral traits (e.g., activity, leadership). Our study therefore 
had 2 primary objectives. Firstly, to determine the relationship 
between sociality and individual differences in locomotor activity 

and diel movement patterns using observation and sensor tag data. 
Secondly, to determine how recent advances (Jacoby, Brooks, et al. 
2012; Wilson et  al. 2013; Wilson, Krause, et  al. 2014) in network 
analysis could provide novel insights into shark social behavior. 
More specifically, our second objective was to establish whether: 
1)  lemon sharks consistently occupy certain positions in their net-
works, 2) dynamic models of  interaction based on Markov chains 
can explain shark social dynamics, 3) sharks preferentially associate 
with other individuals or by sex, and lastly whether 4) similarity or 
nonsimilarity of  behavioral traits can explain network associations 
in a widespread marine predator.

MATERIALS AND METHODS
We collected a population of  10 juvenile lemon sharks (67 ± 4.9 cm 
total length [TL] ± standard deviation, 5 males, 5 females) from a 
small tidal mangrove creek (24°48.9′N, 76°18.1′W), on the island 
of  Eleuthera, the Bahamas. It is important to note that these indi-
viduals represented the majority of, if  not entire, nursery popula-
tion of  lemon sharks in the sampled system and is representative 
of  other wetland areas around the island of  Eleuthera (Murchie 
et al. 2010). However, other islands in the Bahamas are known to 
have higher densities of  these species (e.g., Bimini) (Guttridge et al. 
2009). Lemon sharks were collected on 9 January 2014 by seine 
net and transported by boat in 90-L coolers to a nearby wetland 
facility for holding. These individuals were held for 3 days prior to 
experimentation in a large circular holding tank (3.7-m diameter 
× 1.25-m height; 13 180 L; flow rate 1800 L/h) and fed to satia-
tion daily using cut fish (Sardinella sp.). This acclimation period was 
necessary to insure all individuals were feeding (to minimize risk 
of  state-dependent changes in behavior associated with hunger lev-
els) prior to tagging (see below). Juvenile sharks were chosen as they 
exhibit higher site fidelity and levels of  sociality (avoid predation in 
the shallower waters surrounding mangrove coastal flats) and are 
thus better suited to our experimental design (see below) than adult 
sharks who are less social and do not enter such shallower waters 
(<1 m) unless for reproductive purposes (Morrissey and Gruber 
1993; Pratt and Carrier 2001).

Tagging and wetland mesocosm

To enable individual identification and collection of  locomotor 
activity data, lemon sharks were affixed with individually identifi-
able (color coded) tri-axial accelerometer loggers (model X8M-3, 
500-mAh battery, 15 g in air, 25-Hz recording frequency; Gulf  
Coast Data Concepts, Waveland, MS) at the base of  the first dorsal 
fin. Tags were attached using 36-kg strength braided Dacron line 
secured to plastic frontal and backing plates (Figure 1a). Following 
tagging, sharks were released in a ~2500 m2 enclosed wetland meso-
cosm (Figure 1b) near the aquarium facilities of  the Cape Eleuthera 
Institute for a period of  8 days. As above, sharks were provided cut 
fish (Sardinella sp.) daily to supplement natural foraging of  prey in 
the wetland mesocosm and insure all test animals were healthy 
and eating. Presentation of  supplemental food items occurred in 
the evenings and always more than 16 h prior to the next observa-
tion period. The wetland, while natural in origin, is enclosed and 
largely separated from the ocean except during extreme tides. The 
wetland is vegetated with red mangrove (Rhizophora mangle), black 
mangrove (Avicennia germinans), and various algae (e.g., Halimeda 
spp.). Resident fish species include bonefish (Albula vulpes), mangrove 
snapper (Lutjanus griseus), juvenile great barracuda (Sphyraena barra-
cuda), and a variety of  mojarra species (Gerreidae). The wetland is 
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also supplemented with a constant influx of  fresh seawater from the 
adjacent wetland facility.

Behavior and network observations

Over the course of  8 days, scan-sampling observations occurred 3 
times per day (early morning, mid-day, late afternoon) for several 
traits including individual differences in sociability/social score, 
leadership (tendency to be at the front of  a mobile group/pair), 
and refuge use (Figure 1c). Sociability or the social score of  an indi-
vidual was assessed by the tendency for an individual to associate 
with (within one body length, ~1 m) 1 or more other sharks during 
a sampling event. Leadership was quantified as an individual being 
located in the front of  a mobile group of  1 or more other nonfo-
cal individuals. Lastly, refuge use was quantified as the tendency for 
a focal individual to be actively swimming or resting within 1 m 
of  refuge (mangrove roots/canopy). For each observation period, 
all sharks were observed consecutively but independently for every 
sampling session (i.e., 2 continuously interacting individuals were 
never recorded consecutively unless more than 5 min had passed 
from the previous individual’s focal follow). Locomotor activity data 
were recorded continuously by accelerometer biologgers and used 
to generate diel patterns in behavior as well as record individual 
differences in movement characteristics.

Every day during the observation period, 2 independent network 
sessions (see Wilson, Krause, et al. 2014 for details) were conducted 
between 06:45 and 08:30 in the morning, weather permitting. In 
total, 15 network sessions were conducted (on 1 occasion, it was 
only possible to collect 1 session due to high wind and surface 
conditions impeding visibility), and all individuals were observed 
for every session. This number of  sessions is ideal for character-
izing social network dynamics using the fission–fusion model based 
on Markov chains developed by Wilson, Krause, et  al. (2014) (see 
below). Network sessions were conducted during this time period 
each day as environmental conditions were generally optimal for 
observation (wind, lighting) and sharks tended to be actively mov-
ing. For each network session, an individual shark was haphazardly 

chosen as a focal individual and tracked continuously for 100 s fol-
lowing previously established techniques. During this observation 
period, associations between the focal shark and the nearest group 
member (if  present) were recorded every 10 s (Figure  1c). Sharks 
were characterized as associating if  they were within one body 
length of  each other at the sampling interval. In an instance where 
more than 1 shark was within the collection distance, the individual 
closest to the focal individual was chosen. Following the completion 
of  the observation period, a separate and independent (not associ-
ating with previous focal individual in the last 100 s, if  possible) was 
chosen as the next focal individual, until all individuals had been 
recorded. In this manner, all individuals were recorded for every 
network session.

Data analysis

Network data
In attempt to explain shark social dynamics, we used a fission–
fusion model based on Markov chains developed by Wilson, 
Krause, et al. (2014). This model describes the social behavior com-
mon to all focal individuals as sequences of  “behavioral states” and 
can be constructed in 2 variants that only differ by their levels of  
detail. In the simple variant, a focal fish can either be social (with 
a conspecific) or alone (no conspecific within one body length). By 
regarding these behavioral states as states of  a first-order Markov 
chain, the transition probabilities between them can be estimated 
from the data points in our observations. In a first-order Markov 
chain, the next state only depends on the current state. In our case, 
this means, for example, that the decision of  a focal fish to leave 
its current neighbor and to swim around independently depends 
solely on its current state. The simple variant of  the model then 
predicts the distributions of  the lengths of  phases of  social contact 
and of  being alone. In the more detailed variant, the identities of  
the neighbors of  the focal fish are also taken into account. In addi-
tion to the simple variant, the more detailed variant also predicts 
the lengths of  contact phases (instances of  social contact) with the 

(a)

(b) (c)

+Y
+X

+Z

Figure 1
Photograph (a) of  juvenile lemon shark with individually identifiable accelerometer tag attached to first dorsal fin. Illustrative representations of  (b) wetland 
area where observations of  shark behavior and network characteristics occurred as well as (c) an enlarged inset illustrating sharks in refuge (near mangrove 
roots) and actively swimming in a trio with anterior individual acting as group leader. Dotted circle in inset represents area of  one body length by which 
individuals were said to be associating with a particular individual during observations.

1579

Downloaded from https://academic.oup.com/beheco/article-abstract/26/6/1577/205484
by Plymouth University user
on 09 May 2018



Behavioral Ecology

same neighbor (see Wilson, Krause, et al. 2014 for more details). It 
has been shown that this model (in both variants) can be used to 
describe the social dynamics of  female guppies in the wild (Wilson, 
Krause, et al. 2014). That said, for our analysis, we only used the 
more detailed variant.

We also determined whether sharks had preferences for certain 
conspecifics or preferences regarding sex in the network constructed 
from the combined data of  all 8 observation days. We used 2 differ-
ent ways to quantify the tie strength of  a pair of  individuals i1 and 
i2 in this network, 1)  according to the number of  contact phases 
between i1 and i2 and 2)  according to the mean duration of  con-
tact between i1 and i2. For the analysis, we used a randomization 
test where for each focal individual we kept constant the number 
of  observed contact phases as well as their lengths and randomly 
assigned the identities of  its neighbors. For the investigation of  indi-
vidual preferences, we used as a test statistic, the sum of  squares of  
the tie strengths of  all pairs of  individuals, which we computed in 
the 2 above-described ways, and for preferences regarding sex, we 
used the number of  contact phases between sharks of  the same sex. 
In the absence of  preferences, both test statistics should yield mod-
erate values. Large values (among the 5% largest yielded by the 
randomization procedure) indicate that the observed tie strengths 
cannot be explained by randomly chosen neighbors.

Individual preferences were only detected in terms of  the fre-
quency of  contact but not its duration (see Results), which is in 
accordance with the Markov chain model that predicts phase 
length distributions common to all individuals. Therefore, in the 
following analyses, we only used the number of  contact phases as a 
measure of  tie strength.

Given that there are individual preferences, we additionally tested 
whether similarity regarding behavioral traits is an explaining fac-
tor in associations following the methodology described in Wilson, 
Krause, et al. (2014). Trait “similarity” was defined using a tolerance 
level t. For example, for a tolerance level of  t = 0.1 and the attribute 
“mean swimming duration,” all fish were regarded as being similar 
to the focal individual if  they had a mean swimming duration that 
did not deviate by more than 10% from that of  the focal shark. For 
each focal fish, we computed the percentage of  contact phases it had 
with other fish that were similar to it regarding a given trait. The sum 
of  these percentages determined the value of  the test statistic. In con-
trast to the Wilson, Krause, et al. (2014) methodology, we tested for 
behavioral traits being an explaining factor in associations based both 
on similarity and nonsimilarity, meaning that our tests were 2 sided 
and P values were regarded as significant if  P < 0.025 (for similar-
ity) or P > 0.975 (for nonsimilarity). For example, should the sum of  
percentages of  contact phases be significantly greater than expected, 
we can conclude that there is assortment by similarity (regarding the 
trait under investigation). Similarly, a sum of  percentages of  contact 
phases that is smaller than expected suggests that similar individuals 
tend to avoid each other and prefer individuals that differ regard-
ing the trait (e.g., followers demonstrating a preference for leaders). 
Following Wilson, Krause, et al. (2014), we regarded an attribute as 
an explaining factor if  the test statistic had significant values for a 
range of  tolerance levels that corresponded to a range of  percentages 
of  individuals regarded as similar of  size 10 or more.

To assess if  individual sharks consistently occupy positions within 
their social networks, we followed a conceptual framework recently 
described by Wilson et al. (2013), which is based on randomization 
techniques and uses as a test statistic the variances of  the ranks of  
individual network positions across the networks. As per the pre-
viously established protocol, we tested for consistency in network 

positions across the 8-day networks (sessions combined each day 
separately) using node strength, weighted node betweenness, 
and weighted clustering coefficient as network metrics. Weights 
were calculated based on the number of  contact phases between 
individuals.

Accelerometry and behavioral data
To examine the mechanistic bases of  sociality and to examine both 
intrinsic and extrinsic predictors of  accelerometer-measured lemon 
shark behavior, we used multilevel models to predict 1) proportion 
of  time spent swimming, 2)  proportion of  time spent swimming 
fast, and 3)  number of  swimming periods (bursts and transitions 
between activity states) with explanatory variables including: diel 
period, social score (sociability), refuge use, size (TL), sex, individual ID, 
and study hour. Leadership was not included in the model due to 
strong collinearity (r = 0.8) with social score. For proportion of  time 
spent swimming and proportion of  time spent swimming fast, we 
used binomial generalized linear mixed-effects models (GLMM) 
where the intercept for fish ID was allowed to vary for each individ-
ual. Because the final models were overdispersed, we also included 
an observation-level random effect (Breslow 1990; Maindonald and 
Braun 2010). To choose the optimal model, we used single-term 
deletions and backwards selection (drop1 command, Chambers 
1992) to find the least significant term at P  <  0.05 (Zuur et  al. 
2009). To evaluate normality, heteroscedasticity, and independence, 
we examined for patterns in the normalized residuals and plotted 
the residuals against all variables, including those not in the final 
model. Models were implemented using the package lme4 in the 
R statistical environment (Pinheiro and Bates 2000; Team RDC 
2012). Number of  transitions was first modeled using a GLMM 
where fish ID was a random factor and the response was assumed 
to follow a Poisson distribution. Due to strong nonlinear patterns in 
the normalized residuals using GLMM, we opted to model number 
of  transitions using a generalized additive mixed-model (GAMM; 
Wood 2006; Zuur et al. 2014) with a cyclic penalized cubic regres-
sion spline smooth for hour of  the day (n = 24). A manual drop1 
procedure was performed for GAMMs (Zuur et al. 2009). The final 
model was validated using the procedure outlined for the GLMMs. 
Autocorrelation plots indicated residuals were highly correlated 
along the time series (hour), thus a moving average correlations 
structure was added to reduce serial autocorrelation (Pinheiro and 
Bates 2000; Zuur et al. 2009).

Sensor tag data
Tri-axial accelerometers continuously recorded total acceleration (g, 
9.8 m/s2) at 25 Hz in 3 axes (x = surge, y = heave, z = sway), where 
total acceleration is the sum of  static (gravity) and dynamic (shark 
movement) acceleration with maximum values of  ±8 g. Static and 
dynamic acceleration were separated using a weighted smooth-
ing interval of  2 s.  The appropriate interval was determined as 
per Shepard et  al. (2009). Individual lemon shark behaviors were 
identified from acceleration data using continuous wavelet trans-
formation on the z axis (sway) dynamic acceleration including a 
band-pass filter for frequencies of  0.3–10 Hz. A k-means clustering 
algorithm was then used to identify similar spectra as nonswimming 
(resting or drifting; low amplitude [<0.026 g], noncyclic waveforms; 
Brownscombe et  al. 2014) or swimming (≥0.026 g amplitude, 
cyclic waveforms) behaviors. The algorithm also identified distinct, 
higher-intensity swimming behaviors that were further defined as 
fast (≥0.06 g amplitude) and burst (≥0.1 g amplitude) swimming. 
Transitions between swimming and nonswimming behaviors 
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(Figure 2) were also quantified as a measure of  intermittent loco-
motion (Kramer and McLaughlin 2001; Wilson and Godin 2010). 
Acceleration data analysis was conducted using Igor Pro 6.32 soft-
ware (WaveMetrics Inc., Lake Oswego, OR) and Ethographer 
(Sakamoto et al. 2009).

RESULTS
Network analysis and behavior

Our analyses revealed that Markov chain models can explain shark 
social dynamics quite well, particularly with respect to length of  
contact with particular neighbors (Figure 4a), social contact in gen-
eral (Figure 4b), and time spent swimming alone (Figure 4c). Sharks 
demonstrated distinct preferences for certain conspecifics when tie 
strength was defined by the number of  contact phases (P = 0.017, 
number of  randomization steps = 104, test statistic sum of  squares 
of  tie strengths, Figure 3) but not mean length of  contact (P = 0.26, 
number of  randomization steps = 104, test statistic sum of  squares 
of  tie strengths). Further analyses revealed that this result can be 
explained, in part, by sharks preferentially associating with con-
specifics of  the same sex (P  =  0.025, number of  randomization 
steps = 104, test statistic number of  contact phases between sharks 
of  the same sex).

Additional detailed analyses of  the social fine structure of  this 
population suggested that sharks positively assort based on similar-
ity for proportion of  time spent swimming fast and mean swim-
ming duration as explaining factors. Similarly, our analyses also 
suggested that sharks associated based on nonsimilarity regarding 
leadership as well as frequency of  burst swimming events and num-
ber of  transitions between activity states (Table 1). Irrespective of  
network metric, sharks did not demonstrate consistency in network 
position across observation days (Supplementary Table 1, P = 0.65 
for node strength, P = 0.57 for node betweenness, and P = 0.31 for 
the clustering coefficient, number of  randomization steps = 105).

Accelerometry and behavior

Lemon sharks exhibited diverse behavioral patterns between indi-
viduals and across environmental factors while in the wetland. 
Diel period, social score, TL, sex, refuge use, and the interaction 
between social score and sex were all significant predictors of  
lemon shark swimming activity (Tables 2 and 3). Holding refuge 
use and centered TL at their means, the GLMM illustrated that 

although the least social sharks (male and female) were equally 
likely to be active at night (♂: 0.451 ± 0.03 standard error [SE]; ♀: 
0.457 ± 0.04 SE), more social sharks exhibited different patterns 
of  swimming behaviors during nighttime hours (Supplementary 
Figure 1). At night and compared with relatively unsocial individu-
als, swimming activity was predicted to be greatest in highly social 
males (0.505 ± 0.06 SE) whereas lowest for highly social females 
(0.372 ± 0.06 SE). Similar to the night, low social scoring males 
and females were predicted to exhibit similar probabilities for gen-
eral activity (♂: 0.364 ± 0.04 SE; ♀: 0.370 ± 0.04 SE). Again, more 
social males were more likely to exhibit increased activity during 
the daylight hours (0.416 ± 0.07 SE) whereas more social females 
were less likely to be active (0.293 ± 0.06 SE; Figure 1).

The final model for proportion of  time spent swimming fast con-
tained only diel period as a marginally significant explanatory vari-
able (P = 0.026, Table 2). Here, lemon sharks are predicted to be 
slightly (3.1%) more likely to exhibit fast swimming behavior during 
the night compared with during the day (Table 2). The final model 
for number of  transitions contained 7 terms including the highly 
significant dependency structure (Tables 2 and 3). In addition, 
the smoothing term was highly significant (F = 4.32, P < 0.0001, 
Supplementary Figure  2). The smoothing function indicated that 
time of  day was strongly related to this behavior such that the 
number of  transitions increased from approximately 11:00 AM 
to midnight then decreased sharply until approximately 5:00 AM 
(Supplementary Figure 2).

DISCUSSION
Group living is a well-studied phenomenon having been docu-
mented extensively in numerous terrestrial, freshwater, and marine 
species (Krause and Ruxton 2002). However, while in some taxa, 
teleost fishes for example, a great deal is known with respect to 
underlying proximate and ultimate bases of  these social pro-
cesses, comparatively little is known about the underpinnings of  
this behavior in elasmobranchs (Jacoby, Croft, et al. 2012; Wilson, 
Croft, et al. 2014). In fact, until relatively recently the best sources 
of  information on social behavior in sharks were largely speculative 
and observational in nature (but see Jacoby et al. 2010; Guttridge 
et al. 2011; Mourier et al. 2012; Jacoby et al. 2014). Using a novel 
combination of  recent advances in network analysis, sensor tag data 
and direct observation, we provide some of  the first information on 
the mechanistic bases of  group living and personality (sociability, 
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Figure 2
Visualization of  lemon shark transitions between swimming and resting behaviors in dynamic sway (tail beats; red) and surge static (body pitch; black) 
acceleration measured using tri-axial accelerometer loggers.

1581

Downloaded from https://academic.oup.com/beheco/article-abstract/26/6/1577/205484
by Plymouth University user
on 09 May 2018

http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/arv115/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/arv115/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/arv115/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/arv115/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/arv115/-/DC1


Behavioral Ecology

activity patterns, refuge use) in a gregarious life-history stage of  
wild sharks. Importantly, our integrative approach and analyses 
provide new insights into shark ecology by highlighting links and 
patterns in social behavior as well as its mechanistic underpinnings 
based on activity data.

Although teleost fishes are known to assort based on size, color-
ation, parasite load, familiarity, and kinship (Krause et  al. 2000), 
empirical studies on the mechanistic bases of  assortment in elas-
mobranchs are scarce (but see Guttridge et al. 2011; Mourier et al. 
2012 for examples). For example, juvenile lemon sharks are known 
to preferentially assort based on body size (Guttridge et  al. 2011) 
and prefer groups of  conspecifics over heterospecifics (Guttridge 
et  al. 2009). Our results also found evidence of  active partner 

preference in lemon sharks through repeated associations based on 
individual preference (in terms of  frequency but not duration of  
contact) for same-sex group members (Figure 3). Although we did 
not observe evidence in support of  assortment by size, this might be 
attributable, in part, to our low overall range of  body sizes between 
sharks. Alternatively, another possible mechanistic explanation for 
individual preference for certain conspecifics might be that sharks 
assort based on energetic profiles or activity budgets (Wearmouth 
and Sims 2008). Indeed, our sharks were observed to preferentially 
associate with individuals based on similarity (proportion of  time 
spent swimming fast and mean swimming duration) or nonsimilar-
ity (number of  burst swimming events and number of  transitions 
between activity states) for a number of  locomotor traits, some of  
which were associated with other behavioral attributes (e.g., lead-
ership, nonsimilarity; Figure  3). Similarly, our sensor tag analyses 
revealed that social sharks exhibited different diel swimming pat-
terns from less social sharks and further that this relationship var-
ied between sexes, with social males being more active than social 
females. We also noted distinct differences between sharks in terms 
of  numbers of  transitions between activity states and overall loco-
motor profile. This notion of  locomotor or energetic profiles being 
associated with social attributes might also be indicative of  behav-
ioral type assortment as it has previously been shown that fish 
exhibit patterns of  consistent variation in bouts of  activity versus 
pauses and further, that this variation correlates with their personal-
ity (intermittent locomotion, Wilson and Godin 2010). As such this 
might tie into consistent differences in transitions between activ-
ity states (fast versus slow swimming) and types (e.g., bursts versus 
casual swimming) as observed here.

In addition to preference for certain individuals, we also found 
that lemon sharks preferentially associate by sex. Sex segregation 
is comparatively well studied across sharks (Klimley 1987; Sims 
et al. 2001) and is thought to be common due to intersexual conflict 
and conflicting life-history needs between sexes through ontogeny 
(Jacoby et al. 2010). Additionally, the onset of  such segregation can 
occur at a relatively early ages in some species, preceding sexual 
maturation (Litvinov 2006), as found here. Lastly, individual prefer-
ences might also be associated with differences in familiarity (previ-
ous experience) or kinship (genetic relatedness). These sharks were 
collected from the same geographical location at the same time, 
and sharks in this region exhibit high site fidelity, often returning 
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Figure 3
Network constructed from the combined data of  all 8 observation days, 
where the tie strength was defined by the number of  contact phases. The 
areas of  the nodes are proportional to the leadership score of  the individuals 
they represent. The gray nodes represent the males. To make the structure 
clearer, edges with weights smaller than the median weight are not shown. 
However, the spring layout was computed taking all edges into account.

Table 1
Assortative behavior within the social network constructed from the combined data of  all 8 observation days for a number of  
behavioral traits

Behavior Assortment by similarity Assortment by nonsimilarity

Tolerance level
% individual pairs  
within tolerance Tolerance level

% individual pairs 
within tolerance

Social score — — — —
Refuge use — — — —
Leadership — — 0.42–0.52 38–49%
Body length — — — —
Proportion of  time spent swimming slow — — — —
Proportion of  time spent swimming fast 0.56–3.93 46–92% — —
Frequency of  burst swimming events — — 0.32–0.52 29–52%
Number of  transitions between activity states — — 0.27–5.77 17–90%
Mean swim duration 0.95—4.20 54–78% — —
Proportion of  time spent swimming (general activity) — — — —

Indicated are the range of  tolerance levels (i.e., by how much individuals were different regarding a given behavioral trait) where the test yielded P values < 
0.025 (similarity) or P > 0.975 (nonsimilarity). The corresponding percentages of  pairs of  individuals that were regarded as similar given the tolerance level are 
also shown.
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the same locations as they were born to reproduce (Morrissey and 
Gruber 1993). Therefore, it is possible that the sharks comprised 
members of  a litter cluster (2 or more litters) in this nursery area 
and were likely all familiar to some extent prior to our study 
(Chapman et  al. 2009) although additional trials with individu-
als from different populations would be necessary to ascertain this 
experimentally and we did not conduct any genetic sampling to test 
kinship. That said, genetic relatedness might be an unlikely sole 
explanation of  our findings as we did not find associations based 
on size (a main indicator of  age class) but instead primarily by sex.

To test for individual consistency in network positions, we 
applied the test outlined in Wilson et al. (2013). This test requires 
that the observation probabilities of  all individuals in a given 
network be equal, which was the case in our study. Additionally, 

we analyzed individual preferences using a randomization test 
where we kept constant the number of  observed contact phases 
and their lengths randomly assigned to the individuals’ identi-
ties. However, despite our initial objective, we did not observe any 
consistency in network positions in the any of  the network met-
rics used. That said, when present, consistency in network posi-
tion likely has important consequences for understanding aspects 
of  social behavior or personality due to the costs associated with 
achieving and maintaining certain positions within a network 
(e.g., group leader) as well as individual fitness (via transmission 
of  information, disease, and genetic information) (Wilson et  al. 
2013). It is possible that our transplantation of  this population of  
sharks to the wetland mesocosm disrupted aspects of  consistency 
in the shark network; however, a recent study on the small-spotted 

Table 2
Results from the backwards model selection procedure for each of  the models including the GLMMs for proportion of  spent time 
swimming (%Swimming) and proportion of  time spent swimming fast (%Fast), and for the GAMM for number of  transitions 
between activity states (Num. of  Trans.)

Response Term removed df AIC LRT P value

%Swimming None—full model 2658
Diel 1 2828 172.425 <0.0001
TL 1 2662 5.9 0.015
Refuge 1 2670 13.9 <0.001
Social score × sex 1 2668 12.0 <0.001

%Fast None—full model 4552.2
Diel 1 4555.2 4.97 0.026

Num. of  Trans. None—full model 2509.9
Centered TL 1 2541.6 16.84 <0.0001
Refuge use 1 2542.9 17.49 <0.0001
Sex:social score 1 2552.8 22.47 <0.0001
Diel:social score 1 2535.8 13.96 <0.0001
Cor 7 2883.4 193.8 <0.0001

P values are calculated from the chi-square distribution. AIC scores also illustrate that the best model contains all terms. The model for number of  transitions 
shows the significance of  the autoregressive correlation structure (Cor). AIC, Akaike information criterion; df, degrees of  freedom; LRT, log-ratio test.

Table 3
Summary statistics for fixed effects for the best models that explain proportion of  time spent swimming (%Swimming), proportion 
of  time spent swimming fast (%Fast), and the number of  transitions between activity states (Num. of  Trans.)

Response Fixed effect Estimate SE Statistic P value

Z value

%Swimming Intercept −0.448 0.033 −13.57 <0.0001
Diel—night 0.359 0.026 13.70 <0.0001
Centered social score −0.829 0.321 2.582 0.01
Centered TL −0.013 0.005 −2.45 0.014
Sex—male −0.258 0.048 −5.37 <0.0001
Centered refuge use −3.08 0.696 −4.44 <0.0001
Centered social score × sex—male −2.18 0.562 −3.88 <0.001

%Fast Intercept 0.706 0.218 3.232 0.001
Diel—night −0.138 0.062 −2.230 0.025

t value

Num. of  Trans. Intercept 2.62 0.490 5.34 <0.0001
Diel—night −0.067 0.131 −0.51 0.612
Social score −13.07 5.206 −2.51 0.012
Centered TL 0.255 0.085 3.00 0.003
Sex—male 1.661 0.755 2.20 0.028
Centered refuge use 28.28 10.97 2.58 0.010
Diel—night × social score 0.747 0.955 0.782 0.434
Sex—male × social score 23.66 8.539 2.77 0.006
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catshark, Scyliorhinus canicula, found that network positions can be 
surprisingly consistent and repeatable even in changing environ-
ments (Jacoby et  al. 2014). Similarly, some preliminary work on 
teleosts also seems to suggest that network position consistency can 
be robust to manipulation, including population transplantation 
(Wilson et al. (2015)). However, given the current scarcity of  pub-
lished data on this topic, more data will be needed to interpret our 
results in a broader context.

We also used a fission–fusion model based on Markov chains 
to better understand the underlying dynamics of  the social 
behavior of  juvenile lemon sharks. This approach worked quite 
well, with our model explaining general length of  contact with 
particular neighbors as well as tendency for being social/asocial 

(Figure  4). In fact, in many respects lemon shark social dynam-
ics very closely mirror those of  wild guppies (Poecilia reticulata) 
inhabiting small freshwater pools, for which the Markov approach 
was initially developed (Wilson, Krause, et  al. 2014, Table  4). 
Ongoing research on both taxa suggests that the social dynamics 
of  these 2 systems both follow geometric (or negative exponential) 
distributions that might be a result of  strong selection pressure 
favoring behavioral responses, which are difficult for predators 
to track/predict (Wilson, Krause, et  al. 2014). Such compelling 
results perhaps suggest the broad applicability and usefulness for 
this approach in understanding the dynamic interactions occur-
ring in animal social systems in general and therefore, warrants 
further study.
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Figure 4
Frequency distributions of  (a) lengths of  contact with a particular nearest neighbor, (b) lengths of  social contact in general (i.e., the number of  successive 
times a focal individual was in close proximity to a neighbor), and (c) the lengths of  time an individual spent swimming alone in the observed data (circles). 
Also shown are the means (shown as “×”) and the 2.5% and 97.5% percentiles as predicted by our Markov chain model.
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Although our study focused on a single representative popula-
tion of  juvenile lemon sharks, our findings and experimental tech-
nique in particular can be used as a platform to build on for further 
research on the social behavior of  gregarious elasmobranchs. Our 
study is the first to use an integrative approach based on concurrent 
application of  network analysis, accelerometry, and direct observa-
tion to better understand shark ecology and behavior. We provide 
novel evidence with regard to shark sociability and its mechanistic 
bases through preferential assortment by sex, individual preference, 
and similarity/nonsimilarity for various behavioral and locomotory 
traits. Our use of  accelerometer tags to continuously monitor shark 
movements also ties these results together in the context of  diel pat-
terns of  behavior and how this might differ between sexes, even 
when direct observation of  test individuals is not always possible 
(Brown et al. 2013). Although acoustic telemetry is more common 
in shark studies (Guttridge et  al. 2010; Jacoby, Croft, et  al. 2012), 
accelerometer biologger tags offer a unique opportunity to charac-
terize individual differences in activity at continuous, extremely fine 
scales (Brown et al. 2013) as well as combine estimates of  energetic 
budgets and locomotor patterns to provide new insights into shark 
behavior. When combined with direct observations of  behavior and 
network approaches, such technology can therefore be an effective 
tool for better understanding free-ranging shark ecology, particu-
larly with juvenile elasmobranchs that commonly aggregate in near 
shore, shallow habitats (Knip et  al. 2010). We suggest that such 
integrative fine-scale approaches represent powerful tools capable 
of  providing new insights and understanding regarding the social 
dynamics of  elasmobranchs and other taxa.

SUPPLEMENTARY MATERIAL
Supplementary material can be found at http://www.beheco.
oxfordjournals.org/
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