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1. Introduction

Most studies of hadron structure have neglected the disconnected quark loop contributions
due to the technical difficulty associated with the computation of these diagrams. Algorithmic
developments as well as new computer architectures are making the computation of disconnected
contributions feasible and enable us to reach the high precision necessary for obtaining meaning-
ful results on these quantities. In this work we employ GPUs for the complete evaluation of the
disconnected quark loops that contribute to the nucleon observables [1]. Our implementation on
GPUs includes the inversion of the Dirac operator, contractions and Fourier transform. To this end
we make extensive use of the QUDA library [2].

2. Variance reduction techniques

The basic quantity that enters in the computation of disconnected quark loops is the trace of the
inverse of the fermionic matrix. Since a direct computation is unaffordable, stochastic techniques
are used (recently an alternative approach was developed based on hierarchical probing [3, 4]), to
estimate the inverse matrix by employing stochastic noise sources 1. But stochastic techniques have
inherent noise that decreases as O(1/

√
Nr), with Nr the number of stochastic sources employed. In

addition, disconnected quark loops are prone to large gauge noise and therefore variance reduction
techniques are essential to obtain a good signal.

2.1 The Truncated Solver Method

In this work we employ the well known Truncated Solver Method (TSM) [6] that is found to
be well-suited in disconnected diagram computations due to its effectiveness and its low cost. The
basics of the TSM consist of computing a cheap, low-precision estimation of the inverse matrix by
truncating the inverter using many stochastic noise sources, and then correcting it by a few high-
precision inversions. The correction is estimated by inverting a few noise sources to both high- and
low-precision, and averaging over the difference as follows

M−1
ET SM

:=
1

NHP

NHP

∑
r=1

[|sr〉HP−|sr〉LP]〈ηr|+
1

NLP

NHP+NLP

∑
j=NHP

|sr〉LP 〈ηr|x. (2.1)

If the high- and the low-precision inversions yield results that are highly correlated, the correction
does not fluctuate excessively, and a few sources are enough to correct the bias. One then can use
computer resources to increase the number of the low-precision estimators, reducing the statistical
error cheaply.

2.2 The one-end trick

The twisted-mass fermion regularization scheme (tmQCD) has a unique feature that allows for
the use of a very powerful variance reduction technique for the disconnected contributions [7]. By
using the identities

1In this work we use ZN noise, as it was reported to be optimal [5].
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M−1
u −M−1

d =−2iµaM−1
d γ5M−1

u , (2.2)

M−1
u +M−1

d = 2DW , (2.3)

any computation featuring a sum/difference of propagators is automatically improved. Note that
we only need to replace the fields in the contraction by

2iµa
Nr

Nr

∑
r=1

〈
s†

r γ5Xsr
〉
= Tr

(
M−1

u X
)
−Tr

(
M−1

d X
)
+O

(
1√
Nr

)
, (2.4)

2
Nr

Nr

∑
r=1

〈
s†

r γ5Xγ5DW sr
〉
= Tr

(
M−1

u X
)
+Tr

(
M−1

d X
)
+O

(
1√
Nr

)
. (2.5)

This trick reduces the signal-to-noise ratio of the computation from O
(

1√
V

)
to O(1).

3. GPU acceleration

The QUDA library is used throughout for these calculations with the exception of the gen-
eration of the sources, that is carried out on CPUs. Once the source is copied to the GPU, the
rest of the computations are performed there. Taking advantage of the specific capabilities of the
GPUs, the high-precision correction was computed using a mixed double-single precision solver,
performing at ≈ 100 GFlops per GPU, whereas the low-precision estimation used a mixed double-
half precision solver, yielding the impressive amount of ≈ 300 GFlops per card. The contraction
kernels in double precision achieve a performance of around 300 GFlops, solving one of the most
important bottlenecks that slowed down the loop computations on GPUs for some time. These
kernels, developed by our group [8], deliver results for all possible γ insertions for ultra-local and
one-derivative operators, which allowed us to perform a complete analysis of all disconnected loop
contributions to hadron structure. The Fourier transform required was performed by employing the
highly optimized CUDA library cuFFT. These improvements enable a very efficient computation
of the disconnected quark loops.

4. Ensembles

We show results for two different tmQCD NF = 2+1+1 ensembles:

Ensemble Volume mπ (MeV) mπL a (fm) Stats
B55.32 323×64 372(5) 4.97 0.0823(10) 147072
D15.48 483×96 213(21) 3.35 0.0646(7) 7752

Table 1: Ensembles used in the calculation.

Both the strange and the charm quark masses were tuned to their physical values for both en-
sembles. The low-precision inversions used a residual of ρ ≈ 5× 10−3, while the high-precision
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inversion used ρ ≈ 10−9. For the D15.48 ensemble we computed 24 high-precision propagators
for the correction and 500 low-precision ones for the estimation for all flavors. For the B55.32 we
also use 24 high-precision propagators and 500 low-precision ones for the light quark sector, while
for the strange and the charm quark sectors 300 low-precision propagators are used.

5. Results on nucleon observables

We show results on the bare nucleon σ–terms in Fig. 1 that describe the scalar content of the
nucleon, and are highly relevant in dark matter searches. Comparing the results of both ensembles
we appreciate a clear decrease in the importance of the contribution of σπN disconnected, whereas
σs grows with diminishing mass. The behavior of σc with the pion mass is not clear to us, for from
the data coming from the B55 ensemble we couldn’t find a reasonable value.
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Figure 1: Plateau method for the nucleon σπN (upper panel) and σs (lower panel) for the B55.32 (left) and
D15.48 (right) ensembles. Contamination from excited states is evident, as the value of the plateau increases
with increasing ts up to ts ∼ 1.5 fm. The grey band is the result obtained from the summation method.

Using these two ensembles and a linear extrapolation in m2
π we find (for the disconnected, no

connected contributions here) σπN = 3.9±4.5 MeV and σs = 47.8±8.7 MeV at the physical point.
Given that we only have two ensembles, with limited statistics for the D15.48, the values of the
σ -terms quoted are to be regarded as preliminary. The important point is that we have a method
that with increased statistics can be applied to the computation of these important observables.

The value of the axial charge gq
A determines the intrinsic fraction of the spin carried by a

quark q in the proton. Given the long-standing spin puzzled of the nucleon it is important to be
able to compute this quantity directly from QCD. To extract gq

A we need both the isovector and
isoscalar values of the matrix element of the axial-vector current. In Fig. 2 we show the results
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on the disconnected part of the isoscalar2 gu+d
A and strange contribution to the spin gs

A. If one
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Figure 2: Plateau method for the bare nucleon gu+d
A (upper panel) and gs

A (lower panel) for the B55.32 (left)
and D15.48 (right) ensembles. No noticeable contamination from excited states is observed.

extrapolates to the physical pion mass to LO (constant fit), one obtains gu+d
A =−0.075±0.038 and

gs
A =−0.0212±0.0072. While these numbers are preliminary it is clear that the correction to the

connected part is ≈ 10%, and therefore disconnected contributions must be taken into account in
determining high precision results for the spin content of the nucleon.

Our study includes loops with all γ-structure and thus also the tensor combination entering in
the tensor content of the nucleon. Contrary to gu+d

A our results on gu+d
T displayed in Fig. 3 show

that the disconnected contribution is very small and can be neglected compared to the connected
contribution. This is also true for gs

T .
Our results include disconnected contributions entering the momentum fraction carried by the

light and the strange quarks in the nucleon. Within our accuracy these are found consistent with
zero for the B55.32 ensemble as shown in Fig. 4 for the momentum fraction and helicity. Similar
results are obtained for the D15.48 ensemble.

6. The physical point

In order to eliminate the systematic error due to the chiral extrapolation one needs to compute
the disconnected contributions directly at the physical point. Although we have an ensemble of
twisted mass fermion with a clover term at the physical point, applying the methodology developed

2For the renormalization we use the isovector ZA. The error introduced is of order O(g2
0), much smaller than our

current statistical errors.
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Figure 3: Plateaux for gu+d
T (upper panel) and gs

T (lower panel) of the nucleon for the B55.32 (left) and the
D15.48 (right) ensembles.
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Figure 4: Results for 〈x〉u+d (left), 〈x〉s (center) and 〈x〉
∆u+∆d (right) of the nucleon for the B55.32 ensemble.

for larger pion masses proved to be insufficient. The reason is that the size of the correction involved
in the TSM algorithm grows as the mass decreases, requiring a large number of high-precision
inversions (and hence becoming prohibitively expensive) to obtain a reliable value for the quark
loops. Reducing the residual of the low-precision estimation can help, but increases the cost of the
computation up to a level that the TSM is not efficient any more. Attempts to tune for the best
values following the procedure outlined in [6] failed to give parameters that would make the TSM
competitive so far. Since the low-modes of the Dirac operator are expected to be responsible for
this behavior, we are exploring deflation techniques in order to remove them. There already exists
reports on the performance of the deflated TSM, usually called Truncated Eigenmode Acceleration
(TEA) [11].

7. Conclusions

The disconnected contributions are becoming finally accesible by a clever combination of
computer power and state-of-the-art algorithms. This allowed us to carry out a broad, high-
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precision study that included all the possible disconnected contributions with ultra-local and one-
derivative insertions. The final objective is to remove the systematic errors that appear in many
hadron structure studies, as well as calculate all these disconnected contributions that have interest
by themselves (e.g. σs for dark matter searches) to a new level of precision.

In spite of the large improvements recently made in algorithms, high statistics are still required
to obtain good signal in many observables. The most accurate results presented here were for
≈ 150000 measurements, and even at such high statistics we were not able to achieve the accuracy
typically achieved with connected contributions for all observables.

In the future we plan to deliver data obtained directly at the physical pion mass. To this end
we will include deflation in our code and calculate the low-modes exactly.
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