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THE USE OF ACUTE RESPONSES OF ENDOCRINE AND IMMUNE BIOMARKERS TO 

HIGHLIGHT OVERREACHING 

 

D. V. LEAL 

 

Abstract 

 

The action of overtraining may lead to the different states of overreaching or the overtraining 

syndrome (OTS). Chronic maladaptation in endocrine and immune mechanisms, and 

performance decrements occur with the incidence of these states. Circulating cortisol and 

testosterone have been proposed as endocrine markers of overreaching/OTS. Salivary 

measurements of these hormones have been used as a non-invasive surrogate for circulating 

levels. Chapter 4 (study 1) on this Thesis examined the influence of consuming water 10 min, 5 

min and 1 min before providing a saliva sample in diluting saliva and consequently providing 

invalid salivary cortisol and testosterone concentration levels. No trial effect was found. 

However, exercise-induced salivary cortisol and testosterone significantly elevated in response 

to the 10 min and 5 min trials only, with lower absolute-changes observed in the 1 min trial. No 

differences were found in the resting samples. It was suggested that consuming water up to 5 

min before providing a saliva sample does not appear to influence the hormone concentrations 

at rest and during exercise. However, the recommended guidelines for saliva collection have 

been followed in the subsequent studies. Chapter 5 (study 2) examined the reproducibility of 

salivary cortisol and testosterone responses to a 30-min cycle named as the 55/80. This test 

has been proposed as a suitable indicator of hormonal alterations associated with 

overreaching/OTS. Reproducibility of salivary cortisol and testosterone to the 55/80 was 

confirmed by determining intra-individual coefficients of variation (CVi). However, the 55/80 is a 

cycle test and therefore, may not be appropriate for runners. Chapter 6 (study 3) focused on 

designing a 30-min, running bout (i.e. the RPEtreadmill) to reproduce the effects of the 55/80. The 

RPEtreadmill is a self-paced test and therefore, will not require a !̇#$%&' test to determine exercise 

intensities. An acute elevation of plasma and salivary testosterone, but not cortisol was 
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observed in response to the RPEtreadmill. These responses have been shown to be reproducible. 

The data from Chapter 6 suggest that the RPEtreadmill may be a suitable tool to indicate hormonal 

alterations associated with overreaching/OTS. This led to the design of study 4 (Chapter 7). 

Plasma and salivary cortisol and testosterone responses were examined before and after a 12-

day intensified-training period. Immunity markers (specifically salivary immunoglobulin A (SIgA), 

leucocyte subset proliferation and phagocytic activity) were examined before and after training. 

Plasma and salivary cortisol were unaffected by acute exercise and training. However, 

testosterone elevated to the RPEtreadmill Pre-Training, and these responses were reduced Post-

Training. Total leucocytes and mucosal immunity were unaffected by exercise and training. 

However, increased upper respiratory tract infection symptoms were found Post-Training. 

Baseline phagocytic function was 47% lower Post-Training. This Thesis suggests that 

testosterone may be a more reliable exercise-stress marker. Moreover, the RPEtreadmill may be a 

suitable tool to highlight alterations in testosterone when in an overreached state in an attempt 

to avoid the incidence of OTS, and that this tool may be practically applied in the field of 

exercise science. Additionally, this Thesis shows that a 12-day intensified-training period 

induced a marked decrease in phagocytic responses, and therefore using the RPEtreadmill to 

highlight overreaching may be important to also prevent further impairments in immunity status. 
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1.1 Introduction 
 

To improve physical performance an athlete must increase the intensity and/or volume 

of exercise training (Costill et al., 1991, Häkkinen et al., 1987, Laursen and Jenkins, 2002, 

Lehmann et al., 1992a, Mujika et al., 1995, Sperlich et al., 2010). In addition to this, there 

is a requirement for appropriate recovery to be completed during this elevation in training 

load in order to elicit increases in physical performance (Meeusen et al., 2013). If 

appropriate recovery is not present after prolonged exposure to excessive exercise loads, 

then signs of overreaching may be developed within a period as short as 7 days (Halson 

et al., 2002). These signs may include acute performance decrements (Le Meur et al., 

2014, Meeusen et al., 2004), mood and sleep disturbances (Morgan et al., 1987), an 

increased rate of infection (Gleeson, 2006a, Nieman, 1997) and a continuous fatigued 

state (Meeusen et al., 2010). If overreaching is recognised early and appropriate recovery 

is completed, athletes may fully recover and experience a supercompensatory increase in 

performance. This phenomenon is referred to as Functional Overreaching (FOR) (Dupuy 

et al., 2010, Halson and Jeukendrup, 2004, Meeusen et al., 2013). It normally takes days 

to weeks for athletes to fully recover from FOR. However, if the recovery duration is not 

sufficient and the body is continually exposed to stress then Non-Functional Overreaching 

(NFOR) may occur. It takes weeks to months for full recovery to occur from this state. If 

NFOR is not recognised/diagnosed and the training/recovery imbalance continues an 

individual may develop the Overtraining Syndrome (OTS), which may take months to 

years for recovery to occur with some cases reporting no recovery at all (Dupuy et al., 

2010, Meeusen et al., 2013, Urhausen and Kindermann, 2002). Signs of overreaching 

happen in both athletes from individual (37%) and team (17%) sports (Matos et al., 2011), 

with the overall incidence of NFOR/OTS in an elite athlete’s career ranging from ~35% 

(Kenttä et al., 2001, Raglin et al., 2000), to 67% in elite distance athletes (Morgan et al., 

1987), for example. Despite the prevalence of overreaching/OTS symptoms during an 

athlete’s career, little progress has been made on uncovering objective biomarkers that 
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focus on identifying the onset of overreaching/OTS (Armstrong and VanHeest, 2002, 

Wyatt et al., 2013). 

 

Endocrine and immune markers of NFOR and OTS have been proposed but have 

been found to be inconclusive as useful biomarkers of these states, with research 

reporting increases (Grandys et al., 2009, McConnel and Sinning, 1984), decreases 

(Hoogeveen and Zonderland, 1996, Kageta et al., 2015, Wheeler et al., 1991) and no 

changes (Miloski et al., 2015, Mujika et al., 1996, Vesterinen et al., 2016) in the resting 

concentrations of certain hormones when comparing before and after a period of 

intensified training. Two proposed endocrine biomarkers, measured at rest, of the 

overreaching phenomena are circulating cortisol and testosterone due to their ability to 

indicate the body´s catabolic/anabolic state, respectively. As resting levels of endocrine 

biomarkers of overreaching may not be informative, it has been proposed that an 

examination of the exercise-induced responses of particular hormones may be a useful 

approach to highlight and overreached state. A blunted plasma cortisol and 

adrenocorticotropic hormone (ACTH) to a double cycle to fatigue protocol has been 

reported to occur following a 10-day training camp (Meeusen et al., 2004). This absolute 

change in the exercise-induced blunted response was in the magnitude of 73% to the 

second bout to exhaustion (13.2 to 3.6 ng.L-1). Moreover, this cycling protocol was 

reported to be sensitive enough to distinguish between NFOR athletes and those 

diagnosed with OTS, with NFOR athletes showing a considerably greater acute response 

of ACTH to the second cycle bout to fatigue (Meeusen et al., 2010). 

 

Despite the useful findings from Meeusen et al. (2010), it is reasonable to suggest that 

the exercise tool utilised in this study may not be of an ideal duration (the duration of 2 x 

cycles to fatigue and a 4h resting recovery) for individuals presenting with symptoms of 

overreaching/OTS. It was for this reason that Hough et al. (2011) developed a shorter (30 

min), high-intensity cycle test that is capable of elevating salivary cortisol (by ~120% from 
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pre-exercise) and testosterone (by ~35% from pre-exercise) when in a normal-trained 

state. This high-intensity cycle bout was referred to as the 55/80. The 55/80 is a 

continuous 30 min cycling bout formed of alternate blocks of 1 min at 55% maximal work 

rate (2̇max) and 4 min at 80% 2̇max. Hough et al. (2013) and Hough et al. (2015) further 

identified that salivary cortisol and testosterone responses to the 55/80 are blunted 

following short periods of intensified training in physically active males and in a male elite 

triathlete population. Overall this suggests that the use of the exercise-induced responses 

of particular hormones (cortisol and testosterone more specifically) may be a useful 

method to highlight an overreached state (FOR or NFOR). In addition, salivary cortisol 

and testosterone measurements are widely utilized in exercise science as a non-invasive 

surrogate for blood sampling (Ahn et al., 2007, Hayes et al., 2015a, Hayes et al., 2016, 

Hough et al., 2011, Maso et al., 2004). Salivary cortisol was reported for the first time in 

the early 1960’s (Greaves and West, 1963), whereas salivary testosterone was first 

detected in 1976 (Landman et al., 1976). Current guidelines recommend that water 

consumption should be ceased at least 10 minutes before collecting a saliva sample. 

However, to this author’s knowledge there are no studies that examine the effect water 

consumption has on the exercise-induced salivary hormones concentrations. Therefore, it 

is of interest to examine if consuming water shortly before providing a saliva sample has 

an influence in the salivary cortisol and testosterone concentration levels in saliva. 

 

Despite the interesting findings from Hough et al. (2013) and Hough et al. (2015), the 

reproducibility of the salivary cortisol and testosterone responses to the 55/80 has not 

been examined yet. Moreover, although the 55/80 may be a useful short-duration exercise 

tool to highlight a hormonal dysfunction following intensified training periods, this exercise 

test is completed on a cycle ergometer. It must be recognised not all athletes are familiar 

to or comfortable with cycling and therefore, the design of a similar running test may be 

beneficial to increase the population that can be tested for NFOR/OTS. 
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Continuously overloading the body by intensifying the training sessions has been 

reported to suppress the immune system (Lancaster et al., 2003, Nieman, 2000, 

Pedersen et al., 1996), eventually increasing the risk of common infections and upper 

respiratory symptoms (URS) (Heath et al., 1992, Nieman, 1994b). As a link to the 

hormones referred to earlier in this Introduction, it is known that cortisol has an influence 

in the regulation of the exercise-induced, acute inflammatory response and it has been 

reported to be associated with a raise in neutrophil numbers and suppression of 

lymphocytes such as natural killer (NK) cells, and CD3+ CD4+ CD8+ and CD3+ CD4- CD8- 

T-cells following 2 x 45 min competitive football games (Malm et al., 2004). Furthermore, 

the magnitude and function of circulating cells of the innate immune system, such as 

neutrophils and NK-cells, and the acquired immune system (e.g. T and B lymphocytes) 

may be altered by acute and chronic exposure to exercise (Walsh et al., 2011b). Blood 

lymphocyte numbers [e.g. NK-cells, CD8+ T-cells, CD4+ T-cells, and Gamma Delta (γδ) 

T-lymphocytes] have been shown to exponentially increase following an acute bout of 

exercise (Anane et al., 2009, Mohr et al., 2016). Anane et al. (2009) were the first to report 

that γδ T-lymphocytes are stress-responsive cells that are mobilized during physical 

(exercise) and psychological stress, therefore it will be of interest to analyse these cells 

proliferation in athletes suffering symptoms consistent with overreaching. It has been 

previously described that athletes suffering from NFOR/OTS have uncommonly low blood 

leucocyte counts and that depletion of the bone marrow’s reserves of mature neutrophils 

may occur following repeated bouts of prolonged intensified-exercise training over a 

period of weeks or months (Gleeson and Robson-Ansley, 2006). Additionally, changes in 

neutrophil function [e.g. reactive oxygen species production (ROS) and phagocytic activity 

(PA)] have also been shown to be a useful marker when predicting the prevalence of 

overreaching/OTS (Yaegaki et al., 2008). The authors reported a significant exercise-

induced increase in leucocyte/neutrophil ratio in female athletes and an unexpected ~23% 

decrease in ROS without any compensation (~15% increase in PA) when comparing 

before to after a 7-day training camp. Therefore, regularly examining neutrophil functions 
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(e.g. ROS and PA) may be a good anticipatory measurement of exercise stress and 

subsequent recovery (Nieman, 1998, Yaegaki et al., 2008). 

 

Another important component of the immune system as it acts as a mechanism of 

defence against external stresses (e.g. pathogenic bacteria or viruses) is a protein present 

in the saliva mucosa called secretory immunoglobulin A (SIgA). SIgA is an indicator of 

mucosal immunity and prevents the incidence of infections of the upper respiratory tract 

(Tripodi et al., 2011, Trochimiak and Hübner-Woźniak, 2012). Exercise-induced SIgA has 

been shown to decrease by 52% in competitive swimmers following a 2-hour training 

session (D'Ercole et al., 2016). A similar decreased response in SIgA secretion rate (46%) 

and concentration (10%) has been observed following a 160-km ultra-marathon 

competition, with an increase in the susceptibility to develop upper respiratory tract-related 

infections (Nieman et al., 2006). It is still unclear what the effects of overreaching on SIgA 

are. SIgA showed to remain unaltered after a 3-week period of intensified-training, 

however it dropped by ~40% after 5 days of military combat, returning to baseline levels 

after 1 week of recovery (Tiollier et al., 2005). SIgA has been proposed as a useful stress 

marker (Tsujita and Morimoto, 1999), with markedly increased concentrations occurring 

after events of psychosocial stress (Evans et al., 1994, Jemmott and Magloire, 1988, 

McClelland et al., 1985, Zeier et al., 1996). The findings from these studies suggest that 

perhaps the decreased SIgA observed after 5 days of military combat but not after 3 

weeks of intensified training reported by Tiollier et al. (2005) may be due to a suspected 

increase in psychological stress levels during military combat. Small but significant 

average weekly exercise-induced increases in SIgA of 6.7% were reported in elite 

swimmers over the course of a 12-week cycling training programme (Gleeson et al., 

2000). In contrast, Mackinnon and Hooper (1994) (Mackinnon and Hooper, 1994, Tiollier 

et al., 2005) (Mackinnon and Hooper, 1994, Tiollier et al., 2005) (Mackinnon and Hooper, 

1994, Tiollier et al., 2005) (Mackinnon and Hooper, 1994, Tiollier et al., 2005) (Mackinnon 

and Hooper, 1994, Tiollier et al., 2005) (Mackinnon and Hooper, 1994, Tiollier et al., 2005) 



 Chapter 1: Introduction 
 

 7 

(Mackinnon and Hooper, 1994, Tiollier et al., 2005) (Mackinnon and Hooper, 1994, Tiollier 

et al., 2005) (Mackinnon and Hooper, 1994, Tiollier et al., 2005) (Mackinnon and Hooper, 

1994, Tiollier et al., 2005) (Mackinnon and Hooper, 1994, Tiollier et al., 2005) (Mackinnon 

and Hooper, 1994, Tiollier et al., 2005) have reported a decrease in SIgA concentrations 

over the course of a 6-month swimming season, with overreached swimmers showing 

lower SIgA concentrations than well-trained, healthy swimmers. These contrasting results 

may be explained by the different training programmes, the fitness level of participants, 

and even the method used to express IgA data (Bishop and Gleeson, 2009). However, the 

fluctuations in SIgA in response to exercise and its association with upper respiratory 

symptoms (URS) in athletes may be a good indicator of mucosal immunity in athletes 

suspected to be overreached. 

 

The following chapter will focus on the relevant background evidence that led to the 

design and development of the experimental chapters presented in this Thesis. 
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2.1 The General Adaptation Syndrome 

 

The General Adaptation Syndrome (GAS) describes the biological process of an 

organism’s adaptive response to a new condition. This adaptation is developed in three 

stages (Selye, 1936). The first stage, known as the ‘general alarm reaction’ begins when 

the body identifies the onset and source of the biological stress resulting in the decline of 

its physical and mental capacity. As the biological stressor persists, a decline in the body’s 

capability to cope with external stressors falls below baseline levels (Selye, 1946). In the 

second stage the organism activates a series of recovery mechanisms after the imposed 

imbalance, aiming to restore homeostasis. This stage is referred to as the ‘stage of 

resistance’. At this point, depending on the treatment and duration of stimulus, the 

organism may build up such resistance that in the later part of the second stage a state of 

full recovery and/or adaptation may occur. However, depending on the severity of the 

damaging agent, the organism may potentially lose its resistance and succumb to the 

stress and present with symptoms resembling those experienced in the first stage. This 

latter manifestation may occur in the so called ‘exhaustion phase’, which is the third and 

final stage of the syndrome.  

 

Extrapolating GAS to what would be expected to happen in response to continuous 

physical stress (i.e. exercise training) the first stage would be considered to occur when 

the individuals overload their body beyond their capability and start fatiguing. This would 

lead to an inability to maintain a given exercise intensity over a certain period of time 

(Fitts, 1994), may be considered as the ‘general alarm reaction’ from the organism 

highlighting a decrease in its capacities following a stressful situation. The human body 

will attempt to recover from the exposure to the physical stress (‘stage of resistance’) and 

may adapt to improve its capability to cope with this physical stress exposure. The 

‘exhaustion phase’ may then be experienced if the exposure to physical stress persists 
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and the human body is not allowed sufficient recovery, precluding the development of a 

mechanism of adaptation. 

 

 

2.2 Periodisation of Training and The Overload Principle 

 

To achieve positive physiological adaptations in line with the GAS, athletes and 

coaches must plan their training programmes appropriately. Periodisation is the planned 

variation of a training programme in an attempt to lead the athlete to their optimal physical 

performance. Periodisation will normally involve three main phases: the preparation, the 

competition and the transition phases (Koutedakis et al., 2006). The preparation stage is 

the longest of the processes, involving the development and improvement of all technical 

and tactical aspects required for the competition. It is fully focused on improving the 

overall performance of the athletes, to prepare them for the forthcoming phase. The 

competition phase will vary in duration and complexity depending on the number of 

competition dates. During this stage, there is a large focus on improving and maintaining 

fitness levels (Argus et al., 2009, Argus et al., 2012, Baker, 2001). Periodisation planning 

typically ends after this phase, with the implementation of lower-intensity training sessions 

and longer periods of recovery, referred to as the transition phase (Bompa, 1996). In 

summary, if a periodisation period is completed successfully it will lead an athlete into a 

physical state that may lead to an optimal physical performance. This adaptation is 

achieved by an appropriate balance of stress and recovery, which is illustrated in Figure 

2.1. 
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Figure 2.1 The stages of the supercompensation cycle (adapted from Koutedakis et al. 
(2006, p. 6)). 

 

 

This figure presents the supercompensation cycle that links intensified-training load 

and recovery as the bases for a positive physical adaptation (Bompa and Haff, 2009). 

Similarly to GAS, the first stage begins when athletes overtrain by increasing volume, 

intensity and/or frequency of exercise training. Overtraining is likely to increase fatigue 

levels, leading to the onset of the ‘Fatigue’ stage. This stage should lead to acute declines 

in exercise performance (Morton, 1997). Following the ‘Fatigue’ stage the recovery stage 

begins, aiming an adaptation to higher levels of physical performance (Koutedakis et al., 

2006) (Figure 2.1). 

 

A disrupted balance between the accumulation or increase in training load (either by 

increasing volume and/or intensity) and the recovery from it may trigger acute or chronic 

states of fatigue with concomitant decreases in physical performance. If the repetition of 

training cycles is not accompanied by sufficient recovery this may lead the athletes to 

overreach. If overreaching is recognised early and appropriate recovery is completed, a 

supercompensatory response in exercise performance may be achieved. This state is 

referred to as FOR (Dupuy et al., 2010, Halson and Jeukendrup, 2004, Meeusen et al., 

2013). However, if the necessary recovery is insufficient and the athlete continues the 

exposure to stress, then NFOR may occur. If NFOR is not diagnosed and the 

Adaptations (compensation) Overtraining 

Fatigue 
Recovery 



 Chapter 2: Review of the Literature and Research Aims 
 

 12 

training/recovery imbalance continues further, then OTS may be developed (Meeusen et 

al., 2013). The difference between these stages is simply the duration required for full 

recovery to occur. Recovery from FOR may occur within days to weeks, whereas several 

weeks to months may be required for recovery from NFOR to occur. Recovery from OTS 

may take years, and more severe cases have reported no recovery at all (Dupuy et al., 

2010, Meeusen et al., 2013, Urhausen and Kindermann, 2002). The figure below 

schematically clarifies the concepts of overreaching – FOR when quick recovery is still 

possible, or NFOR where recovery is still possible - and the more serious states of OTS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic representation of the practice of overreaching and OTS. (Taken 
from Budgett (1998)). 
 

 

The most common symptoms of maladaptation associated with NFOR/OTS are chronic 

declines in athletic performance associated with increased fatigue levels (Coutts et al., 

2007, Halson and Jeukendrup, 2004, Le Meur et al., 2014, Meeusen et al., 2004, 

Urhausen et al., 1995, Urhausen et al., 1998b), mood and sleep disturbances (Fry et al., 

1991, Hollander et al., 1995, Kenttä et al., 2001, Morgan et al., 1987, Raglin, 1993, Raglin 

et al., 2000), prolonged fatigue and weakness (Hough et al., 2013, Meehan et al., 2004, 
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Meeusen et al., 2010, Urhausen et al., 1995), and an elevated incidence of infections 

(Bishop and Gleeson, 2009, Fahlman and Engels, 2005, Gleeson, 2006b, Gleeson et al., 

2012, Neville et al., 2008, Nieman, 1997, 2009, Robson et al., 1999b, Tiollier et al., 2005). 

Even with this said, these signs and symptoms are not always present in a NFOR or OTS 

athlete and therefore these states are often diagnosed retrospectively. 

 

 

2.3 Hormonal Markers of Overreaching/OTS 

 

Two proposed endocrine biomarkers of the overreaching phenomena are 

plasma/serum cortisol and testosterone, which can indicate the body´s catabolic/anabolic 

state, due to their roles in protein degradation/synthesis, respectively. 

 

Measuring resting concentrations of plasma/serum cortisol and testosterone has been 

proposed as a possible method to help diagnose NFOR and OTS (Hooper et al., 1993, 

Hooper et al., 1995, Mackinnon et al., 1997a, Snyder et al., 1995, Urhausen et al., 1998a). 

However, on detailed examination of this research it is clear that the findings are 

inconclusive with increased, decreased and unaltered responses of the resting 

concentrations of these hormones being shown when individuals are suffering from 

overreaching or OTS. For example, decreased resting serum cortisol (33% decrease from 

pre-race values) and testosterone (40% decrease from pre-race values) concentrations in 

elite cyclists have been reported over the course of a 3-week professional cycle race 

(Lucia et al., 2001). Contrastingly, an increase of 17% in circulating testosterone and 26% 

in free testosterone from baseline measures were found in young, previously untrained 

men following a 5-week endurance training programme (4 sessions per week at 90% 

maximal oxygen uptake (!̇#$%&')), with no alteration in circulating cortisol (Grandys et al., 

2009). Finally, Hoogeveen and Zonderland (1996) reported a ~15% decrease in resting 
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testosterone and a ~39% increase in resting cortisol concentrations in elite cyclists over 

the course of 4 months of intensified training. 

 

These conflicting findings are likely due to the many different training stresses 

experienced by the study participants (i.e. the training protocols to induce overreaching), 

the timing of day of the sample collection, the controls or the absence of particularly 

important controls (e.g. hydration status) when measuring these hormones. 

 

 

2.3.1 Hormonal Classification, Synthesis and Secretion 

 

The endocrine system connects to all other body systems and controls its metabolic 

and physiological functions (Barrett et al., 2005). It incorporates the ductless glands which 

are responsible for synthesising hormones and releasing them directly into the circulatory 

system (Martin, 1976). These glands are located in different areas of the human body 

and, depending on their function, they can secrete more than one type of hormone. 

 

Hormones are chemical messengers classified as signalling molecules that act through 

receptors to cause action in their target cells, thus regulating the metabolic, physiological 

and reproductive mechanisms of the body (Hinson et al., 2010, Martin, 1976). The 

chemical structure of a hormone directly influences the way in which hormones are stored, 

secreted, transported through the bloodstream and their mechanism of action. There are 

three main categories of hormones that differ on the basis of their chemical structure 

(Hinson et al., 2010). The most numerous in the human body are the peptide hormones, 

formed of amino acid chains connected via peptide bonds. The second group of 

hormones is the steroid hormones, which originate from cholesterol and have a common 

fundamental structure. The third major group of hormones comprises those that are 

derived from amino acids (amine hormones). This Thesis focuses on steroid hormones 
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with a theoretic focus on their peptide precursors. Steroid hormones may be divided into 

more specific subcategories. This Thesis will specifically focus on androgens (male sex 

hormones) and glucocorticoids. The glucocorticoids play a role in glucose homeostasis 

(Olefsky and Kimmerling, 1975). 

 

Peptide hormones are synthesized in cells in which the rough endoplasmic reticulum 

and Golgi apparatus are abundantly present (Hinson et al., 2010). The synthesised 

peptide hormones are stored within granules in the endocrine cells, before being released 

to the bloodstream in response to a stimulus (Kelly, 1987). Peptide hormones secretion to 

the bloodstream occurs through a mechanism referred to as exocytosis (see Figure 2.3 

A). Exocytosis is the movement of molecular materials out of cells through vesicles or 

secretory granules that contain the hormone ready for secretion and is triggered by an 

elevation in intra-cellular levels of calcium ions (Ca2+) or depolarisation of the cell. In 

contrast, cells responsible for secreting steroids are abundant in mitochondria and smooth 

endoplasmic reticulum and lipid droplets are found in the cytoplasm (Herz and Fried, 

1958, Hinson et al., 2010). Steroid hormones do not require any secretory mechanism 

and simply diffuse out of the cell membrane to the extracellular fluid (see Figure 2.3 B). 

 
 
 
 
 

 

 

 

 
 
 

 

Figure 2.3 Synthesis and secretion of peptide (A) and steroid (B) hormones. 
(Taken from Hinson et al. (2010)). 

 
 

A B 
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2.3.2 Hormone Action on Their Target Cells 

 

Typically, hormones travel in the bloodstream in very low concentrations from the cells 

in which they are synthesized to reach the target cells where they will cause action. All 

hormones act by binding to specific sensing units, receptor proteins, on the cell 

membrane or in the cytoplasm of their target cells, which will in turn trigger an intracellular 

response and consequently activate a biological reaction. For this to occur, hormones 

travelling in the bloodstream to a specific tissue must first be unbound from any protein 

carrier (i.e. in a free state) before they can cause their action (Norman and Litwack, 1997). 

 

The location of the receptors to which hormones will bind to depends on the chemical 

nature of the hormone itself. A target cell may express two types of receptors – a 

membrane-bound surface receptor and a soluble intracellular receptor. As peptide 

hormones are water-soluble they dissolve readily in plasma. However, these hormones 

cannot enter the target cell as they are either too large and hydrophilic and, therefore, 

interact with receptors on the cell membrane, forming a hormone-receptor complex 

(Martin, 1976). There are two main classes of cell surface receptors: the G-protein 

coupled receptors (GPCRs) which act through the generation of a second messenger - 

chemical signals that spread the initial signal sent by the hormone (i.e. the first 

messenger) – which in turn are linked to protein kinase activation, and those receptors 

that directly activate a protein kinase (Hinson et al., 2010). The GPCRs are the most 

common within the endocrine system (Hinson et al., 2010). The most abundant central 

diffusible intracellular second messenger is cyclic adenosine monophosphate (cAMP) 

(Rasmussen and Barrett, 1984). Peptide hormone-receptor complexes activate certain 

enzymes such as adenylyl cyclase, triggering the dephosphorylation of adenosine 

triphosphate (ATP) to cAMP (Hurley, 1999). An elevation in cAMP concentrations 

activates a family of enzymes termed protein kinase A (PKA), which in turn catalyses the 
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phosphorylation of a number of proteins involved in specific cell mechanisms (Walsh and 

Van Patten, 1994). 

 

Steroids are mostly insoluble in plasma, due to their lipophilic character. These 

hormones bind to carrier proteins to be transported through the circulatory system, 

entering into the cells via diffusion to interact with the intracellular receptor in the 

cytoplasm or in the nucleus of the cell (Hinson et al., 2010). Subsequently, the formed 

hormone-receptor complex binds to specific response elements in the promoter region of 

specific genes (Hinson et al., 2010). This stimulates gene transcription, the first step of 

gene expression, where a specific DNA sequence is used as a template to generate a 

messenger RNA (mRNA) molecule (Mooren et al., 2005). The genomic effects of steroids 

are mediated through particular steroid hormone receptors that act as intracellular 

transcription factors (Beato, 1989). This process is accomplished through use of an RNA 

polymerase enzyme. The obtained genetic code will then travel to the cytoplasm where 

proteins will be synthesized (Branden and Tooze, 1993, Maestroni, 2010). In this way, 

steroid hormones stimulate protein synthesis and thereby alter cellular function (see 

Figure 2.4). 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 The action of steroid hormones in the cell. Taken from Hinson et al. (2010). 
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2.3.3 Patterns of Hormone Secretion 

 

The regulation of the endocrine system involves preventing a cascade of catabolic 

events, and aims to maintain homeostasis (Hinson et al., 2010). This regulation is 

coordinated by episodic secretion of regulatory hormones involved in the process. The 

pattern of episodic secretion of hormones is important when regulating factors such as the 

half-life of the hormone itself and the frequency and amplitude of secretory incidences 

(Hinson et al., 2010). 

 

A daily pattern is also involved in hormone secretion, and this is referred to as diurnal 

variation or circadian rhythm. This is any endogenous, regular biological process that 

follows a 24-hour (diurnal) pattern (Edgar et al., 2012, Vitaterna et al., 2001). The singular 

diurnal pattern of each hormone is mediated by the so called ‘body clock’ i.e. the 

suprachiasmatic nucleus in the hypothalamus (Hinson et al., 2010, Martin, 1976).  

 

Cortisol and testosterone are two hormones that are mediated by a marked circadian 

rhythm (Chan and Debono, 2010, Debono et al., 2009, Sinha-Hikim et al., 2003, 

Weitzman et al., 1971). This is depicted in Figure 2.5. In humans, circulating cortisol 

lowest secretion rates in healthy individuals typically occur during the first few hours of 

night-time sleep (Chan and Debono, 2010, Weitzman et al., 1971). This is followed by a 

robust, immediate rise, with peak concentrations occurring after awakening and 

decreasing from then (Born et al., 1999, Van Cauter, 1990, Weibel et al., 1995). A similar 

pattern is seen in the testosterone circadian rhythm, with research reporting peak morning 

circulating levels and a nadir occurring in the early evening (Cooke et al., 1993, Diver et 

al., 2003, Plymate et al., 1989, Walton et al., 2007). 
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An age-related response is also known to occur in both circulating cortisol and 

testosterone. The concentration of cortisol in the circulation has been reported to increase 

with age, with research reporting that a progressive elevation in the levels of cortisol 

nocturnal nadir levels may be the main cause for an increase in mean plasma cortisol with 

age in both sexes (Sherman et al., 1985, Van Cauter et al., 1996). Contrastingly, the 

production of testosterone starts gradually declining with age from around early 30’s 

onwards (Baker et al., 1976, Dillon et al., 2010, Ferrini and Barrett-Connor, 1998, Harman 

et al., 2001, Rubens et al., 1974, Vermeulen et al., 1972).  

 

Cortisol and testosterone can be measured in saliva and blood. Resting serum cortisol 

levels throughout the day in healthy individuals oscillate, with nadir concentrations of <50 

nmol·L-1 and peak concentrations being approximately ~428 nmol·L-1 (Debono et al., 

2009). Moreover, resting salivary cortisol concentrations vary from ~ 2 to ~14 nmol·L-1 

during the day (Kudielka et al., 2007). Resting plasma testosterone concentrations in 

healthy, young individuals range from approximately 13 to 35 nmol·L-1 (Sinha-Hikim et al., 

2003, Traish et al., 2011, Walton et al., 2007), whereas in elderly men these are reduced 

ranging between approximately 5 to 20 nmol·L-1 (Wierman, 2007). Daily average salivary 

testosterone concentrations have been shown to be around ~716 ± 92 pmol·L-1 (Landman 

et al., 1976). 

 

Secretion and regulation of circulating cortisol and testosterone fluctuations is 

accomplished by a cascade of precursor hormones synthesized and released within the 

hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes, 

respectively. 
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Figure 2.5 Circadian rhythm of plasma cortisol (A), salivary cortisol (B), plasma testosterone (C) and salivary testosterone (D). 
Reproduced from Debono et al. (2009) (A), Smyth et al. (1997) (B), Walton et al. (2007) (C) and Kraemer et al. (2001) (D). 
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2.3.4 Hypothalamic-Pituitary-Adrenal (HPA) Axis 

 

The hypothalamus, located beneath the thalamus at the base of the brain, is regulated 

by a wide range of neural inputs that in turn adjust its secretory functions following 

exposure to stress (Akana et al., 1992), exercise (Duclos et al., 1998, Duclos et al., 1997) 

and time of day (Crofford et al., 1997). It is directly connected to the pituitary gland by the 

pituitary stalk. Nuclei in the hypothalamus (i.e. areas of the hypothalamus that are 

anatomically or functionally distinct) detect circulating levels of certain hormones and 

control the release of anterior pituitary hormones by producing releasing factors, which 

are carried to the anterior pituitary to stimulate the release of other hormones via a 

specific blood portal known as the hypophysial portal (Edington and Edgerton, 1976). 

 

Corticotrophin-releasing hormone (CRH) is a peptide that is synthesized and released 

by the hypothalamus (Ganong, 1991) following activation of the sympathetic nervous 

system in response to a stressful situation (Vale et al., 1981). It acts by traveling through 

the portal hypophysial vessel to the anterior pituitary gland (Ganong, 1991) to stimulate 

the secretion of ACTH (Vale et al., 1981), therefore regulating the glucocorticoid synthesis 

by the adrenal cortex (Lundblad and Roberts, 1988). 

 

The adrenal gland is controlled by a circadian rhythm, regulated via the splanchnic 

nerve (Jasper and Engeland, 1997). This means that there are times during the day when 

this gland most effectively responds to ACTH. In turn, ACTH is the key regulator of 

glucocorticoid secretion (Tsigos and Chrousos, 2002). ACTH is found in the circulatory 

system mainly bound to a glycoprotein called transcortin (~75%), but it may also be found 

loosely bound to plasma albumin (~15%) with the remainder of this hormone circulating 

unbound/free (~10%) (Norman and Litwack, 1997). Secreted ACTH travels through the 

bloodstream to the adrenal glands, located at the superior pole of each kidney (Ganong, 

1991). 
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There are two endocrine organs in the adrenal gland, one surrounding the other: the 

inner adrenal medulla, which constitutes 28% of the mass of the adrenal gland, and the 

outer adrenal cortex. In adult mammals, the adrenal cortex itself is divided into three 

distinct zones that are connected between each other. The outer zona glomerulosa is 

made up of cell spirals that are connected to the columns of cells that form the zona 

fasciculata. The inner portion of the latter merges into the zona reticularis, where the cell 

columns interlace in a network (Ganong, 1991). Cortical and medullary tissue may 

sometimes be found in some extraadrenal sites (see Figure 2.6) (Williams, 1962). Under 

resting conditions, an increase in CRH pulses in the early hours in the morning results in 

subsequent bursts of ACTH and cortisol in the circulation (Horrocks et al., 1990). During 

acute stress events, the amplitude of CRH pulsations prominently elevates, thus 

increasing the ACTH and, consequently cortisol secretory events (Tsigos and Chrousos, 

1994). Prolonged exposure to either acute or chronic stress has been shown to reduce 

the sensitivity of the HPA axis to glucocorticoid (specifically cortisol) negative feedback 

(Akana et al., 1992, Duclos et al., 1998, Duclos et al., 1997). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Human adrenal glands. Adrenal cortical and medullary tissue are presented 
as stippled and black, respectively. Extra-adrenal sites sometimes found are also shown. 
Taken from Ganong (1991). 
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2.3.5 Cortisol 

 

Cortisol is a glucocorticoid synthesized from cholesterol (Figure 2.7) and is produced in 

the zona fasciculata of the adrenal cortex through the activation of the HPA axis (Ganong, 

1991). This steroid travels in the circulatory system bound to transcortin (~90%), albumin 

(~7%) or is found unbound (free) (1 to 3%). Free cortisol represents the active form of this 

hormone. Cortisol is released in response to both physiological and psychological stress 

(Hinson et al., 2010). This Thesis will predominantly focus on the exercise-induced cortisol 

responses and how this may alter following a period of intensified exercise training stress. 

 

Cortisol is known to have many actions in the human body. This steroid is important in 

maintaining blood glucose levels and glycogen stores when in a fasting state (Friedmann 

et al., 1967, Hinson et al., 2010), and has also been shown to increase glucose production 

by stimulating gluconeogenesis (Khani and Tayek, 2001), and glycogenolysis and the 

onset of the insulin-dependent regulatory pathway (Plas and Nunez, 1976). 

 

Furthermore, it has been reported that cortisol can lead to a reduction in leucocyte 

mobilisation in healthy adult individuals, specifically an eosinopenia being explained by 

eosinophils migrating from the circulation to lymphoid organs in response to elevated 

blood cortisol levels (Sabag et al., 1978), and lymphocytes showing an inverse relation 

with cortisol levels (Miyawaki et al., 1984, Thomson et al., 1980). In contrast, cortisol has 

been proposed to sustain neutrophilia following long periods of intensified exercise 

(Pedersen and Ullum, 1994; Pedersen et al., 1997). 
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Figure 2.7 The synthesis pathway of cortisol. 
 

 

Cortisol diurnal variation is controlled by a circadian signal generated by the circadian 

pacemaker located in the suprachiasmatic nucleus of the hypothalamus, and by the 

alteration in wakefulness and sleep patterns (Czeisler and Klerman, 1998). The regulation 

of the synthesis and secretion of cortisol is controlled by a homeostatic process called 

negative feedback. Thus, cortisol (the final product of the HPA axis cascade) acts to 

inhibit the release of CRH, which in turn downregulates the secretion of ACTH and 

eventually, cortisol itself (Hinson et al., 2010) (Figure 2.8). 
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Figure 2.8 Negative feedback control of the secretion of cortisol. The dashed and solid 
arrows indicate inhibitory and stimulatory effects, respectively. 
 

 

a) Acute Cortisol Responses to Exercise 

 

Cortisol response to exercise is influenced by factors such as duration and intensity of 

the exercise session, and the training status of the individual (Bloom et al., 1976, Galbo et 

al., 1977, Kuoppasalmi et al., 1980, Sutton et al., 1973, Tremblay et al., 2004). 

Furthermore, although cortisol has been shown to increase in response to endurance 

(examples in Table 2.1) and resistance exercise (Di Blasio et al., 2016, Guezennec et al., 

1986, Häkkinen et al., 1988, Kraemer et al., 1999, Leite et al., 2011, McCaulley et al., 

2009), this Thesis will focus on the acute cortisol responses to high-intensity, short-

duration (30 min) aerobic exercise. 
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It has been proposed that a threshold of exercise intensity exists to elevate cortisol 

concentrations. It has been shown that short-duration exercise above ~50% V̇O$%&' 

decreases cortisol concentrations and exercise above 60% V̇O$%&' may induce an 

elevated response (Davies and Few, 1973). Furthermore, it has been reported that 

continuous cycling exercise for ~120-180 min at moderate intensities of ~50% V̇O$%&' 

(Tabata et al., 1991) and ~55% V̇O$%&' (Robson et al., 1999b, Tremblay et al., 2005) - 

induces a robust elevation in circulating cortisol. However, these responses are not 

immediate and more recently, several studies reported that higher exercise intensities 

(>60% V̇O$%&') elevate both plasma and salivary cortisol following short-duration (~30 

min) exercise bouts (Cadore et al., 2012, Hough et al., 2013, Hough et al., 2011, Robson 

et al., 1999b). A summary of studies reporting the acute responses of cortisol to exercise 

is outlined in Table 2.1. 
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Table 2.1 Acute cortisol responses to continuous exercise. 
*Plasma cortisol; **Salivary cortisol. 

Authors 
(Publication year) 

Participant 
population 

Mean ± SD maximal 
oxygen uptake (!̇#$%&') 

values 
Type of exercise Duration  

Direction of 
concentration 

variation 

Percentage 
change 

Verde, Thomas 
and Shephard 

(1992) 

Trained distance 
runners 

65.3 ± 4.9 mL·kg-1·min-1 
Treadmill-run at 

80% V̇O*+,- 30 min Increase *20% 

Gray et al. (1993) 
Trained male 

athletes 
64.3 ± 3.8 mL·kg-1·min-1 

Interval treadmill-
run at max speed 

on V̇O*+,- test 

To 
exhaustion 

Increase *60% 

Nieman et al. 
(1994)  

Well-conditioned 
male runners 

66.0 ± 1.9 mL·kg-1·min-1 
Treadmill-run at 

50% V̇O*+,- 45 min No change *N/A 

VanBruggen et al. 
(2011) 

Endurance 
trained males 

58.2 ± 6.4 mL·kg-1·min-1 
Cycle at 60% 

V̇O*+,- 30 min No change 
*N/A 
**N/A 

VanBruggen et al. 
(2011) 

Endurance 
trained males 

58.2 ± 6.4 mL·kg-1·min-1 
Cycle at 80% 

V̇O*+,- 30 min Increase 
*40% 

**171% 

Hough et al. 
(2011) 

Physically active 
males 

50.9 ± 8.8 mL·kg-1·min-1 
Cycle at ~75% 

Ẇ+,- 
30 min Increase 

*~80% 
**~120% 

Hough et al. 
(2013) 

Recreationally 
active males 

52 ± 5 mL·kg-1·min-1 
Cycle at ~75% 

Ẇ+,- 
30 min Increase **~210% 

Sgrò et al. (2014) Healthy males 49 ± 5 mL·kg-1·min-1 
Cycle at anaerobic 
threshold (~50% 

V̇O*/0,1) 
30 min Decrease *6% 

Peake et al. (2014) 
Well-trained male 

cyclists and 
triathletes 

4.8 ± 0.3 L·min-1 
Cycle at ~65% 

V̇O*+,- 61min ± 14s No change *N/A 
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b) Exercise-Induced Cortisol Responses After Intensified Training 

 

The HPA axis is involved in the body’s short- and long-term response to stress, such 

as the one induced by exercise. Cortisol, the final product of the HPA cascade, has a long 

half-life (~66 min) in the circulatory system (Weitzman et al., 1971). As shown in the 

previous section of this Thesis, plasma and salivary cortisol concentrations acutely 

elevate in response to high-intensity exercise bouts. It has been hypothesized that a 

hormone-mediated dysregulation occurs with the incidence of OTS (Fry et al., 1994a, 

Kraemer and Ratamess, 2005, Lehmann et al., 1993, Meeusen et al., 2004, Urhausen et 

al., 1998a). 

 

Resting concentrations of cortisol have been proposed as a possible biomarker of 

NFOR and OTS. However, on detailed examination of this research it is clear that the 

findings are inconclusive with increased (Kirwan et al., 1988, Svendsen et al., 2016), 

decreased (Lehmann et al., 1993) and unaltered (Balsalobre-Fernández et al., 2014, 

Mujika et al., 1996, Verde et al., 1992) concentrations shown after intensified training. This 

is likely due to the many differently designed training programmes experienced by the 

participants in these studies. 

 

Table 2.2 presents an overview of several studies reporting resting and exercise-

induced cortisol responses following a period of intensified training. 
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Table 2.2 Cortisol concentrations following a period of intensified training. 
*Plasma cortisol; **Salivary cortisol. 

Authors 
(Publication year) 

Participant 
population Fitness level Duration of 

training 
Resting or 
exercise 
sample 

Concentration 
variation 

Percentage 
change 

Kirwan et al. (1988) 
Trained 

collegiate 
swimmers 

No data 10 days Rest Increase *~24% 

Verde, Thomas and 
Shephard (1992) 

Trained 
distance 
runners 

65.3 ± 4.9 mL·kg-1·min-1 3 weeks Exercise No change *N/A 

Verde, Thomas and 
Shephard (1992) 

Highly trained 
distance 
runners 

65.3 ± 4.9 mL·kg-1·min-1 3 weeks Rest Increase *~11% 

Lehmann et al. (1993) Recreationally 
active males 52.0 ± 5.2 mL·kg-1·min-1 6 weeks Rest Decrease *~13% 

Mujika et al. (1996) Elite swimmers No data 12 weeks Rest No change *N/A 

Hough et al. (2013) Recreationally 
active males 52 ± 5 mL·kg-1·min-1 11 days Exercise Blunted 

response **166% 

Balsadore-Fernández 
et al. (2014) 

Elite 
endurance 

runners 

1500-m personal bests 
of 3:38 – 3:58 min 39 weeks Rest No change **N/A 

Hough et al. (2015) Male elite 
triathletes 67.6 ± 4.5 mL·kg-1·min-1 10 days Exercise No change **N/A 

Svendsen et al. (2016) Trained male 
cyclists 72 ± 5 mL·kg-1·min-1 8 days Rest Increase *~67% 
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2.3.6 The Hypothalamic-Pituitary-Gonadal (HPG) Axis 

 

Similarly to the HPA axis, the HPG axis is composed by the hypothalamus and the 

anterior pituitary gland, and terminates at the gonads (testes in males). Among other 

functions, the HPG axis is responsible for regulating both androgen synthesis and 

spermatogenesis (Hinson et al., 2010, Saez et al., 1989). Androgens are synthesized in 

the Leydig cells in the testes (Eik-Nes, 1975). In the HPG axis, gonadotropin-releasing 

hormone (GnRH) is secreted in an episodic fashion from the hypothalamus and travels to 

the anterior pituitary gland via the hypothalamus-hypophysial portal system, consequently 

activating the synthesis of a class of hormones called gonadotropins, specifically follicle-

stimulating hormone (FSH) and luteinising hormone (LH) (Santoro et al., 1988, Santoro et 

al., 1986). The hormones FSH and LH are subsequently released in a pulsatile mode, with 

LH acting on the Leydig cells to stimulate testosterone production. Concomitantly, FSH 

acts with testosterone on Sertoli cells to stimulate spermatogenesis (Williams, 1962). 

 

Testosterone exerts a negative feedback at the level of the hypothalamus and pituitary 

to control normal reproductive function (Figure 2.9) (Hinson et al., 2010). A marginal 

concentration of the circulating testosterone (~5%) originates from the adrenal cortex 

(Williams, 1962). 
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Figure 2.9 Negative feedback loop of the HPG axis. The dashed and solid arrows 

indicate inhibitory and stimulatory effects, respectively. 
 

 

2.3.7 Testosterone 

 

As stated earlier in this Thesis, cholesterol is the basis for all adrenal steroids synthesis 

and therefore testosterone (Figure 2.10). Testosterone is responsible for regulating many 

physiological processes such as promoting secondary sexual characteristics, muscle 

maintenance, cognitive function and bone metabolism (Bhasin et al., 1996, Evans, 2004).  

 

Testosterone synthesis increases in response to an elevation in the stimulation of the 

peptide GnRH (Lin et al., 1995), which will in turn activate LH. This mechanism increases 

the production of intracellular cAMP, which will in turn activate PKA. The steroidogenic 

acute regulatory (StAR) protein originated from the enzymatic function of PKA (Chen et 
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al., 2005, Stocco and Clark, 1996) is fundamental in transferring free cholesterol - 

released from the lipid stores by activated cholesterol ester hydrolase - from cytoplasm 

into the inner membrane of mitochondria. This process will induce cholesterol conversion 

to pregnenolone (Stocco and Clark, 1996). Pregnenolone is then transported to the 

smooth endoplasmic reticulum for further synthesis to testosterone (Saez, 1994). 

 

 

Figure 2.10 The synthesis pathway of testosterone. 
 

 

a) Acute Testosterone Responses to Exercise 

It has been reported that endurance-trained men present a ~20-30% lower baseline 

testosterone concentration than sedentary men (Hackney et al., 2003), perhaps due to a 

training-induced adaptation at a peripheral level (i.e. testicles). This adaptation in 

endurance-trained males has been proposed to cause an inhibited response of 

testosterone from the tests to endogenous stimuli, as a result from a suppressed response 

of the precursor LH in these athletes (Hackney et al., 1990, Wheeler et al., 1984). 

Circulating concentrations of testosterone are known to acutely elevate following 

exercise of different duration and intensity (Guglielmini et al., 1984). It has been reported 

that a running test to fatigue at 100% of the individual ventilatory threshold (average 

duration being 85 min) induced a 31% elevation in plasma total testosterone, with 

concentration levels remaining elevated within the following 30 min (Daly et al., 2005). In 
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addition, cycling for 30 min at an average 75% V̇O$%&'( (Hough et al., 2011, 2013 & 2015) 

is stressful enough to induce a robust elevation of salivary testosterone levels. 

Furthermore, plasma testosterone has also been shown to elevate following a ~30-min 

incremental maximal cycle by 14% to 30% (Cumming et al., 1983, Hoogeveen and 

Zonderland, 1996, Lehmann et al., 1993) and by 33% following a 30-min submaximal 

cycle at the individual anaerobic threshold test (Sgrò et al., 2014). When examining 

testosterone responses to a running bout, different responses have been reported. 

Testosterone concentrations were not shown to acutely elevate following a 45 min run at 

~18 km.h-1 in male sprinters (Kuoppasalmi et al., 1980), but significantly increased after 60 

min at 55% V̇O$)'* endurance-trained male individuals (Tremblay et al., 2005).  

 

A summary of studies reporting the acute responses of testosterone to exercise is 

outlined in Table 2.3, presented in the next page. 
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Table 2.3 Acute testosterone responses to continuous exercise. 
*Plasma testosterone; **Salivary testosterone. 

Authors 
(Publication year) 

Participant 
population Fitness level Type of exercise Duration  

Direction of 
concentration 

variation 
Percentage 

change 

Guglielmini et al. 
(1984) 

Middle-distance 
runners 90-100 km weekly 

Training session 
(running at low to 

submaximal speed) 
60 min Increase *38.2% 

Cumming et al. (1986) Physically active 
males 40 to 50 mL·kg-1·min-1 

Cycling 
incremental max 

test 
~30 min Increase *30% 

Lehmann et al. (1993) Recreationally 
active males 52.0 ± 5.2 mL·kg-1·min-1 

Cycling 
incremental max 

test 
~30 min Increase *23% 

Hoogeveen and 
Zonderland (1996) 

Professional 
male cyclists 

Average workload max 
of 420W  

Cycling 
incremental max 

test  

~30-35 
min Increase *14% 

Daly et al. (2005) Endurance-
trained males 62.1 ± 1.1 mL·kg-1·min-1 

Running at 100% 
ventilatory 
threshold 

To 
exhaustio

n 
Increase *~31% 

Tremblay et al. (2005) Endurance-
trained males > 75 km weekly Running at 55% 

V̇O$%&' 80 min Increase *22% 

Hough et al. (2011) Physically active 
males 50.9 ± 8.8 mL·kg-1·min-1 Cycle at ~75% 

Ẇ%&' 
30 min Increase **~35% 

Hough et al. (2013) Recreationally 
active males 52 ± 5 mL·kg-1·min-1 Cycle at ~75% 

Ẇ%&' 
30 min Increase **~53% 

Sgrò et al. (2014) Healthy males 49 ± 5 mL·kg-1·min-1 
Cycle at anaerobic 
threshold (~50% 

V̇O$)*&+ 
30 min Increase *33% 
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b) Exercise-Induced Testosterone Responses After Intensified Training 

In the previous section of this Thesis varied acute responses of testosterone to 

exercise were presented and compared. As described, most studies reported significant 

elevations in testosterone in response to cycling bouts of various duration and intensities. 

 

As stated earlier in this Thesis, resting concentrations of testosterone have been 

proposed as a possible biomarker of the overreaching phenomena. However, similarly to 

cortisol concentrations following intensified periods of training, resting concentrations of 

testosterone to a period of intensified training have also been shown to be inconclusive, 

with increases (Alghadir et al., 2015, Grandys et al., 2009, McConnel and Sinning, 1984), 

decreases (Hoogeveen and Zonderland, 1996, Kageta et al., 2015, Wheeler et al., 1991) 

and no changes (Miloski et al., 2015, Mujika et al., 1996, Vesterinen et al., 2016) reported 

when comparing before to after the intensified training period. This may be due to the 

differences in the duration and intensity of the training periods (presented in Table 2.4). In 

addition, it may be reasonable to remember that it is still difficult to diagnose 

overreaching/OTS as there is still no reliable biomarker, and that these states are 

normally diagnosed retrospectively, and therefore whether these study participants were 

truly overreached cannot be answered. 

 

As stated earlier in this Thesis, it has been proposed that the exercise-induced 

responses of both salivary and plasma testosterone may be a more reliable indicator of 

any overreaching-induced alterations in this hormone, with blunted responses occurring 

following a period of intensified training (Hough et al., 2013, Hough et al., 2015, Mäestu et 

al., 2005). 
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Table 2.4 Testosterone concentrations following a period of intensified training. 
*Plasma testosterone; **Salivary testosterone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors 
(Publication year) 

Participant 
population Fitness level Duration of 

training 
Resting or 
exercise 
sample 

Concentration 
variation 

Percentage 
change 

Lehmann et al. (1993) 
Recreationally 
active males 

52.0 ± 5.2 mL·kg-1·min-1 6 weeks Rest No change *N/A 

Mujika et al. (1996) Elite swimmers No data 12 weeks Rest No change *N/A 

Flynn et al. (1994) 
Long-distance 

runners 
65.2 ± 1.3 mL·kg-1·min-1 6 weeks Rest No change *N/A 

Hoogeveen and 
Zonderland (1996) 

Professional 
male cyclists 

Average workload max 
of 420W  

4 months  Exercise Increase *N/A 

Hoogeveen and 
Zonderland (1996) 

Professional 
male cyclists 

Average workload max 
of 420W  

4 months  Rest Decrease *15% 

Urhausen et al. 
(1998a) 

Male cyclists 
and triathletes 

61.2 ± 1.8 mL·kg-1·min-1 19 months Rest No change *N/A 

Hough et al. (2013) 
Recreationally 
active males 

52 ± 5 mL·kg-1·min-1 11 days Exercise 
Blunted 

response 
**21% 

Hough et al. (2015) 
Male elite 
triathletes 

67.6 ± 4.5 mL·kg-1·min-1 10 days Exercise 
Blunted 

response 
**44% 

Alghadir et al. (2015) Healthy males No data 4 weeks Rest Increase **55% 
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2.3.8 Plasma and Salivary Measurement of Hormones 

 

Determination of cortisol and testosterone in saliva is a common non-invasive method 

in exercise-related endocrine research (Ahn et al., 2007, Hayes et al., 2015a, Hayes et al., 

2016, Hough et al., 2011, Maso et al., 2004). Due to the good permeability of the acini 

(secretory cells) in the saliva glands to steroid hormones (Aps and Martens, 2005, Vining 

et al., 1983), cortisol and testosterone concentrations are not influenced by the rate of 

production of saliva (Chicharro et al., 1998, Lewis, 2006, Vining et al., 1983). 

 

Salivary cortisol has been shown to be a good surrogate for circulating free cortisol 

(Perogamvros et al., 2010), and therefore has been proposed as a tool for monitoring 

exercise-related hormone and immune markers (Papacosta and Nassis, 2011). Salivary 

and circulatory cortisol have been shown to have a moderate to strong positive correlation 

both in healthy, active men (Pearson’s r = 0.86, p < 0.001, n = 50) (Port, 1991), and in 

endurance-trained male individuals (Pearson’s r = 0.73, p < 0.0001, n = 12) (VanBruggen 

et al., 2011). Furthermore, similar responses were shown when correlating plasma and 

salivary cortisol concentrations to the 55/80 cycle bout developed by Hough et al. (2011) 

(Pearson’s r = 0.78, p = 0.012, n = 10). Similarly to cortisol, salivary testosterone allegedly 

reflects the unbound hormone fraction, as the glycoprotein sex hormone-binding globulin 

(SHBG) has been reported not to enter saliva. However, Selby, Lobb and Jeffcoate (1988) 

have observed the presence of SHBG in saliva. Although salivary and plasma 

testosterone have been shown to strongly correlate in 37 healthy male individuals with 

Pearson’s r = 0.71, p < 0.001 (Khan-Dawood et al., 1984) and Pearson’s r = 0.97, p < 

0.001 in 45 healthy male and female individuals (Vittek et al., 1985), a strong correlation is 

not always observed for this hormone (Granger et al., 2004), with research reporting poor 

levels of agreement between serum and salivary total (r = 0.271, p = 0.180) and free (r = 

0.257, p = 0.205) testosterone concentrations to exercise in aging male individuals (Hayes 

et al., 2015b). In addition, Shirtcliff et al. (2002) has also reported a sex difference in the 
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serum-salivary testosterone responses, with a significant correlation in serum-salivary free 

testosterone being observed in males (r = 0.67, p < 0.01), but not in females (r = 0.37, p > 

0.05). (Selby, Lobb and Jeffcoate, 1988)   

 

 

2.4  The Immune System 

 

The concepts of immunology have long been derived primarily from the study of the 

ability to resist to infection. Immunity refers to all the physiological mechanisms that 

provide the human body with the capacity to recognize foreign materials and to neutralize, 

eliminate or metabolize them (Bellanti, 1978b). Therefore, the function of the immune 

system relies not only on defending the body from infectious agents (Roitt, 1977), but also 

on mediating biological functions such as homeostasis and surveillance (Ward, 1978). 

Exercise is known to influence the immune system mechanisms and functions, either 

positively or harmfully (Walsh et al., 2011b), which will be discussed in more detailed 

further in this Thesis. 

 

 

2.4.1 The Components of the Immune System 

 

The immune system is composed of cellular and soluble elements, as seen in Table 

2.5 below. Cellular elements are synthesized in the bone marrow from stem cells, which 

can differentiate into erythrocytes (red blood cells needed for oxygen transport), 

megakaryocytes (precursors of platelets, needed for blood clotting) and leucocytes (white 

blood cells with distinct functions in immune defence). This chapter will focus on 

leucocytes and its importance in immune function. 
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Around 60-70% of circulating leucocytes are granulocytes, which are 

polymorphonuclear leucocytes (PMNs) due to its multi-lobulated nucleus, 10-15% are 

monocytes and the remainder 20-25% are lymphocytes (Gleeson, 2006b).  

 

Granulocytes are further subdivided in neutrophils (>90%), eosinophils (2-5%) and 

basophils (0-2%). All granulocytes have cytoplasmic granules with specific biologically 

active substances involved in inflammatory and allergic processes, being involved mainly 

in phagocytic mechanisms (Barrett et al., 2010). This will be detailed further in section 

2.5.1. Monocytes are phagocytic mononuclear cells and the largest type of leucocytes, 

which migrate into tissue and develop into macrophages after a few hours in the 

circulation (Nichols et al., 1971, Pederson, 2005). Lymphocytes are mononuclear cells 

responsible for the adaptive immune response. Several lymphocyte subsets, such as B 

cells (bursa-derived), T cells (thymus-derived) and natural killer (NK) cells may be 

identified by the use of monoclonal antibodies with fluorescent properties that aid in 

differentiating cell surface markers, known as clusters of differentiation (CD) (Gleeson, 

2006b). 

 

Table 2.5 Main components of the immune system. Taken from Gleeson (2006, p. 16). 
 *CD = Clusters of Differentiation or Cluster Designators 

 

 

Innate Components Adaptive components 

Cellular: Cellular: 
• Natural killer cells (*CD16+, CD56+) • T-cells (CD3+, CD4+, CD8+) 
• Phagocytes (neutrophils, 

eosinophils, basophils, monocytes, 
macrophages) 

• B-cells (CD19+, CD20+, CD22+) 
  

 
Soluble: 

Soluble: 
• Immunoglobulins (Ig): IgA, IgD, 

IgE, IgG, IgM • Cytokines (interleukins (IL), 
interferons (IFN), colony-stimulating factors 
(CSF), tumour-necrosis factors (TNF) 

• Lysozymes  
• Complement 
• Acute-phase proteins 
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2.5  The Role of Leucocytes in Immunology 

Most immune effector cells circulate in the bloodstream as leucocytes. These include 

granulocytes, monocytes and lymphocytes. Presence of these cells in the tissues after 

extravascular migration amplify the immune responses, alongside tissue macrophages 

and mast cells (Barrett et al., 2010). These cells, when operating in synchrony, powerfully 

protect the body against tumours and any type of infections. 

 

 

2.5.1 Granulocytes 

 

The average half-life of circulating neutrophils (the major granulocyte in circulation) is 

around 6 hours, hence the production of approximately 100 billion neutrophils per day 

(Barrett et al., 2010). Neutrophils act in the tissues, particularly if stimulated to do so by an 

infection or inflammatory proteins. Shortly after injury to the tissues (including 

inflammation), neutrophils start clustering along endothelial cells in the injured area, 

threading their way out of the vessels and building the first line of defence against 

invading microorganisms, engulfing and destroying potentially dangerous agents, in a 

process known as phagocytosis (Bellanti, 1978a, Ward, 1978). 

 

Similarly to neutrophils, the eosinophils also have a short half-life in the circulatory 

system (~30 min) and go through a similar process of binding to proteins that attach to the 

walls of vessels, entering the tissue by diapedesis (the process of passing through the 

walls of the capillaries between endothelial cells) (Barrett et al., 2005). Like neutrophils, 

eosinophils also synthesize inflammatory proteins, such as cytokines and chemokines 

(Cassatella, 1995). These cells are capable of destroying foreign organisms, release 

histamine, and have anti-parasitic and anti-allergic properties (Rosenberg and 

Domachowske, 2001). Eosinophils make up 2-5% of total leucocytes in healthy individuals 

(Ward, 1978). 
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Basophils also enter tissues and secrete cytokines, and release histamine and several 

other inflammatory mediators following activation from specific antigens when bound to 

cell-fixed IgE molecules (MacGlashan et al., 1999). 

 

 

2.5.2 Monocytes 

Monocytes are mononuclear phagocytes that circulate in the bloodstream for around 

72 hours, after which they enter the tissues and differentiate further into macrophages 

(Barrett et al., 2005, Ward, 1978). The release of specific cytokines from T lymphocytes 

will activate macrophages (Jovanovic et al., 1998), which in turn migrate, engulf and kill 

bacteria through mechanisms similar to those happening in neutrophils (Barrett et al., 

2010). 

 

 

2.5.3 Lymphocytes 

This type of cells has a key role in maintaining immunity, albeit only about 2% of the 

total lymphocytes are found in peripheral blood. It has been estimated that in humans, 

each day around 3.5 x 1010 lymphocytes enter the bloodstream through the thoracic duct 

alone (Barrett et al., 2005, Dhabhar et al., 1994). 

 

Some lymphocytes originate in the bone marrow and are transported through the 

circulation before entering the tissues. The cells that enter the thymus (thymocytes, T 

cells) may either be modified or pass through the organ to be eliminated (Herscowitz, 

1978). Some lymphocytes may also differentiate in the gut-associated lymphoid tissues 

and fetal liver of mammals (B-cells) (Herscowitz, 1978). However, most lymphocytes are 

formed in the lymph nodes, thymus and spleen from precursor cells (Barrett et al., 2005). 
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2.6  The Basic Pattern of Immune Recognition: Innate and 

Adaptive Immunity 

 

The human immune system has an innate and an adaptive component, which main 

goal is to repel the body’s own cells that have become senescent or abnormal (Barrett et 

al., 2005). The main difference between these two types of host-defense mechanisms is 

the receptor types used in pathogen recognition. The innate immune system consists of 

functionally distinctive elements (modules) that protect the body against pathogens by 

sensing the latter through pattern-recognition receptors (PRRs), which in turn activate 

antimicrobial activity and stimulate the immune response (Janeway, 1989, Medzhitov, 

2007). This immune response will involve the existence of a pathogenic ‘cell-eating’ 

process (phagocytosis), which may occur as part of an inflammatory response. This 

inflammatory response is normally associated with a cascade of cellular and systemic 

mechanisms aiming to restore homeostasis under adverse environmental influences 

(Bellanti, 1978b). 

 

Contrastingly, the adaptive component triggers the activation of innate effector 

mechanisms through specific foreign substances, referred to as antigens. Antigens are a 

class of foreign molecules that bind to specific immune receptors to induce an immune 

response (Alberts et al., 2002). The final outcome of the reaction occurring following 

recognition and disposal of the foreign microorganisms by the human body is highly 

determined upon the substance’s molecular properties. These include its size, structure, 

chemical nature and magnitude (Ward, 1978). 

 

 

 

 

 



 Chapter 2: Review of the Literature and Research Aims 
 

 43 

2.6.1 Innate Immune System 

 

The innate immune system constitutes the major defence mechanism against an 

invading microorganism by immediately stabilising a pathogen attempting to infect the 

human body. This is accomplished through its surface barriers (such as biological acids, 

commensal bacteria, skin, lungs, etc.), soluble factors, phagocytes and natural killer (NK) 

cells (Gleeson, 2006b). The cellular receptors of the innate immune system have a wide 

specificity and may bind to an extensive number of molecules that share a mutual 

structural pattern. These cellular receptors target specific pathogenic molecular structures, 

referred to as pathogen-associated molecular patterns (PAMPs), which may also be found 

in the gut as symbiotic bacteria (Medzhitov, 2001). There are a number of PRR classes 

that differ in function, one of these being the Toll-like receptors (TLRs) (Takeda et al., 

2003). A relevant characteristic of pattern recognition is that PRRs do not have the 

capability to distinguish pathogenic from symbiotic (non-pathogenic) microorganisms, due 

to the fact that the receptors’ ligands are not unique to the pathogens, but rather shared 

by entire classes of bacteria (Medzhitov, 2007). However, TLRs may function as sensors 

of microbial infection, being critically important in initiating inflammatory and immune 

defence reactions (Rakoff-Nahoum et al., 2004). TLRs are able to identify conserved 

molecular products of microorganisms such as lipopolysaccharide (LPS) (Beutler and 

Rietschel, 2003), and activate macrophages found in tissues to produce pro-inflammatory 

cytokines (Medzhitov, 2007). 

 

In summary, the innate immune system is composed by a group of subsystems (also 

called modules) that present distinct functions in host defence mechanisms (Table 2.6). 

The main modules that this Thesis focuses on are the mucosal epithelia (specifically the 

secretion of SIgA) and the phagocytes (i.e. polymorphonuclear leucocyte concentrations 

and phagocytic function). 
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Table 2.6 Modules of the innate immune system. Taken from Medzhitov (2007). 

Innate host-
defence module Primary sensors (PRRs)  Prototypical responses 

Mucosal epithelia TLRs and NOD proteins 

 

• Production of 
antimicrobial peptides 
• Production of 
mucins 

Phagocytes TLRs, dectins and NOD proteins 

 

• Production of 
antimicrobial proteins 
• Production of 
cytokines: IL-1β, IL-6 and 
TNF 

Acute-phase 
proteins and 
complement 
system 

Collectins, pentaxins and ficolins 

 

• Lysis or 
opsonisation of pathogens 
• Chemotactic 
attraction of leucocytes 

Inflammasomes NALPs and NAIPs 

 

• Production of IL-1 
family members 
• Apoptosis of 
infected host cells 

NK cells ND  • Apoptosis of 
infected host cells 

Type-I-IFN-
induced antiviral 
proteins 

RIG-I, MDA5, DAI and TLRs 

 

• Induction of an 
antiviral state 
• Apoptosis of 
infected host cells 

Eosinophils and 
basophils 

ND 

 

• Contractions of 
smooth muscle 
• Production of 
mucins 
• Peristalsis 
• Production of 
biogenic amines 
• Production of 
cytokines: IL-4, IL-5, IL-9, 
IL-13 and TNF 

Mast cells ND 

 

• Contractions of 
smooth muscle 
• Production of 
mucins 
• Peristalsis 
• Production of 
biogenic amines 
Production of cytokines: 
IL-4, IL-5, IL-9, IL-13 and 
TNF 

This list of modules, sensors and responses is not comprehensive and has been 
simplified for clarity. It should be noted that the function of NALPs and NAIPs is not 
completely understood. In addition, the primary sensors that control expression of NK-
cell-receptor ligands, as well as the sensors that activate antihelminthic responses by 
mast cells, eosinophils and basophils, have not been identified. Certain modules can be 
co-induced during infection; these modules are functionally linked (for example, 
phagocytes and the complement system) and co-regulated by the same cytokines. ND, 
not determined. 
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a) Mucosal Epithelial 

The mucosal epithelia, together with the skin, are defined as the primary interface 

between the host and the pathogenic and symbiotic microorganisms. Its main function 

relies not only in protecting the human body from pathogenic microorganisms, but also in 

allowing a symbiotic environment within the body. Mucosal epithelia cells are responsible 

for producing antimicrobial peptides, aiming to limit the sustainability and colonisation of 

pathogens (Medzhitov, 2007). 

 

 

b) Phagocytes 

Phagocytic activity (the ingestion of particles) is crucial for host defence, by eliminating 

debris and pathogens (Frankenberg et al., 2008). It represents the mechanism of 

engulfment and uptake of large (≥0.5 μm) undesired particles (Aderem and Underhill, 

1999) and is accomplished by a group of cells named phagocytic cells – 

monocytes/macrophages and neutrophils - which in turn have multiple antimicrobial 

mechanisms that are triggered by the presence of pathogens (Bellanti and Dayton, 1975). 

Phagocytosis is often accelerated by host products of the acute-phase response called 

opsonins, through the ability to bind to not only the cell walls of microorganisms, but also 

to opsonin receptors found on phagocytic cells (Medzhitov, 2007). 

 

 

2.6.2 Adaptive Immune System 

 

The main mechanisms of the adaptive (or acquired) immune system are the so-called 

immune exclusion and immune elimination. These processes refer to the ability of the 

adaptive immune system to prevent the colonisation of pathogens by keeping them out of 

the human body, and to also find and destroy foreign, invading microorganisms, 

respectively (Gleeson, 2006b). Additionally, certain regulatory mechanisms are involved in 
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pacifying allergic reactions and distinguish symbiotic from pathogenic bacteria. Breaking 

down this control mechanism will eventually lead to the onset of autoimmune diseases 

(Rifkin et al., 2005). 

 

The adaptive immune response is opposed to the innate immune responses by three 

main characteristics: specificity, heterogeneity, and memory. Specificity refers to the fact 

that the immune products solely react to pathogens that share a similar configuration. It is 

the property of the immune response that distinguishes different antigens, regardless if 

species-, individual- or organ-specific (Ward, 1978). In contrast, heterogeneity is the ability 

of a large selection of cell types and products to interact with a multiplicity of responses 

proportionate with the array of cell types, whereas memory refers to the competence that 

results in amplification of the adaptive immune response through proliferation (increase in 

cell number) and differentiation (i.e. cells become more specialized) of cells following 

exposure to an antigen (Herscowitz, 1978). Adaptive immune recognition is mediated 

mainly by two types of antigen receptors, referred to as T-cell and B-cell receptors. The 

genes encoding antigen receptors are assembled from fragments through recombination-

activating gene (RAG)-protein-mediated somatic recombination (Schatz et al., 1992). This 

process yields an extensive array of receptors. 

 

When an antigen (such as a population of bacteria or viruses) enters the human body, 

antibodies to that antigen may appear in the serum (Cunningham, 1978). These 

antibodies, y-shaped proteins produced by plasma cells (B cells of the adaptive immune 

system) that can act to neutralize pathogens, recognize a unique molecule of the antigen 

via the fragment antigen-binding (Fab) fragment (Litman et al., 1993). Paratopes – 

antigen-binding bodies - of an antibody bind to specific three-dimensional antigen 

structures called epitopes, either tagging a microbe or an infected cell for attack by other 

components of the immune system, or neutralising its target directly, preventing its 

invasion and survival (Janeway et al., 1997). The specificity of the antigen to which the 
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antibody is bound to will influence the type of immune mechanism being triggered, by 

defusing the biological process causing the disease or stimulating phagocytosis to 

obliterate the foreign substance (Janeway et al., 1997). 

 

There are two main types of lymphocyte that express antigen receptors. These are the 

conventional lymphocytes (conventional T cells - mostly αβ T cells - and B cells), and the 

innate-like lymphocytes (B-1 cells, NK T cells and subsets of γδ T cells). In turn, there are 

also two types of conventional αβ T cells: the T-helper (TH) cells, which are marked by the 

co-receptor CD4 on the cell surface; and cytotoxic T cells, which express CD8 (Bendelac 

et al., 2001). These cells recognize antigenic peptides that are found bound to specific 

molecular complexes, called major histocompatibility complex (MHC). Conventional B 

cells are able to recognize almost any antigen by binding to a specific epitope (Medzhitov, 

2007). The major components of the acquired immune system are presented in the figure 

below. (Gleeson and Bosch, 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 The main components of the adaptive immune system. Adapted from 
Gleeson and Bosch (2013, p. 38). 
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2.7  Acute Effects of Exercise in Immunity 

 

The responses of whole blood leucocyte subsets to bouts of acute exercise have been 

well described (Brahmi et al., 1985, Gleeson and Bishop, 2005, Nieman et al., 1994, 

Quindry et al., 2003). However, the sensitivity of these cell subsets varies depending on 

the exercise stimulus. Overall, it is well established that exercise in general induces an 

elevation in total whole blood leucocytes when in a healthy state (McCarthy and Dale, 

1988, Sand et al., 2013). Different work rates will induce different rates of leucocytosis 

with significantly greater rates of leucocytosis being reported after a 45-min run at 80% 

V̇O$%&'	 when compared with a similar running test at 50% V̇O$%&'	 (Nieman et al., 1994). 

Marked increases in neutrophils were also reported for example in response to a 2-hour 

cycle bout at 56% V̇O$%&'	 (Fielding et al., 2000). An intermittent (alternating 1-min stages) 

running test to exhaustion at the speed and gradient at which )̇*$+,-	was achieved, 

elicited a biphasic leucocytosis, with lymphocyte numbers (CD3+, CD4+, CD8+, 

CD16+/56+), and granulocytes and monocytes increasing immediately post- and 6 h post-

exercise in trained male athletes, respectively (Gray et al., 1993). Furthermore, total whole 

blood leucocyte numbers have been reported to significantly increase by ~65% in healthy 

male and female individuals following a self-paced running test to exhaustion (60-90 min), 

with a 97% significant elevation in polymorphonuclear leucocytes (PMNs) but no alteration 

in lymphocyte numbers (Risøy et al., 2003). Nonetheless, leucocytosis (increased CD4+, 

CD8+, neutrophils, and CD56+ concentrations) has been reported to occur at the end of 

the second of two 75 min cycling bouts at ~75% )̇*$+,-	 separated by a 3 h recovery 

period (Ronsen et al., 2001). Although all lymphocyte populations are known to increase 

in the circulation in response to strenuous exercise, NK cells are known to be the 

population that shows a more marked increase during/after high-intensity, long–duration 

exercise (Anane et al., 2009, Gabriel et al., 1991, Pedersen, 1991, Shek et al., 1995). 

More recently, Anane et al. (2009) proposed for the first time that the γδ T-lymphocytes 

are stress-responsive cells, due to their mobilisation examined after completion of two 16-
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min cycle bouts at 35% (low intensity) and 85% (high-intensity) .̇+,-. However, the low 

intensity bout has shown significantly less pronounced exercise-induced increases in the 

overall leucocyte populations. Similarly, a high-intensity (80% )̇*$+,-	), short-duration (45 

min) treadmill-running exercise bout was intense enough to induce a marked leucocytosis, 

especially in the lymphocyte populations, which did not occur when compared with a 

similar duration, lower intensity (50% )̇*$+,-	) exercise bout (Nieman et al., 1994). 

 

Research has shown that this exercise-induced increase in total circulatory leucocytes 

may be attenuated with regular exercise (Blannin et al., 1996), presumably by reducing 

the physical stress and fatigue levels provoked by the exercise bout itself (Vrabas et al., 

1999). Leucocyte counts usually return to baseline levels shortly after short-duration (30 

min) exercise (McCarthy et al., 1992b), nevertheless total leucocyte numbers may 

continue to rise during recovery following very high-intensity bouts of exercise, such as 

cycling for 4 min at 110-120% )̇*$+,- (Allsop et al., 1992) and cycling at 80% .̇+,- to 

exhaustion (Field et al., 1991). 

 

 

2.8  Overtraining and Susceptibility to Infection 

 

As shown earlier in this chapter, different exercise regimens influence the immune 

system, either at a systemic, local or mucosal, and/or cellular level (Bermon et al., 2017, 

Walsh et al., 2011b). As explained in the Introduction of this Thesis, if sufficient recovery 

is not completed when intensifying exercise training, this may lead to an accumulation of 

fatigue levels with possible outcomes of overreaching/OTS. Developing NFOR/OTS has 

been associated with an increased vulnerability to numerous pathologies, with research 

suggesting that endurance runners are likely to experience an increased susceptibility for 

infectious episodes during heavy training or after a marathon race (Nieman et al., 1990), 

bacterial or viral infections (Mackinnon, 1997), and URS (Nieman, 1994b), eventually 
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leading to weakness/severe fatigue (Fry et al., 1994b, Lehmann et al., 1996, Mackinnon et 

al., 1997b), normally attributed to an impairment of the human body’s defence 

mechanisms (MacKinnon, 2000). In fact, besides the incidence of injuries, URS has been 

suggested as the most usual medical presentation in elite athletes (Engebretsen et al., 

2013; Palmer-Green and Elliott, 2015). However, despite the prevalence of infectious 

pathogens has been commonly reported as the primary cause for URS in athletes, a study 

performed on a population of 32 elite triathletes, 31 recreational triathletes and 20 

sedentary individuals which monitored URS over a period of 5 months, reported that only 

30% of 37 episodes of illness had been caused by an infectious agent (Spence et al., 

2007). In addition, a bacterial or viral pathogen was not identified in 43% of URS episodes 

that occurred in 70 elite athletes from several sports over a prospective 14-month period 

(Cox et al., 2008). Studies have proposed URS to be caused not only by pathogen or viral 

exposure, but also as an effect of exercise-induced bronchoconstriction (Bonsignore et al., 

2003) or an amplified exposure to aeroallergens causing a hypersensitivity response 

(Bonsignore et al., 2001). Albeit the moderately low cohort of participants, these studies 

suggest that perhaps the incidence of URS has various aetiologies, all presenting with 

analogous signs and symptoms, and consequently effects on physical performance. 

Given the ambiguous aetiologies of the experienced respiratory symptoms in athletes, 

recommendations are that symptoms are referred to as URS instead of upper respiratory 

tract infections (URTI). 

 

The relationship between exercise intensity and incidence of URS has long been 

described to have a J-shaped curve, suggesting that whilst the susceptibility for URS may 

decrease with moderate intensity exercise in sedentary individuals, the risk may rise 

above average following prolonged periods of intensified training (Nieman, 1994a, 

Nieman, 1994b). In addition, as physically fitter and more active athletes have shown to 

suffer less from URS events (Nieman et al., 2011) a flatter curve has been proposed 

(Gleeson and Robson-Ansley, 2006), as there is still little evidence to indicate any 
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significant differences in immune function of sedentary individuals compared to 

moderately active people. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Relationship between training volume and incidence of URS: the J-shaped 
curve model. (Adapted from Gleeson and Robson-Ansley in Gleeson (editor) 2006, p. 
116). 

 

 

It has been suggested that URS in sedentary individuals do not get aggravated with 

moderate exercise (Weidner and Schurr, 2003). Moreover, there is still insufficient 

knowledge to describe the immunological mechanism involved in the increased 

susceptibility to URS following prolonged, intensified physical training (Nieman, 2000). In 

fact, there have been inconsistent findings regarding overtrained athletes, with studies 

showing either a lower risk for URS in these athletes, when compared with well-trained 

athletes (Mackinnon and Hooper, 1996), or an increased incidence of URS following 

overreaching (Tiollier et al., 2005). Nonetheless, elite athletes whose training load is 

considerably above average when compared to the rest of the population have been 

shown to respond differently to URS, with studies showing a negative correlation between 

training load (km/year or hour/year) and number of sick days (Malm, 2006). Elite 

endurance athletes are normally distinguished from non-elite according to their marathon 

race times or weekly training load, normally above 120 km/week (Billat et al., 2001, Malm, 
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2006). Moreover, it is recognized that the nonexistence of infections is crucial in achieving 

the status of elite athlete and that these athletes whose training load is considerably 

above average when compared to the rest of the population have been shown to respond 

differently to URS, with studies showing a negative correlation between training load 

(km/year or hour/year) and number of sick days (Malm, 2006). Therefore, when including 

elite athletes in the URS /training volume model, this author proposes an extension of the 

traditional J-shaped curve model towards an S-shaped model (Figure 2.13). The URS 

may be plotted against training load by determining the odds ratio. 

 

 

 

 

 

 

 

 

 

Figure 2.13 The S-shaped curve model to describe the relationship between training 
volume and respiratory illness (Adapted from Malm (2006)). 
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have also shown to have lower concentrations of SIgA and a higher release of anti-

inflammatory cytokines, specifically IL-10 (Gleeson and Bishop, 2013). Furthermore, elite 

swimmers who experienced symptoms of overreaching/OTS after a 6-month training 

programme had significantly lower SIgA concentrations when compared to well-adapted 

athletes (Mackinnon and Hooper, 1994). In summary, low SIgA concentrations or 

secretion rate associated with elevated anti-inflammatory cytokine responses may be 

prone to an increased susceptibility to URS in athletes (Fahlman and Engels, 2005, 

Gleeson, 2000, Gleeson et al., 2012). Furthermore, minimising pathogen transmission 

and maintaining immune capacity are key factors in helping athletes avoid illness, 

certainly those related with the respiratory tract (Bishop, 2012, Walsh et al., 2011a). 

 

 

2.8.1 Immune and Inflammatory Responses to Overreaching/OTS 

 

An elevation in the levels of certain hormones is known to occur during short-duration, 

high-intensity exercise (Bove, 1989, Hayes et al., 2015a, Hough et al., 2013, Hough et al., 

2011, Meeusen et al., 2004), and these responses, particularly plasma and salivary 

cortisol and testosterone have been shown to blunt following chronic exercise-induced 

stress (Hough et al., 2013, Hough et al., 2015, Meeusen et al., 2010, Meeusen et al., 

2004), as detailed earlier in this Thesis. Furthermore, it has been reported that abnormal 

hormonal responses following long periods of intensified training with limited recovery may 

cause chronic immunossupression (Lancaster et al., 2003) by decreasing the number of 

T-lymphocytes (Díaz et al., 2003, Pinto et al., 2006, Stites et al., 1983), with flu-like 

symptoms of illness, such as sore throats and colds being more common in endurance 

athletes when compared to the general population (Peters, 1997, Pyne et al., 2001, Walsh 

and Oliver, 2016). 

 

Glucocorticoids such as cortisol have a key role in the regulation of circulating 
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eosinophils by decreasing its numbers (Lamas et al., 1991), and inhibiting cytokine-

mediated eosinophil survival (Wallen et al., 1991), therefore potentially reducing allergic 

reactions. Furthermore, glucocorticoids bind to specific cytoplasmic receptors, which 

subsequently translocate to the nucleus, where will in turn bind to glucocorticoid response 

elements (GRE) on glucocorticoid-responsive genes. This mechanisms results in an 

increased transcription of genes coding for anti-inflammatory cytokines, such as IL-1 

receptor antagonist (IL-1ra) and IL-10 (Barnes, 1998). Moreover, basophil apoptosis is a 

powerful anti-inflammatory mechanism induced by glucocorticoids (Yoshimura et al., 

2001), and particularly cortisol is known to have positive effects on neutrophil numbers 

(Davis et al., 1991), which is further pronounced following short-duration, high-intensity 

exercise (normally above 60-70% )̇*$+,-) when in a healthy state (Gabriel et al., 1992, 

McCarthy et al., 1992a). However, it is known that heavy exertion leading to overreaching 

may induce negative alterations in immunity and defence against pathogens (MacKinnon, 

2000, Pedersen et al., 1996, Svendsen et al., 2016, Tiollier et al., 2005), abnormal 

neuroendocrine responses (Hough et al., 2013, Lehmann et al., 1992b, Mackinnon et al., 

1997a, Meeusen et al., 2010, Meeusen et al., 2004) and pro- and anti-inflammatory 

cytokines (Smith, 2000, Svendsen et al., 2016), and decreased granulocyte phagocytic 

activity (Baj et al., 1994, Blannin et al., 1996, Robson-Ansley et al., 2007, Yaegaki et al., 

2007). Well-trained triathletes have experienced a 20% decrease in lipopolysaccharide 

(LPS)-stimulated neutrophil degranulation following a 2-week period of intensified training 

(Robson et al., 1999a). Increased production of reactive oxygen species with consequent 

decreases in neutrophil phagocytic activity have been reported in female judoists following 

a 20-day pre-competition training period where the training sessions involved running, 

weight training and judo practice for 6 days a week (Yaegaki et al., 2007). However, no 

differences in either reactive oxygen species production or phagocytic function at baseline 

has been reported in male judoists after a 7-day training camp also consisting of long-

distance running, weight training and judo practice, with no alterations in total leucocytes 

or neutrophil counts (Yaegaki et al., 2008). These studies suggest that long periods of 
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sustained heavy training may reduce neutrophil function, and therefore examining 

neutrophil functions may be a good predictive marker of overreaching. 

 

When examining circulating leucocyte populations concentrations no differences have 

been reported when comparing elite swimmers diagnosed as overtrained with well-

trained, healthy swimmers (Hooper et al., 1995) or overtrained with healthy endurance 

athletes (Gabriel et al., 1998). In contrast, Svendsen et al. (2016) have reported elevated 

numbers of resting circulating total leucocytes and neutrophil numbers after 8 days of 

intensified training in male cyclists. It is yet to conclude the effect overreaching/OTS has 

on the total leucocyte and individual leucocyte subsets circulating concentrations. 

However, leucocyte functions such as T-lymphocyte CD4+/CD8+ ratio have been shown to 

be lower in long-distance runners following a 3-week period of intensified training (38% 

increase in training volume) (Verde et al., 1992), and therefore, measuring these cells 

ratio may be a good indicator or the overreaching phenomena. 

 

 

2.9  Aims and Structure of the Thesis 

 

The main aims of this Thesis are: 

 

1. To examine the effects of water consumption on the exercise-induced salivary 

cortisol and testosterone responses. 

2. To establish the reproducibility of the salivary cortisol and testosterone responses 

to the short-duration, high-intensity cycling bout (55/80); 

3. To develop a short-duration (30 min), high-intensity treadmill-run test to elicit a 

reproducible elevation in plasma and salivary steroid hormone responses when in a 

normal trained state (i.e. not suffering from FOR/NFOR or OTS. 
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4. To examine the plasma and salivary cortisol and testosterone responses to the 

developed treadmill running test before and after a 12-day period of intensified training; 

5. To examine the responses of the immune system over the course of a 12-day 

intensified-training period. More specifically, to examine: 

a. Mucosal immunity (SIgA); 

b. Differences in exercise-induced leucocyte subset numbers and total 

leucocytes; 

c.  PMNs phagocytic function. 

 

 

This current chapter focused on the pertinent background evidence that led to the 

design and development of the experimental chapters presented in this Thesis. Chapter 3 

describes the methods followed in each of the experimental chapters. The following 4 

chapters describe the main experimental studies of this Thesis. Chapter 4 focuses on the 

influence that water consumption has in diluting saliva, and consequently modifying the 

concentration of exercise-induced salivary hormone responses. This study uses a 30-min, 

high-intensity cycle bout (referred to as the 55/80) as the exercise tool. In Chapter 5, the 

reproducibility of the salivary hormone responses to the 55/80 is examined. Chapter 6 

focuses on the development of a 30-min, high-intensity, treadmill-running test to elicit a 

robust elevation in plasma cortisol and testosterone when in a healthy state. In Chapter 7, 

an examination of the acute steroid hormone and immune responses to the RPEtreadmill 

was completed before and after a period of intensified training. This Chapter also 

examines whether the RPEtreadmill could be used as a suitable tool to highlight any 

exercise-induced alterations when in an overreached state. Ultimately, Chapter 8 merges 

the main findings of this Thesis in a general discussion. 



 

   

 

 

 

 

 

 

CHAPTER 3. 

 

General Methods 

 

Chapter 3: General Methods 
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3.1  Ethical Approval 

All studies presented in this Thesis were granted ethical approval by the University of 

Bedfordshire Research Ethics Committee and were completed in accordance with the 

World Medical Association (WMA) Declaration of Helsinki – Ethical Principles for Medical 

Research Involving Human Subjects (64th WMA General Assembly, Fortaleza, Brazil, 

October 2013). Prior to participation in the research studies, all participants completed a 

Physical Activity Readiness Questionnaire (PAR-Q) (Appendix 1) to confirm suitability to 

engage in physical activities. After comprehensive verbal and written descriptions of what 

would be required throughout the study, participants provided their written informed 

consent. In Chapters 6 and 7, participants also signed a blood screening form (Appendix 

2). A health-screening questionnaire (Appendix 3) was completed by all participants in 

Chapter 7 only. All participants that took part in the experimental studies in Chapters 4 to 

7 had a healthy lifestyle and exercised at least 3 hours per week in accordance with the 

UK Government Department of Health – Obesity and Healthy Eating guidelines 

(Department of Health, 2011). Participants who frequently work night shifts were also not 

allowed to participate, as these require around 4 days to adjust their circadian rhythm of 

cortisol secretion (Niu et al., 2015). The baseline data for each participant’s 

anthropometric measures were collected using a stadiometer (Holtain Ltd, Wales, UK) 

and a digital scale (Tanita BWB 0800, Allied Weighing, Japan). 

 

 

3.2  Maximal Oxygen Uptake (/̇01234) Assessment 

 

Participants )̇*$+,-	was established in accordance with The British Association of 

Sports and Exercise Sciences’ (BASES) Position Statement on the Physiological 

Assessment of the Elite Competitor (1992) (Bird and Davidson, 1997) criteria. Participants 

were required to achieve 3 of the following 5 recommended criteria for establishing 

V̇O$%&'	presented below: 
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1. A plateau in the oxygen uptake (V̇O$) with increasing exercise intensity, defined as 

a less than 2 mL.kg-1.min-1 or 3% increase in V̇O$ following an increase in exercise 

intensity. 

2. A final respiratory exchange ratio (RER) of 1.15 or above. 

3. A final heart rate of within 10 beats.min-1 of the predicted age-related maximal 

heart rate (HRmax). This can be estimated by subtracting the individual’s age in 

years to 220. 

4. Exercising until volitional exhaustion is achieved. 

5. A rating of perceived exertion (RPE) of 19 or 20 on the 6-20 Borg scale. 

 

 

3.2.1 Maximal Oxygen Uptake and Maximal Workload Test on a 

Cycle Ergometer 

 

In Chapters 4 and 5, participants completed a continuous, incremental V̇O$%&' test on a 

cycle ergometer. Before the start of the test, participants completed a 3-min warm-up at 

120 W. The test started at an initial workload of 180 W and power output was then 

increased by 30 W every 3 min until volitional exhaustion, as suggested by the BASES 

guidelines for establishing exercise intensity for the determination of V̇O$%&' during leg 

cycling in adults (Cooke, 2009). The protocol was designed to be completed in the 

suggested time of 9-15 minutes (Bird and Davidson, 1997). Manually braked cycle 

ergometers (Monark 824E, Vansbro, Sweden) (Chapter 4) and electronically braked cycle 

ergometers (Lode Excalibur Sport, Groningen, The Netherlands) (Chapter 5) were used 

for these tests. Participants were asked to cycle at a pace of 70 revolutions per minute 

(rpm) during the test in the experimental study presented in Chapter 4. In both studies, 

participants used a facemask during the entire period of testing and expired gas was 

analysed throughout by the use of a breath-by-breath ergospirometry system (MetaLyzer 

3B, Cortex, Leipzig, Germany) for the determination of the rates )̇*2 and carbon dioxide 
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production ()̇CO2). Participants’ HR and RPE were monitored throughout the test and 

recorded at the last 15 s of each stage, using short-range radio telemetry (Polar FS1, 

Kempele, Finland) and the 6-20 Borg Rating of Perceived Exertion scale, respectively. 

Water was provided before and after completion of the required maximal exercise test. 

 

Maximum workload (Ẇmax) was determined using the equation: 

 

Ẇmax = Ẇfinal + (t/T) x Ẇinc, (Kuipers et al., 1985) 

 

where Ẇfinal is the workload at the last completed stage, t is the time in seconds reached 

in the final uncompleted stage, T is the duration of each stage (180 seconds), and Ẇinc is 

the workload increment (30W). Workloads obtained from the determination of 55% and 

80% of Ẇmax of each individual were used on the main trials undertaken in Chapters 4 and 

5. 

 

 

3.2.2 Maximal Oxygen Uptake on a Motorised Treadmill 

 

For the experimental studies presented in Chapters 6 and 7, participants reported to 

the laboratories to undertake a V̇O$%&' test on a motorised treadmill (PPS55 Med-i, 

Woodway, Birmingham, UK). After familiarisation with the testing equipment and careful 

instructions on how to complete the protocol, a 3-min run at 7 km·h-1 and 1% slope to 

reflect outdoor running (Jones and Doust, 1996) was used as a warm-up to the actual 

test. A 16-min submaximal, incremental treadmill-running test was then undertaken (4 

stages of 4 min each) in order to determine the relationship between running speed and 

)̇O2. The initial speed was set between 6.5 – 12.0 km·h-1 by the participants themselves, 

who were encouraged to set their own starting pace. The speed was then increased by 1 

km·h-1 every stage. After a recovery period of about 20 min, where participants were 
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asked to remain seated, )̇O$%&' was assessed using an incremental treadmill-running 

test. The test started on a level treadmill (1% incline) and the gradient was increased by 

1% every minute until volitional exhaustion. The initial speed was set at the speed 

corresponding to a HR of approximately 150 beats.min-1 on the submaximal exercise test 

and remained constant throughout. Expired gas was analysed continuously during the test 

using a breath-by-breath ergospirometry exercise testing system (METALYZER 3B, 

Cortex, Leipzig, Germany) for the determination of the rates of )̇O2 and )̇CO2. 

Participants’ HR and RPE were recorded at the last 15 s of each stage, using short-range 

radio telemetry and the 6-20 Borg scale, respectively. Water was provided before and 

after completion of these exercise tests. 

 

Velocity at V̇O$%&' (vV̇O$%&') was obtained from data collected in the V̇O$%&' test. A 

linear equation was obtained and determination of vV̇O$%&' was determined by regressing 

V̇O$ on exercise intensity (i.e. increases in speed) for submaximal exercise and 

extrapolating this relationship to V̇O$%&' (Jones et al., 2009), as shown in Figure 3.1. 

Individuals with the same relative V̇O$%&' (mL·min-1·kg-1) may have different vV̇O$%&', 

depending on their running economy levels. 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Graph depicting the relationship between /̇01 and submaximal running 

speed to calculate 7/̇01234 (adapted from Jones et al., (2009)). 
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Individualized percentages of vV̇O$%&', specifically 50% and 75% vV̇O$%&' were 

obtained to be used in the exercise trials in Chapter 7. 

 

 

3.3  10-km Time Trial Performance Test 

 

A 10-km time trial test was used in Chapter 7 as a measure of athletic performance. 

Participants completed this test on a motorised treadmill (PPS55 Med-i, Woodway, 

Birmingham, UK). The treadmill screen was covered throughout so the participants did not 

know their running speed during the test. The treadmill slope was kept consistent at 1%. 

The scope of the test was explained to the participants before the start. 

 

 

3.4  Urine Collection and Analysis of Osmolality 

 

Participants were asked to provide a urine sample immediately before starting each 

main experimental trial (exercise or resting trials). Urine osmolality is used to measure the 

number of dissolved particles per unit of water in the urine. This method has been 

suggested as an instrument to provide reliable information as to an athlete’s hydration 

status (Shirreffs and Maughan, 1998). Urine samples were analysed for osmolality by 

pipetting a small volume of sample into a portable urine refractometer (Pocket PAL-

OSMO™, Atago Vitech Scientific Ltd, Sussex, UK). Euhydration was confirmed when the 

sample osmolality was below 700 mOsmol·kg-1 H2O (Sawka et al., 2007). 
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3.5  General Procedures for Hormone Analysis 

 

Commercially available enzyme-linked immunosorbent assay (ELISA) kits were used 

for quantitative determination of plasma and salivary hormone concentrations and the 

manufacturer’s recommended procedures for analysis were followed. All assays were 

performed by the same researcher to avoid any inter-experimenter variability and 

inaccuracy of the results, and the ambient temperature of the laboratory was maintained 

between 20-25°C, as variations in temperature may alter the samples optical density 

values. 

 

A microtiter plate shaker (Stuart SSM5, Stuart Scientific, UK) was used to thoroughly 

mix the contents of each well of the assay plates and a microtiter plate washing system 

(Asys Atlantis 4, Biochrom, UK) was used to wash ELISA plates where required. 

Standards and controls were used to verify the accuracy of the results. A microtiter 

plate reader (Infinite® 200 PRO, Tecan GmbH, Switzerland) was used to quantitatively 

measure the absorbance values of each sample, standards and controls in each assay 

completed and extrapolate those values to obtain its respective concentrations. 

Contamination of reagents, pipettes, tubes and wells was avoided by using new 

disposable plastic pipette tips for each component and specimen. Samples were 

determined in duplicate to identify any possible pipetting errors and coefficients of 

variation (CVs) of all duplicates were calculated. Average values were used for analysis. 

Standard curves were determined automatically by use of the software Magellan™ 

version 7.1 (Tecan GmbH, Switzerland). 
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3.6  Saliva Collection, Handling and Analysis 

 

3.6.1 Saliva Collection and Handling 

 

Saliva samples were collected into 7 mL polystyrene sterile bijou containers (Sterilin, 

Thermo Scientific, Loughborough, UK) by unstimulated passive drool, following the 

‘draining method’ (Navazesh, 1993). To avoid the possibility of saliva dilution, participants 

were required not to drink any water within the 10 min preceding sampling, apart from 

Chapter 4 where the effect of the timing of water consumption before saliva sampling was 

measured. Samples were given with eyes closed, head tilted slightly forward and avoiding 

any orofacial movement. Minimum collection time was 3 min for each participant to allow 

for collection of sufficient sample volume (~2 mL). Participants were instructed to swallow 

all saliva, and then collect all consequently secreted saliva in the oral cavity before 

dripping it off the lower lip into the collection tube. After sample collection all saliva 

samples were kept on crushed ice during the entire period of testing, which did not exceed 

1 h 20 min. All samples were weighed to the nearest milligram to estimate saliva volume 

and saliva density was assumed to be 1.00 g·mL-1 (Cole and Eastoe, 1988). Saliva flow 

rate was determined by dividing the saliva volume by the collection time. Saliva samples 

were then centrifuged at 14600 g for 3 min (Espresso Microcentrifuge, Thermo Scientific, 

Loughborough, UK) and the supernatant was transferred into 1.5 mL aliquots (Eppendorf, 

Hamburg, Germany) to be stored at -80°C until further analysis. 
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3.6.2 Enzyme-linked Immunosorbent Assays (ELISA) 

 

a) Salivary Cortisol 

 

Salivary cortisol concentrations were determined by the use of commercially available 

ELISA kits (Salimetrics, PA 16803, USA) and the recommended procedures for analysis 

were followed. On the day of the assay all samples were thawed, vortexed (Harris Vortex 

Mixer, Philip Harris Limited, UK) and centrifuged once again at 14600 g for 3 min 

(Espresso Microcentrifuge, Thermo Scientific, Loughborough, UK). The supernatant was 

then used on the assay. 

 

Monoclonal antibody-coated 96-well plates were used. Antigens present in the plasma 

samples compete with the enzyme horseradish peroxidase for the free antibody binding 

sites. Following incubation, the plates were washed in order to stop the binding reaction 

and remove any unbound products. A tetramethylbenzidine (TMB) substrate solution was 

consequently added to each well, which in reaction with the peroxidase enzyme forms a 

blue liquid solution. Further incubation is completed, and the reaction is then stopped with 

a 3-molar solution of sulphuric acid, which turns the solution into a pale green colour. 

 

Optical density values were read on a plate reader (Infinite® 200 PRO, Tecan GmbH, 

Switzerland). The amount of cortisol present is inversely proportional to the cortisol 

peroxidase detected (Chard, 1990). The intra-assay and inter-assay coefficients of 

variation are 4.6% and 6.0%, respectively. 
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b) Salivary Testosterone 

 

Salivary testosterone concentrations were assessed by the use of commercially 

available ELISA kits (Salimetrics, PA 16803, USA) in an analogous way to salivary 

cortisol. Contrarily to the latter, the plate wells were coated with rabbit antibodies to 

testosterone and a 2-molar sulphuric acid solution was used to stop the TMB substrate 

reaction. 

 

The intra-assay and inter-assay coefficients of variation are 4.6% and 9.8%, 

respectively. 

 

 

c) Salivary Immunoglobulin A 

 

Levels of SIgA were analysed using a sandwich-type ELISA method, adapted from 

previous research (Leicht et al., 2011). Analysis of SIgA was done in collaboration with Dr 

Glen Davison and Miss Ellie Heynes, from the University of Kent, and it was completed 

across three days in 3 main stages. 

 

On day one, a coating buffer (0.05M carbonate/bicarbonate, pH 9.6) was freshly 

prepared by dissolving 0.208g of sodium bicarbonate (NaHCO3) and 0.030g of sodium 

carbonate (Na2CO3) in 55mL of deionized water (dH2O). This volume of solution is 

sufficient for up to four 96-well immunoplates. A capture antibody (mouse monoclonal 

anti-secretory component (IgA) antibody, 8.7mg·mL-1) (I6635, Sigma-Aldrich, Gillingham, 

Dorset, UK), 8.7 was diluted 1:1740 in the coating buffer obtaining a final working 

concentration of 5 µg.mL-1 (5000 µg·L-1). Therefore, for four plates, 30 µL of capture 

antibody were diluted in 52.2 mL of coating buffer. Consequently, 100 µL of coating 

buffer/antibody solution were pipetted into each well of a 96-well microplate (Nunc™ 
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MicroWell™, Thermo Fischer Scientific, Waltham, Massachusetts, USA) using a 

multichannel pipette. Plates were then sealed incubated overnight at 4°C in a flat position 

to ensure the coating antibody was evenly covering the wells. 

On day two, all samples were thoroughly thawed and centrifuged at 13,400 rpm for 2 

minutes. The resulting supernatant was then serially diluted, firstly 1:25 with phosphate-

buffered saline (PBS) (20 µL of sample to 480 µL PBS). In a fresh eppendord tube, the 

25x-diluted samples were diluted further in a 1:30 dilution (i.e. 20 µL of 25x-diluted sample 

to 580 µL PBS). These final samples were then used in the assay. Plates were 

subsequently washed 4 x 200 µL with a solution of PBS, 0.3M sodium chloride (NaCl) and 

1% Tween 20 (P9416 Sigma-Aldrich, Gillingham, Dorset, UK). A ‘blocking solution’ of 0.3 

g of 2% bovine serum albumin (BSA) (A3059, Sigma-Aldrich, Gillingham, Dorset, UK) in 

15 mL PBS was used in each plate, by dispensing 100 µL of solution into each well, to 

prevent samples binding to potentially non-antibody-coated areas in the well. Plates were 

then covered and incubated at room temperature for 60 minutes and washed again 4 x 

200 µL as explained above. A diluted (1:1700) solution of IgA from human colostrum 

(I2636, Sigma-Aldrich, Gillingham, Dorset, UK) with PBS to give a final dilution of 1 µg·mL-

1 was used in the assay as the more concentrated standard. Serially dilutions were then 

performed on this standard to a total of six extra standards by adding 500 µL of standard 

to 500 µL of PBS in each tube. An IgA free standard (500 µL of PBS only) was used as a 

blank for the ELISA. All standards, blanks and samples were assayed in duplicate (50 

µL/well) and incubated at 4°C overnight. This assay measures IgA in the concentration 

range 0.03-0.3 µg·mL-1. 

 

On day three, the plates were washed again 4 x 200 µL as described above. 

Afterwards, 12 µL of horseradish peroxidase (HRP) conjugated polyclonal rabbit anti-

human IgA (P021602, DAKO, Agilent, Santa Clara, USA) were mixed with 24 mL of PBS 

(enough volume of solution for four plates) (1:2000 dilution) and 50 µL of this final solution 

were dispensed into each well of the 96-well plate. A further 90-min incubation at room 
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temperature was completed. A final 4 x 200 µL wash was accomplished and 

subsequently, 50 µL of a solution of 10 µL of 30% hydrogen peroxide (H2O2) in 24 mL of 

o-phenylenediamine dihydrochloride (OPD) (solution of 8 tablets previously dissolved in 

24 mL of dH2O for four plates) were added to each well. A final 10-min incubation period 

was completed in the dark as the colour develops. The reaction was then stopped by 

pipetting 75 µL/well of 1M sulfuric acid (H2SO4) in the same sequence as the OPD 

solution. The plate was read on an automated plate reader (ELx808™ Absorbance 

Reader, BioTek Instruments, Winooski, Vermont, USA) with a 490 nm filter. The 

concentrations obtained from the standard curve were then multiplied by the dilution factor 

(i.e. 750) to determine the actual amount of IgA in the original sample. 

 

 

3.7  Blood Collection, Handling and Analysis 

 

3.7.1 Blood Collection and Handling 

 

Whole blood samples were collected by venepuncture from an antecubital vein using a 

21G needle with quickshield (Vacuette®, Greiner Bio-One, Stonehouse, Great Britain) into 

5 mL tri-potassium ethylenediaminetetraacetic acid (K3EDTA) vacutainers (Vacuette®, 

Greiner Bio-One, Stonehouse, Great Britain). In Chapter 6, only 1 tube was obtained and 

after sample collection all samples were stored on crushed ice during the entire period of 

testing which did not exceed 80 min. Blood samples were then centrifuged at 1500 g for 

10 min at 4°C (Heraeus Multifuge X3R, Thermo Scientific, Loughborough, UK) and the 

resulting plasma was then transferred into sterile 1.5 mL cryogenic tubes (Nalgene™, 

Thermo Scientific™, Thermo Fisher Scientific, Waltham, Massachusetts, USA) to be 

stored at -80°C (for no longer than 2 months) until further hormone analysis. In Chapter 7, 

whole blood was collected into 3 tubes (approximately 15 mL) and plasma was extracted 
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from one of these by following the protocol above. The remaining blood samples were 

used as described in the following subchapters 3.7.2 and 3.73. 

 

 

3.7.2 Haematology 

 

In Chapter 7 all haematological analysis were performed in K3EDTA-treated whole 

blood. Total haemoglobin in whole blood was determined in duplicate using a HemoCue® 

Hb 201+ analyser (HemoCue®, Ängelholm, Sweden). Whole blood was spun down in a 

microhaematocrit centrifuge (Haematospin 1300, Hawksley, Sussex, UK) and haematocrit 

was determined in duplicate by measuring packed cell volumes (PCV) using a tube reader 

(Hawksley, Sussex, UK). Plasma volume from resting blood samples was calculated from 

the haematocrit values, whereas exercise-induced changes in plasma volume were 

determined from the measured haemoglobin and haematocrit values, using the equation 

below: 

 

PVPost=BVPost-CVPost , (Dill and Costill, 1974) 

 

where PVPost, BVPost and CVPost are the plasma volume, blood volume and erythrocyte 

volume after exercise, respectively. BVPost and CVPost were calculated from the following 

equations: 

 

BVPost=BVPre(HbPre⁄HbPost) 

CVPost=BVPost(HctPost) 

 

where HbPre is the baseline haemoglobin concentration, HbPost is the haemoglobin 

concentration after exercise, HctPost is the haematocrit concentration after exercise, and 

BVPre is a standardized blood volume concentration set at 100. 
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3.7.3 Leucocyte Isolation 

 

a) Peripheral Blood Mononuclear Cells (PBMCs) and Polymorphonuclear 

(PMN) granulocytes 

 

Polymorphoprep™ (PMP) is a ready-made, sterile and endotoxin-tested solution used 

for the isolation of pure PMNs from whole blood, containing sodium diatrizoate and 

polysaccharide. The cells separation is due to the rapid sedimentation of the leucocytes 

through the medium caused by its aggregation to the polysaccharide. As the leucocytes 

start losing water through the membrane to the medium (therefore diluting it significantly), 

the osmolality inside these cells increases. The leucocytes continue depositing at 

gradually less pronounced water loss rates as they travel through the medium from the 

top to the bottom. Thereby, the density of the medium is decreased most in the top zone 

of the tube, compared to the bottom zone, and a gradient is generated. As the leucocyte 

sedimentation and medium dilution alterations occur progressively and smoothly, this 

allows the formation of a continuous gradient. It is within this gradient that the PBMCs and 

PMNs are set, as shown in Figure 3.2. 

 

For the isolation protocol K3EDTA-treated whole blood samples were used. 4 mL of 

PMP were dispensed into the base of a 15 mL polypropylene Falcon™ conical tube with 

screw caps (BD Biosciences, Oxford, UK) and carefully topped with 4 mL of whole blood 

avoiding mixing the contents. The tube was then centrifuged at 500 g for 30 min at 20°C, 

allowing the rotor to decelerate without the brake (i.e. acceleration and deceleration set at 

2 and 1, respectively). The obtained plasma was removed and the PMNs (lower band) 

harvested and transferred to a clean Falcon tube (Figure 15). The PBMCs (upper band) 

were discarded. 



 Chapter 3: General Methods 
 

 71 

 
 
 

 

 

 
 

 

 
 
 

 

 

 

Figure 3.2 Purification of polymorphonuclear leucocytes (PMN) using 
Polymorphprep™. 

RBC – Red blood cells (i.e. erythrocytes) 

 

 

The PMNs were subsequently cultured in a 1:2 solution of Dulbecco’s Modified Eagle’s 

Medium containing 4500 mg·L-1 of glucose, 110 mg·L-1 sodium pyruvate and L-glutamine 

(Sigma-Aldrich, Gillingham, Dorset, UK) and sterile-filtered water (BioReagent, Sigma-

Aldrich, Gillingham, Dorset, UK) in a separate 15 mL Falcon tube. Both tubes were then 

centrifuged once more at 400 g for 10 min with the acceleration and deceleration back to 

full speed (i.e. 9). The supernatant was discharged, and the pellets re-suspended in 1 mL 

of AIM-V® serum free medium (1X) containing L-Glutamine, 50 μg·mL-1 of streptomycin 

sulphate and 10 μg·mL-1 of gentamicin sulphate, supplemented with bovine serum 

albumin (BSA, AlbuMAX®) (Gibco™, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). The tubes were then set aside for further cell counts, phagocytic activity assay, and 

staining for flow cytometry on the day. 
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b) Total Leucocytes from Whole Blood 

 

A 1X Red Blood Cell (RBC) Lysis Buffer containing ammonium chloride 

(eBioscience™, Thermo Fisher Scientific, Waltham, Massachusetts, USA) was mixed with 

whole blood in a 15 mL polypropylene Falcon™ conical tube with screw caps (BD 

Biosciences, Oxford, UK) in a 10:1 proportion (i.e. 5 mL of RBC lysis buffer to 500 μL of 

whole blood) by gentle inversion. A 10 min incubation period was completed, and the 

reaction was stopped by adding twice the volume of 10X, pH 7.4 Phosphate-Buffered 

Saline (PBS) (Gibco®, Thermo Fisher Scientific, Waltham, Massachusetts, USA) (i.e. 10 

mL of PBS to 5 ml of 1X RBC). The sample was then centrifuged at 400 g for 5 min in a 

refrigerated centrifuge at 4°C. The resulting supernatant was subsequently discharged 

and the pelleted cells were re-suspended in 1 mL PBS before further analysis. 

 

 

3.7.4 Cell Counting using a Handheld Cell Counter 

 

Cell counting of whole blood leucocytes and PMNs in experimental Chapter 7 was 

performed using an automated handheld cell counter (Scepter™, Merck Millipore, 

Germany). For the cell count using the handheld cell counter, dilutions were prepared in 

1.5 mL microcentrifuge aliquots in a ratio of 1:5 with 10X, pH 7.4 PBS. The minimal 

sample volume used and required for an accurate count was 100 μL. Disposable 60 μm 

(operating range between 10,000-500,000 cells.ml-1) microfluidic sensor tips 

(PHCC60050, Scepter, Merck Millipore, Billerica, Massachusetts, USA) were used. 

 

To start the suspended cell count, a disposable tip was attached to the Scepter™ and 

after depressing the plunger it was submerged in the sample for analysis. The sample 

including the cells in suspension was drawn into the sensor by releasing the plunger. A 

count histogram appears on the display screen within 30 sec. Information about cell size 
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(diameter in μm and volume in pl) and total cell count·ml-1 is displayed, and the data can 

be managed by adjusting the upper and lower gates on the data screens (Figure 3.3). 

Total cell numbers were determined by multiplying the given cell number on the data 

screen by the dilution factor. 

 

 
Figure 3.3 Example of data screens from Scepter™; A) initial data screen following 

sample analysis; B) setting lower gate in cell diameter screen; C) setting upper gate in cell 
diameter screen; D) corrected cell count following gate adjustment. 

 

 

3.7.5 Polymorphonuclear Leucocytes Phagocytic Activity Assay 

 

Preparation of working stock dihydroethidium (wsDHE) and opsonized zymosan was 

done in advance and stored in a -20°C and -80°C freezers, respectively. 

 

A 1.6 mM wsDHE was prepared by diluting dihydroethidium (DHE) in a 1:40 ratio in 

dimethyl sulfoxide (DMSO) (e.g. 5 μL DHE to 195 μL of DMSO). 

 

Opsonized zymosan was obtained by suspending ~200 mg of zymosan in 1 mL of a 

1:2 solution of PBS with sterile-filtered human male serum (Sigma-Aldrich, Gillingham, 

Dorset, UK) and incubating for 1 hour at 37°C. The solution was then centrifuged at 7500 

rpm for 5 minutes and the supernatant removed. The pellet was washed with 1 mL PBS 

and spun down again. The PBS wash was discarded and the opsonized zymosan was re-

suspended at 200 mg·mL-1 in fresh PBS. 

A B C D 
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The PMNs isolated from K3EDTA-treated whole blood were resuspended to roughly 2 

million/mL in AIM-V® serum free cell medium as detailed in 3.7.3 a). 100 μL of PMN 

sample was placed into 3 wells of a 96-well polysterene, sterile, flat bottom plate, to serve 

as non-stain control, baseline and treatment. To the non-stain control 100 μL of AIM-V® 

cell medium were added. A 2X DHE stain solution was prepared by mixing 5 μL of wsDHE 

with 250 μL of AIM-V® serum free cell medium. 100 μL of 2X DHE stain (16μM) were 

added to the other two wells. Finally, 2.5 μL of opsonized zymosan were added to the 

appropriate (treatment) well. The samples were incubated at 37°C in a humid 5% CO2 

environment for 30 minutes to allow for sufficient time for the DHE to label the PMNs 

(Saiki et al., 1986). Contents were then transferred into 1.5 mL microcentrifuge tubes and 

1 ml PBS was added into each. All samples were centrifuged in a microcentrifuge at 5000 

rpm for 5 minutes, supernatant removed with a vacuum pump and pellet re-suspended in 

200 μL of a FACS buffer (1 X PBS pH 7.2, containing calcium chloride, magnesium 

chloride, 2% foetal bovine serum and 0.01% azide), before acquisition via flow cytometry. 

 

 

3.7.6 Leucocyte Subsets Activation and Acquisition 

 

Total leucocytes from K3EDTA-treated whole blood and isolated PMNs were stained 

with fluorochrome-conjugated anti-human monoclonal antibodies for flow cytometric 

analysis (BD Accuri™ C6 Plus, BD Biosciences, Oxford, UK). Controls for the flow 

cytometer were stained with 1μL mouse monoclonal antibodies (eBioscience™, Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) against human cell surface markers in 

50μl of isolated total leucocytes and 25μl of FACS buffer as follows: 1) Unstained cells; 2) 

FITC conjugated anti-human CD3 (cat no 11-00370-41); 3) PE conjugated anti-human 

CD3 (12-0037-41); 4) PerCP-Cyanine5.5 conjugated anti-human CD4 (45-0048-41); 5) 

APC conjugated anti-human CD4 (17-0048-41). For the experimental stains, 300 μL of 

sample (either whole blood leucocytes or PMNs, typically approximately 3.5 million and 2 



 Chapter 3: General Methods 
 

 75 

million cells/mL, respectively) were transferred into separate aliquots and labelled 

appropriately. All aliquots were centrifuged at 500 g for 5 min and the supernatant was 

carefully discarded. 30μL of antibody cocktails (all antibodies were from eBioscience™, 

Thermo Fisher Scientific, Waltham, Massachusetts, USA, all cocktails contained antibody 

in FACS buffer at 1:50 dilution) were added directly onto the cell pellets in each tube as 

follows: A) T-lymphocyte surface markers: FITC conjugated anti-CD3 (11-0037-41), PE 

conjugated γδ T-cell receptor (TCR) (12-9959-41), PerCP-Cyanine 5.5 conjugated anti-

CD4 (45-0048-41), APC conjugated anti-CD8a (17-0086-41); B) Monocyte/Macrophage, 

NK cells, B-cell and Granulocytes surface markers: FITC conjugated anti-CD11b (11-

0113-41), PE conjugated anti-CD56 (12-0567-41), PerCP-Cyanine 5.5 conjugated anti-

CD19 (45-0198-41), APC conjugated anti-CD11c (17-0128-41); C) 

Monocyte/Macrophage, Neutrophils, Eosinophils surface markers: FITC conjugated anti-

CD16 (11-0168-41), PE conjugated anti-CD15 (12-0159-41), PerCP-Cyanine 5.5 

conjugated anti-CD14 (45-0149-41), APC conjugated anti-CD23 (17-0238-41). All aliquots 

were incubated at 4°C for 30 min and cells were subsequently washed in 300 μL of FACS 

buffer and re-suspended in 200 μL of the same buffer for immediate flow cytometer 

acquisition. All samples were gated by morphology using side scatter (SSC) versus 

forward scatter (FSC) plots and 50,000 events were acquired per sample. Data files were 

generated through the use of BD C6 Analysis Software for PC (BD Biosciences, Oxford, 

UK) and were stored for later analysis as described in 3.7.7. The Flow Cytometer was 

calibrated every day before use and acquisition settings were defined before the start of 

the study and remained unchanged for all participant samples. 
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3.7.7 Flow Cytometry (FACS) Analysis 

 

Flow cytometric analysis was performed using the software BD Accuri™ C6 Plus for 

Windows (BD Biosciences, San Jose, CA, USA). 

 

 

a) Phagocytosis assay 

 

A side scatter (SSC) versus a forward scatter (FSC) plots of all acquired cells were 

used to gate on the isolated PMNs (Figure 3.4 A1, B1, C1). Histograms for counts (cell 

number) plotted against FL2 were created with gates for examination of the unstimulated 

PMNs (Figure 3.4 A), and fluorescence of dihydroethidium (DHE)-stained PMNs (Figure 

3.4 B), and DHE-stained and opsonized zymosan-stimulated PMNs (Figure 3.4 C). DHE is 

a superoxide indicator that exhibits blue-fluorescence in the cytosol (Budd et al., 1997) 

until it oxidizes and intercalates in the DNA present in the cells nucleus, staining it a bright 

red (Amir et al., 2008). Neutrophils that take up DHE will fluoresce (FL2 positive) (Figure 

3.4 B2). When stimulated with the opsonized zymosan which induces a sterile 

inflammation to which the PMNs will respond by activating its phagocytic capability, the 

DHE will react and turn into ethidium bromide which will fluoresce pronouncedly brighter, 

provoking a further shift to the right in FL2 (FL2 positive, high) (Figure 3.4 C3). 
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Figure 3.4 Polymorphonuclear leucocytes (PMNs) phagocytic activity flow cytometric 
analysis. A) Unstimulated PMNs; B) Dehydroethidium-stained PMNs; C) 
Dehydroethidium-stained and stimulated with opsonized zymosan. 
P3 – Granulocyte population; FSC – Forward scatter (cell size); SSC – Side scatter 
(internal complexity/granularity); FL2-A – Fluorescence in FL2. 
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b) T-lymphocyte analysis 

 

A side scatter (SSC) versus a forward scatter (FSC) plots of all acquired cells were 

used to gate on the lymphocyte population (Figure 3.5 A). Subsequently, FL2 versus FL1 

(Figure 3.5 B) plots were used to gate on the γδ T-lymphocytes (stained with cocktail A as 

detailed in 3.7.6). Furthermore, it is known that the αβ T-cell population should express 

CD3 (Fowlkes et al., 1987) and these will either be CD8 positive (CD8+, cytotoxic T-cells) 

or CD4 positive (CD4+, helper T-cells). For these, FL4 versus FL3 plots (Figure 3.5 C) of 

the lymphocyte population were used. The percentages shown in the plots were used for 

analysis in Chapter 7, after fluorescence compensation was performed when needed 

(Herzenberg et al., 2006). An FL1 versus FL4 scatter plot was used to examine CD11b+ 

and CD11c+ populations, in which the percentage of CD11c+ cells are likely to be dendritic 

cells (Figure 3.5 D). Finally, FL3 and FL2 histogram plots were used for the analysis of 

CD19+ B-lymphocytes (Figure 3.5 E) and CD56+ NK cells (Figure 3.5 F), respectively. 
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Figure 3.5 Lymphocyte flow cytometric gating and analysis. 
P6 – Lymphocyte population; FSC – Forward scatter (cell size); SSC – Side scatter 
(internal complexity/granularity); FL1-H – CD3 expression; FL2-H – γδ TCR expression; 
FL4-H – CD8 expression; FL3-H – CD4 expression; FL1-A – CD11c expression; FL4-A – 
CD11b expression; FL3-A – CD19 expression; FL2-A – CD56 expression. 
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c) Granulocyte Analysis 

 

A side scatter (SSC) versus a forward scatter (FSC) plots of all acquired cells were 

used to gate on the granulocyte population (Figures 3.6 A and 3.6 C). Subsequently, FL2 

versus FL1 plots were used to gate on the granulocytes population in the whole blood 

leucocyte sample (Figure 3.6 B) that were stained for CD16+ and CD15+ neutrophils. The 

same scatter plot was created and used on the isolated PMNs sample (as detailed in 

3.7.3) to examine the quality of the isolation by comparing the CD15+ neutrophil 

population percentage in both plots (Figure 3.6 D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Granulocytes flow cytometric gating and analysis. 
FSC – Forward scatter (cell size); SSC – Side scatter (internal complexity/granularity); 
FL1-H – CD16 expression; FL2-H – CD15 expression. 
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3.7.8 Enzyme-linked Immunosorbent Assays 

 

a) Plasma Cortisol 

 

Plasma cortisol concentrations were assessed by the use of commercially available 

ELISA kits (IBL International, Hamburg, Germany) in an analogous way to the salivary 

cortisol ELISA method (subchapter 3.6.2 a)). Contrarily to the latter, the wells were coated 

with rabbit, polyclonal anti-cortisol antibodies and a 0.5 M sulphuric acid solution was 

used to stop the TMB substrate reaction. The intra-assay and inter-assay coefficients of 

variation are 2.9% and 3.5%, respectively. 

 

 

b) Plasma Testosterone 

 

Plasma testosterone concentrations were assessed by the use of commercially 

available ELISA kits (IBL International, Hamburg, Germany) in an analogous way to the 

salivary testosterone ELISA method (subchapter 3.6.2 b)). The main difference was that 

all wells were pre-coated with mouse anti-testosterone monoclonal antibodies and a 1 M 

sulphuric acid solution was used to stop the TMB substrate reaction. The intra-assay and 

inter-assay coefficients of variation are 4.3% and 6.5%, respectively. 

 

 

3.8  Questionnaires and Diaries 

 

3.8.1 Recovery-Stress Questionnaire for Athletes (RESTQ-76 Sport) 

 

The RESTQ-76 Sport for athletes (Appendix 4) is a 76-statement recovery-stress 

questionnaire that discriminates 48 nonspecific and 28 sport-specific statements of stress 
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and recovery, consisting of 4 main scales in total (general stress, general recovery, sport 

stress and sport recovery) (Kellmann and Kallus, 2001). Each one of these main scales is 

subsequently divided into 7, 5, 3 and 4 subscales, respectively. Each of these subscales 

(19 in total) includes specific statements. The sum of scores (answer to each statement) 

in each of the 19 subscales is used to examine the overall responses to the questionnaire. 

Each answer ranges from never (0) to always (6) and covers the participants’ past 3 days 

and nights. This questionnaire aids the practitioner/researcher confirming the athletes’ 

physical and mental state by analysing their recovery state either from any exercise 

completed or from any stressful event that may have occurred within the 3-day period 

preceding the completion of the questionnaire. Greater scores of general recovery and 

sport recovery denote an increased sense of well-being, whereas lower rates of general 

and sport-specific stress emphasize a better predisposition to undertake physical activities 

(Kellmann and Kallus, 2001). The RESTQ-76 Sport was used in the studies presented in 

Chapters 4, 5, 6 and 7. 

 

 

3.8.2 Upper Respiratory Symptoms (URS) Questionnaire 

 

In Chapter 7, all participants were required to complete a logbook in each main trial in 

which any subjective signs and symptoms of common cold experienced within the 

previous 3 days were documented and the scores of all symptoms were summed. The 

questionnaire applied in Chapter 7 in this Thesis was taken from Bishop (2013) and has 

been utilised in previous research (Hanstock et al., 2016). The following symptoms were 

included in the log sheet: sneezing, headache, malaise, nasal discharge, nasal 

obstruction, sore throat, cough, ear ache, hoarseness, fever, chilliness, and joint aches 

and pains (Appendix 5). Participants were instructed to code their degree of discomfort in 

a 4-point scale from 0 to 3, using the Jackson score (either no symptoms at all, mild, 

moderate or severe) (Jackson et al., 1958). The usefulness of a Jackson common cold 
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questionnaire has been documented in the recent International Society of Exercise and 

Immunology consensus statement (Bermon et al., 2017). (Bishop, 2013) 

 

 

3.8.3 Food Diary 

 

A 24-hour food diary was used as a method to standardize the caloric and 

macronutrient intake of participants in Chapters 4, 5, 6 and 7 (Appendix 6). All participants 

were instructed on weighing and recording their food intake and were asked to replicate 

their meals in the 24 hours before each main experimental trial. A digital scale (Salter 

1036BKSSDR, HoMedics Group Ltd., Kent, UK) was given to each participant so they 

could complete the food diaries. A nutritional analysis software (Dietplan version 6.70.74, 

Forestfield Software, West Sussex, UK) was used to assess the average caloric and 

macronutrient (carbohydrate, protein, fat) intake, and the average amount of food 

consumed in the 24 hours preceding each main trial. 

 

 

3.8.4 Training Diary 

 

In Chapter 7, a training diary was completed by the participants after each training 

session undertaken outside the laboratories (Appendix 7). Participants were instructed on 

measuring and recording their heart rate using a heart rate monitor. Resting, average and 

maximum heart rate, duration of training session and average RPE were recorded after 

each training session. 
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3.9  Measurement of Training Load 

 

This training load measurement was used in the study presented in Chapter 7. A 12-

day training diary was completed on two occasions and training load was measured by a 

training impulse (TRIMP) method. TRIMP will be calculated by the formula: 

 

t(min) · ∆HR · y, (Banister, 1991) 

 

where, t is the duration of each training session, y = 0.64>?.@$- (weighting factor), >  is the 

base of the Napierian logarithms, and x = ∆HR (Heart Rate Reserve). The ∆HR is the 

difference between maximal and resting heart rate (HR). 

 

Maximal HR (HRmax) was expressed as the highest HR achieved during maximal 

intensity exercise to exhaustion. Resting heart rate (HRrest) was measured in the morning 

immediately after waking up and was assessed as being the lowest HR maintained during 

at least 5 seconds within a 10-minute period. 

 

 

3.10  Statistical Analysis 

 

Statistical analysis was accomplished using IBM® SPSS® Statistics version 23 (IBM® 

Corporation, Armonk, NY, USA). All procedures followed are described in the respective 

chapters. 
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4.1  Introduction 

 

Analysis of salivary biomarkers is becoming a standard and common measurement in 

field-based and laboratory based research, as it is a non-invasive measure that does not 

require any specific medical training and it can be easily performed (Chicharro et al., 

1998, Papacosta and Nassis, 2011). Two endocrine biomarkers commonly measured in 

saliva are cortisol and testosterone (Hayes et al., 2016, Kirschbaum and Hellhammer, 

1989, Sannikka et al., 1983). Cortisol and testosterone concentrations are not influenced 

by saliva flow rate (Chicharro et al., 1998, Lewis, 2006, Vining et al., 1983) and cortisol 

has been shown moderate to strong positive correlations with its plasma concentrations 

(Khan-Dawood et al., 1984, Perogamvros et al., 2010, Port, 1991), as detailed in section 

2.3.8 in this Thesis. Data obtained from a population of 122 individuals showed a 

significant positive correlation in salivary cortisol (r = 0.75, p < 0.001) when examined in a 

test-retest study design, by regressing the concentration values obtained in two 

measurement trials on a scatterplot (Liening et al., 2010). The reliability of measuring 

testosterone in saliva has also been reported to be strong, with r = 0.87 (males) and r = 

0.78 (females) when determined by the intraclass correlation coefficient (ICC) in samples 

from 100 healthy male and 100 healthy female individuals (Dabbs et al., 1995). The 

findings from both these studies support the appropriateness of using salivary 

measurements of cortisol and testosterone as a non-invasive replacement for circulating 

levels. 

 

A continuous 30-min, high-intensity cycle bout has been shown to elicit an acute 

salivary cortisol (~120%) and testosterone (~35%) increase in healthy, physically active 

male individuals (Hough et al., 2011). Furthermore, Hough et al. (2013) and Hough et al. 

(2015) have reported blunted salivary cortisol and testosterone to the this exercise bout, 

after exposing healthy, trained athletes/triathletes through a period of intensified training. 
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Therefore, it has been suggested that the exercise-induced responses of these salivary 

hormones may be used as biological markers of overreaching. 

Most experimental studies measuring salivary hormone levels control for water 

consumption before sampling. Current procedures recommend interrupting water 

consumption at least 10 minutes before collecting saliva samples as the dilution of saliva 

samples may lead to an inaccurate concentration value of the hormones being examined. 

No experimental research has examined the impact of diluting saliva by consuming water 

on the salivary cortisol and testosterone has been completed to date. Further examination 

of the effects of water consumption in diluting saliva and consequent salivary hormone 

concentration is of interest. Therefore, the main aim of this experimental chapter is to 

examine whether consuming a fluid (specifically water) 10 min, 5 min or 1 min before 

providing a saliva sample would dilute samples and consequently provide an inaccurate 

concentration value, more specifically a lower concentration than is really present. 
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4.2  Methods 

 

4.2.1 Procedures 

 

In this experimental chapter, 10 participants volunteered to complete the study. As 

detailed in 3.1, all participants gave their written informed consent and completed a PAR-

Q form before all experimental trials. The participants’ anthropometric and physiological 

characteristics at baseline are outlined in Table 4.1. 

 

 

Table 4.1: Participants' anthropometric and physiological characteristics at baseline. 
 

Mean ± SD 

Age (years) 22 ± 2 

Height (cm) 181 ± 4 

Body mass (kg) 85.7 ± 9.4 

HRmax (beats·min-1) 186 ± 11 

V̇O$%&' (mL·kg-1·min-1) 41 ± 8 

.̇max (Watts) 269 ± 45 

n = 10 

 

 

All trials were undertaken at the University of Bedfordshire Sports Sciences Human 

Performance Laboratories and were completed at the same time of day (~12:00) to avoid 

diurnal variation. A standard breakfast chosen by each participant was consumed 4 hours 

before the exercise testing began and replicated before each main experimental trial, and 

each participant was requested to drink at least 500 mL of water during that period to 

ensure euhydration was achieved (Sawka et al., 2007). Additionally, all participants 

reported to the laboratories approximately 30 min before the exercise test start time so all 
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necessary preliminary measurements could be collected. Participants remained fasted 

until the end of each main experimental trial. 

 

Body mass measurements were carried out at three different time points (after 

sampling) to determine the rate of sweat lost during and after exercise. HR and RPE were 

monitored continuously throughout each exercise test and values were recorded at the 

last 15 s of each stage. Participants were asked to maintain their normal weekly training 

load in between each main experimental trial. 

 

All participants were requested to consume a diet as similar as possible during the 24 h 

preceding each main experimental trial and were provided with a digital food scale to 

weight and record their food and fluid intake. By use of the Dietplan version 6.70.74 

software (Forestfield Software,West Sussex, UK) mean energy intake 24 h prior to each 

trial was 9439 ± 3954 kJ (2256 ± 945 kcal), and carbohydrate, (58% ± 12%), fat (27% ± 

13%), and protein (14% ± 2%) intake were determined. 

 

 

4.2.2 Preliminary Measurements and Main Experimental Trials 

 

All participants completed 4 trials in total - three main experimental trials and one 

)̇O2max test. In addition, 5 participants also completed a resting control trial (CTL). The 

CTL trial was added to the study design to allow for comparison of salivary cortisol and 

testosterone concentrations at rest and in response to exercise. 

 

On the first visit to the lab, participants completed an incremental V̇O$%&' test on a 

manually braked cycle ergometer (Monark 824E, Vansbro, Sweden). The protocol used to 

determine V̇O$%&' is outlined in detail in 3.2.1. Concisely, the test started at 180 W and 

workload was increased by 30 W every 3 min until volitional exhaustion and gas samples 
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were collected throughout using a breath-by-breath ergospirometry exercise system 

(MetaLyzer 3B, Cortex, Leipzig, Germany). Participants’ HR and RPE were recorded at 

the last 15 s of each stage. The V̇O$%&' test was used to determine Ẇmax (as detailed in 

subchapter 3.3), and consequently to calculate the exercise intensities to be used in the 

main exercise trials (i.e. 55% and 80% Ẇmax). 

 

This was a crossover study, and all experimental trials were randomly completed. 

Saliva samples were collected at three different time points: pre-exercise, post-exercise, 

and 30 min post-exercise. The exercise test used in this experimental chapter was a 

continuous, 30-min, high-intensity cycle bout, designed of intercalated blocks of 1 min at 

55% Ẇmax and 4 min at 80% Ẇmax. This cycle test is referred to as the 55/80. 

 

All participants abstained from exercise, caffeine and alcohol intake in the 24 h before 

each trial (i.e. main experimental trials and CTL).The three main exercise trials were 

identical apart from the timing of water consumption before providing a saliva sample 

(Figure 4.1). Depending on the trial being completed, participants were required to 

consume 250 mL of water at either 10 min before every saliva sample (10MIN), 5 min 

before sampling (5MIN), or 1 min before sampling (1MIN). During completion of the 55/80 

bout in the main exercise trials, a set volume of water was provided (100 mL) every 5 min 

up to and including 20 min. Participants were required to consume each 100 mL of water 

within 30 s. A 76-statement recovery-stress questionnaire for athletes (RESTQ-76 Sport) 

(Kellmann and Kallus, 2001) was completed at the start of each main trial to examine the 

participants’ well-being and predisposition to undertake exercise (detailed in 3.8.1). 
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Figure 4.1 Schematics of main experimental trial. 
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4.2.3 Saliva Collection and Handling 

 

All analytical procedures were described in detail in subchapter 3.6. 

 

 

4.2.4 Statistical Analysis 

 

Descriptive analysis was carried out to observe the central tendency and dispersion of the 

data. Then, data were checked for normality (Q – Q plots and Shapiro-Wilk tests) and for 

homogeneity of variance to avoid inaccuracy of the confidence intervals (CI) (Wilcox, 2010). If a 

data set was not normally distributed, a logarithmic transformation to base 10 was performed on 

the data and rechecked for normality. Logarithmic data sets were used for the analysis of the 

responses of salivary cortisol across all trials. When logarithmic data sets were still not normally 

distributed (salivary testosterone) a non-parametric Friedman’s analysis of variance (ANOVA) 

was used. On finding a main effect, a two-related samples test (Wilcoxon signed-rank test) was 

used. A factorial (two-way) repeated measures ANOVA (Trial X Time) with Bonferroni 

adjustments was used to examine the salivary cortisol responses to exercise and post hoc tests 

for multiple comparisons were used. A one-way (Trial) repeated measures ANOVA with 

Bonferroni adjustments was used to compare the RESTQ-76 Sport questionnaire scores, urine 

osmolality and body mass, average HR responses and RPE scores during exercise, and 

hormone responses during CTL. Where Peak Post-Exercise values are presented, the data 

assume the highest post-exercise values observed. Data are reported as mean ± SD. The level 

of significance was set at p < 0.05. 
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4.3  Results 

 

Post-hoc tests for observed power analysis were performed and observed power for salivary 

cortisol and testosterone was 0.288 and 0.898, respectively. 

 

 

4.3.1 Hydration Status 

 

Euhydration was confirmed at the beginning of each experimental trial. The mean urine 

osmolality for all trials was 354 ± 211 (10MIN), 274 ± 201 (5MIN), 261 ± 219 (1MIN) and 556 ± 

158 (CTL) mOsmol·kg-1of H2O, and did not alter across all trials (p > 0.05). 

 

 

4.3.2 Total Weight Loss 

 

Total loss in body mass when corrected for fluid intake was not different across trials (p > 

0.05) and was 0.6 ± 0.2 kg (10MIN), 0.7 ± 0.2 kg (5MIN) and 0.5 ± 0.1 kg (1MIN). 

 

 

4.3.3 Recovery-Stress Questionnaire 

 

There was no trial effect in any of the 4 main scales, with the responses within each scale 

being similar across all trials (p > 0.05 in all). 
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Figure 4.2 RESTQ-76 Sport scores measured in all trials. 
Values are means ± SD. 

 

 

4.3.4 Physiological Responses to Exercise 

 

Average HR did not alter across trials (p > 0.05) and was 161 ± 11 beats·min-1, 163 ± 11 

beats·min-1 and 161 ± 14 beats·min-1 in the 10MIN, 5MIN and 1MIN trial, respectively. 

Moreover, RPE also remained unchanged (p > 0.05), with average values of 15 ± 1 in all 3 

trials. 

 

 

4.3.5 Hormonal Responses During CTL 

 

a) Salivary Cortisol 

 

A time effect was shown (F2,3 = 9.558, p = 0.05), with follow up comparisons showing that 

salivary cortisol was lower at 30 min Post-CTL when compared to immediately Post-CTL (p = 

0.36) (Figure 4.3 A). 
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b) Salivary Testosterone 

 

No time effect was shown in salivary testosterone during CTL (F2,3 = 0.717, p = 0.56) (Figure 

4.4 A). 

 

 

4.3.6 Hormonal Responses to Exercise 

 

a) Salivary Cortisol 

 

No trial effect was found (F2,8 = 0.953, p = 0.43). However, a time effect was shown from Pre- 

to Peak Post-Exercise (F2,8 = 14.279, p = 0.004), with salivary cortisol elevating from Pre- to 

Peak Post-Exercise in 10MIN and 5MIN only (p < 0.05 and p < 0.01, respectively). Average 

absolute increases from Pre- to Peak Post-Exercise of 3.01 nmol·L-1 (~52%), 2.84 nmol·L-1 

(~43%), and 1.58 nmol·L-1 (~21%) were found in 10MIN, 5MIN, and 1MIN, respectively (Figure 

4.3 B). No differences were shown when comparing each time point between trials (all p > 

0.05). The effect size for the salivary cortisol responses to exercise across trials was h2 = 0.325. 
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Figure 4.3 A) Salivary cortisol responses during 10MIN, 5MIN, 1MIN and CTL. B) Absolute 
changes in salivary cortisol from Pre to Peak Post-Exercise. 
Values are means ± SD. 
*Different than Post-Exercise values in CTL (p < 0.05). 
†Different than Pre-Exercise values in 10MIN (p < 0.05) and 5MIN (p < 0.01). 
 

 

b) Salivary Testosterone 

 

A non-parametric Friedman’s ANOVA with post hoc analysis with Wilcoxon signed-ranked 

test showed there were no differences when comparing the sample concentrations between 

trials (p > 0.05 in all). However, a significant elevation was shown from Pre- to Post-Exercise in 

10MIN and 5MIN trials (p < 0.05 and p < 0.01, respectively), with exercise-induced responses 

returning to baseline levels at 30 min Post-Exercise. Average absolute increases from Pre- to 

Peak Post-Exercise of 190 pmoL·l-1 (~36%), 208 pmol·L-1 (~39%), and 99 pmol·L-1 (~17%) were 

shown in 10MIN, 5MIN, and 1MIN, respectively (Figure 4.4 B). No differences were shown when 
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comparing each time point between trials (all p > 0.05). The effect size for the salivary 

testosterone responses to exercise across trials was h2 = 0.703. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 A) Salivary testosterone responses during 10MIN, 5MIN, 1MIN and CTL. B) 
Absolute changes in salivary testosterone from Pre to Peak Post-Exercise. 
Values are means ± SD. 
*Different than Pre-Exercise values in 10MIN and 5MIN (p < 0.05). 
**Different than Post-Exercise values in 10MIN and 5MIN (p < 0.01). 
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4.4  Discussion 

 

This experimental chapter examined if consuming water 5 min and 1 min before saliva 

sampling would dilute samples leading to erroneously lower salivary cortisol and testosterone 

concentration values when compared with the recommended 10 min. No trial effect was shown 

when comparing the saliva cortisol and testosterone concentrations across all three trials. In 

addition, there are no differences in the concentration levels at each time point between trials. 

However, salivary cortisol and testosterone significantly elevated in response to the 55/80 in 

10MIN and 5MIN only, with acute average absolute-changes of 3.01 nmol·L-1 (~52%), 2.84 

nmol·L-1 (~43%), and 1.58 nmol·L-1 (~21%) in salivary cortisol, and 190 pmol·L-1 (~36%), 208 

pmol·L-1 (~39%), and 99 pmol·L-1 (~17%) in salivary testosterone, in the 10MIN, 5MIN and 1MIN 

trials, respectively. In addition, this present study showed no differences in the recovery-stress 

questionnaire main scales, hydration status, HR or RPE when comparing all trials. 

 

Measurement of salivary cortisol and testosterone have been proposed as a method that 

could largely replace plasma/serum concentrations of these hormones (Ahn et al., 2007, 

Putignano et al., 2001). Serum/plasma and salivary cortisol have been shown to be moderately 

correlated in both a population of 358 healthy individuals (Pearson’s r = 0.59, p < 0.0001) (Ahn 

et al., 2007) and in 290 women (Pearson’s r = 0.64, p < 0.0001) (Putignano et al., 2001). More 

recently, a study performed on 12 healthy male individuals reported a strong positive correlation 

(r = 0.81, p < 0.05) in the exercise-induced serum and saliva cortisol responses to a maximal 

treadmill-graded exercise to exhaustion (Powell et al., 2015). The exercise-induced salivary and 

serum total testosterone to 3 different endurance and resistance exercise sessions have also 

shown to moderately correlate in endurance trained athletes (r = 0.60, p < 0.001) (Tanner et al., 

2014), but strong positive correlations have been reported in the resting samples in 20 male 

individuals (R2 = 0.79, p < 0.001) (Shirtcliff et al., 2002). However, this positive correlation has 

not always been observed, with research reporting poor levels of agreement between serum 

and salivary total and free testosterone concentrations in response to exercise in an aging male 
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population (Hayes et al., 2015b). However, despite the variability that may be observed across 

studies between methodological protocols, laboratory procedures and interpretation of results 

that may in turn, directly influence the salivary hormone data, the non-invasive character of 

saliva sampling makes it a method that can be practically used by researchers and practitioners 

who wish to measure these hormones. It is, however, important to take into account the 

standardisation of sample acquisition, analytical procedures and study designs, and the 

presence of technical and analytical error as there is still limited consistency between studies 

that have examined salivary cortisol and testosterone responses as surrogates for its circulating 

concentrations, as well documented in the Hayes et al. (2016) narrative review. (Hayes et al., 

2016) 

To reduce sample variability, a series of analytical controls should be in place. As salivary 

cortisol and testosterone vary diurnally, a standardisation of time of sample collection should be 

confirmed (Sinha-Hikim et al., 2003, Weitzman et al., 1971). In this study, all exercise tests 

began at 12:00 and sample collection was consistent across all trials at Pre-, immediately Post- 

(~12:30), and 30 min Post-Exercise (~13:00). 

 

Cortisol is also known to be elevated during and after emotional and psychological stress 

(Burke et al., 2005, Kirschbaum et al., 1995, Skosnik et al., 2000). As this study is examining 

and comparing salivary cortisol concentrations across several occasions, it is important to also 

control for the levels of psychological stress in the participants. The RESTQ-76 Sport 

questionnaire was completed by all participants before each main trial. Analysis of the 

questionnaire scores showed no disparities in any of the general or sport-specific stress and 

recovery scales, which emphasises the participants were in a similar state of wellbeing and 

predisposition to undertake physical activity at the start of each trial. Furthermore, these data 

suggest that the hormone responses have not been influenced by a change in psychological 

wellbeing in the participants. 

 

Cortisol and testosterone concentrations may also change with food consumption (Gibson et 

al., 1999), alcohol intake (Badrick et al., 2008), smoking (Badrick et al., 2007), caffeine (Lovallo 
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et al., 2006), and hydration state (Ali et al., 2013, Karila et al., 2008, Maresh et al., 2006), and 

therefore examination of salivary hormones must follow appropriate controls. Consuming water 

(~5-7 ml·kg-1 body mass within the hours prior to exercise will help to achieve euhydration, 

confirmed by a urine osmolality <700 mOsmol·kg-1 of H2O (Sawka et al., 2007). All participants 

were in a euhydrated state and abstained from exercise, alcohol and caffeine in the 24 h before, 

and food intake in the 4 h before each exercise trial. Fluid restriction during exercise has been 

reported to increase the circulating levels of cortisol (Brandenberger et al., 1986, Francesconi et 

al., 1985, Maresh et al., 2006). In addition, a study completed on nine recreationally active male 

individuals has shown that plasma cortisol significantly elevated to a 2-h cycle bout at 65% 

!̇#2max (Bishop et al., 2004). These authors reported that these responses were significantly 

higher when this exercise bout was completed with no fluid consumption, compared to when 

completed with a fluid (2 mL.kg-1 body mass of artificially sweetened lemon-flavored water) 

provided every 15 min during exercise. These data support the importance of adequate 

hydration status in research examining hormone concentration levels at rest and in response to 

exercise, as well as an adequate fluid consumption during exercise. Similarly, Lovallo et al. 

(2006) examined the salivary cortisol responses to a 30-min cycle bout at an average 75 W. 

The authors reported that the exercise bout on its own did not have an influence in salivary 

cortisol responses. However, when completed after consumption of a 250 mg dose of caffeine, 

an acute elevation of salivary cortisol levels was observed, and these responses were 

significantly higher than following a placebo. These results suggest that caffeine intake may 

have an influence in salivary cortisol, and therefore it is important that studies examining this 

hormone control for caffeine intake. 

 

Current guidelines propose that fluid consumption should cease at least 10 min before 

providing a saliva sample. However, this study intended to examine if consuming water during 

this period, specifically 5 min and/or 1 min before providing a saliva sample would dilute saliva 

and therefore provide lower, erroneous cortisol and testosterone concentrations. Participants 

were provided with 650 mL of water to be consumed during each exercise test (30 min in total). 

This volume was chosen, as guidelines propose that individuals whose body mass is around 90 
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kg, should drink between 600-800 mL.h-1 when running at a relatively low intensity (8.5-10 km.h-

1), in order to avoid losing >2% body mass (Sawka et al., 2007). A weight loss above 2% body 

mass has been reported to decrease aerobic capacity and mental performance (Cheuvront et 

al., 2003). In this study, the average body mass of participants was 85.7 ± 9.4 kg. In order for 

the participants to have lost >2% body mass, average weight loss would have to be 

approximately 1.7 kg. The average weight loss in the main exercise trials when corrected for 

fluid intake did not change across trials and was 0.6 ± 0.2 kg (10MIN), 0.7 ± 0.2 kg (5MIN), 0.5 ± 

0.1 kg (1MIN). These results suggest that the water consumption plan followed in this study 

may have been appropriate, as it did not induce a weight loss of above 2% body mass. 

 

In this present study, no trial effect was observed when comparing the exercise-induced 

salivary cortisol and testosterone concentrations across all three main experimental trials. 

However, a significant elevation in salivary cortisol was shown in the 10MIN (+ 3.01 nmol·L-1) 

and 5MIN (+ 2.84 nmol·L-1) trials only. This acute elevation in salivary cortisol from Pre-Exercise 

in response to the 55/80 is in line with previous research (Hough et al., 2013, Hough et al., 

2011). Detailed examination of the percentage-increase from baseline in all three trials shows 

that 10MIN (~52%) and 5MIN (~43%) elicited greater hormone responses than 1MIN (~21%, + 

1.58 nmol·L-1). This may be due to a potential diluted Post-Exercise saliva sample in the 1MIN 

trial, which may erroneously reduce the real concentration level of cortisol in the sample. 

However, this percentage-elevation observed in the present study is below the 148% critical 

difference proposed for salivary cortisol alterations when determined by enzyme-linked 

immunosorbent assays (ELISA) to be considered meaningful (Hayes et al., 2014). Concisely, 

critical difference is defined as the smallest change needed for an effect to be considered 

clinically meaningful, when considering the analytical error and the biological variation (Fraser 

and Fogarty, 1989). Additionally, Hayes et al. (2014) have determined the salivary cortisol and 

testosterone critical difference when examining the hormone values in laboratory-controlled 

conditions (as in this present study), which certainly reduces the level of uncontrolled variability 

when compared with research performed in more naturalistic environments. 
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In this present study, salivary testosterone acutely increased from Pre-Exercise in the 10MIN 

and 5MIN trials only, with percentage-increases being higher in both (~36% and ~39%, 

respectively) when compared with the 1MIN trial (~17%). This acute elevation has also been 

reported by previous research using the 55/80 as the exercise tool to induce salivary 

testosterone changes either at 10 min Post-Exercise (Hough et al., 2011) or immediately Post-

Exercise (Hough et al., 2013, Hough et al., 2015). The critical difference for salivary 

testosterone as proposed by Hayes et al. (2014) is 90%, which again is greater than the 

percentage-increase observed in all three main trials. Additionally, Hayes et al. (2014) 

suggested that hormone measures in saliva may present a greater critical difference when 

compared with circulating levels, and that, therefore, may also be more inheritably variable, 

reducing the applicability in clinical diagnostics. It has been reported that salivary cortisol and 

testosterone may show great variability (Valero-Politi and Fuentes-Arderu, 1993; Stone et al., 

2001; Hayes et al., 2012). Besides the variation that may be attributed to analytical and 

biological error, the statistically unaltered response of salivary testosterone to the 55/80 in 1MIN 

presented in this study may also be due to diluted saliva samples in the Post-Exercise sample. 

Previous research has reported an ~49% reduction in salivary testosterone in samples collected 

by passive drool 10 min after rinsing the mouth with water with no alteration in the cortisol 

levels, compared to samples collected upon rising before eating, drinking or performing any oral 

hygiene (Whembolua et al., 2006). In the 1MIN trial, participants consumed 250 mL of water 1 

min before providing a saliva sample. Although there is no trial effect when comparing all three 

exercise trials in both salivary cortisol and testosterone responses and no differences were 

observed in the Pre-Exercise and 30 min Post-Exercise samples a lower exercise-induced 

absolute change in both hormones concentrations in the 1MIN trial may be indicative of the 

inappropriateness of consuming water within such a short period before sampling. Consuming 

water 5 min before saliva sampling has not been shown to elicit significantly different salivary 

cortisol and testosterone concentrations than when ceasing water consumption within the 

recommended 10 min (i.e. 10MIN trial). This suggests that perhaps consuming water within 10 

min or less (up to 5 min before providing a saliva sample) may not dilute saliva, and that the 
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obtained hormone concentration will not be invalidly lower. Therefore, it may be suggested that 

the current 10 min barrier for ceasing water consumption could perhaps be reduced to 5 min. 

 

No studies have previously examined the influence of water consumption within the 

recommended 10 min before sample collection on the salivary hormone responses. Analysis of 

the results presented in this chapter suggest that allowing water consumption for up to 5 min 

before saliva sampling does not appear to influence the salivary cortisol and testosterone 

concentrations at rest and in response to exercise. However, further examination of the 

influence of consuming water 5 min before providing a saliva sample is required and therefore, 

the subsequent chapters where saliva sampling methods are used will follow the recommended 

guidelines for ceasing water consumption 10 min before providing a saliva sample. 



 

   

 

 

 

 

 

 

CHAPTER 5. 

 

The Reproducibility of Salivary Cortisol and 
Testosterone Responses to the 55/80 Bout 
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5.1  Introduction 

 

Symptoms of maladaptation associated with overreaching (FOR and NFOR) and OTS have 

been shown to occur in an athlete’s career, with prevalence reported to range between 35% 

and 67% in elite distance runners (Morgan et al., 1987), adolescent swimmers (Raglin et al., 

2000), and athletes from 26 different individual and team-sports (Birrer et al., 2013, Kenttä et 

al., 2001). 

 

The 55/80, developed by Hough et al. (2011) has been proposed as a tool that can elicit an 

acute elevation in cortisol and testosterone when in a healthy state. Further to this Hough et al. 

(2013) reported blunted responses of salivary cortisol (by 166%) and testosterone (by 21%) to 

the 55/80 when comparing before to after an 11-day period of intensified aerobic training in 

active male individuals. A similar study with an elite level male triathlete population has shown a 

44% blunted exercise-induced (to the 55/80 bout) response of salivary testosterone 

concentrations after a 10-day training camp (Hough et al., 2015). These results suggest that 

there may be some promise in using the 55/80 bout as a tool to highlight blunted exercise-

induced responses of cortisol and testosterone when an individual is in a state of overreaching 

(FOR/NFOR) or OTS. However, if this tool is to be used to highlight hormonal alterations when 

in an overreached/OTS state, then the reproducibility of the hormonal responses (specifically 

salivary cortisol and testosterone) to this cycle bout when in a healthy state is required. 

 

Examining the reliability of a variable involves repeating the measurements on a number of 

occasions and examining the magnitude of the variation in those variables within an individual 

(Bagger et al., 2003, Ross and Fraser, 1993). Reliability may be relative or absolute, depending 

on the measurement test being used. Intraclass correlation coefficient (ICC) is often proposed 

as a measurement of relative reliability, as it is a measurement of the individual variability 

relative to the inter-individual variability (Atkinson and Nevill, 1998, Šerbetar, 2015). As ICC 

includes this inter-individual variability it is dependent on sample heterogeneity (high inter-
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individual variability will generate a high ICC) (Shrout and Fleiss, 1979, Vincent and Weir, 

2012). Therefore, ICC levels may be important to reflect the ability of a test to differentiate 

between subjects (McGraw and Wong, 1996). Guidelines propose that if an ICC value is found 

between 0.40 and 0.59, the level of correlation is considered to be fair, and if between 0.60 and 

0.74, the correlation is good (Cicchetti, 1994, Cicchetti and Sparrow, 1981). Cicchetti (1994) 

and Cicchetti and Sparrow (1981) also propose that ICCs of or above 0.75 suggest an excellent 

correlation. However, ICC is not particularly informative for practitioners who wish to make 

inferences about single individuals from a test result (Vincent and Weir, 2012) and moreover, a 

high ICC may be erroneously interpreted when examining the reproducibility (within-subject 

variability) of the responses to a test. Therefore, it is important that an absolute measure of 

reliability is used. Absolute reliability refers to the variability observed in a measure when 

examined on repeated occasions, within an individual. Therefore, calculation of the within-

subject variation may be used as a measure of absolute reliability, as it examines how 

comparable the responses of a variable to a test are when examined on a number of occasions 

within an individual (i.e. reproducibility of the measure) (Hopkins, 2000, Šerbetar, 2015). As it 

refers to the variation in a certain variable when one individual is tested on several occasions, 

the within-subject variation has been proposed as the ideal measurement of reproducibility for 

experimenters using exercise tools to monitor the performance/health status of athletes/patients 

(Hopkins, 2000). Determination of coefficients of variation (CV) is often used as a measure of 

the reproducibility of measurements in clinical trials and biochemistry assays (such as hormonal 

analysis) (Feltz and Miller, 1996, Strike, 1991). Atkinson and Nevill (1998) propose that an 

extension of this measure on a sample of individuals is to determine the mean CV from 

individual CVs. Therefore, determination of intra-individual coefficient of variation (CVi) may be 

used to measure the within-subject variation, as it establishes the differences in the amount by 

which the variables being measured vary within each individual (Sokal and Braumann, 1980). 

However, Atkinson and Nevill (1998), Hopkins (2000) and Šerbetar (2015) recommended that 

any reliability study should include more than one measurement of reliability, with focus on the 

use of a method of absolute reliability. In this present Chapter the use of CVi was chosen. In 

addition, Atkinson and Nevill (1998) and Hopkins (2000) have also recommended the inclusion 
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of ICC as a measure of relative reliability, as it provides information on the between-subject 

variability. For this reason, this current study will also utilise measurements of ICC. 

 

Following the findings from Hough et al. (2013) and Hough et al. (2015) confirming the 

reproducibility of salivary cortisol and testosterone to the 55/80 may corroborate the utility of this 

exercise test as a suitable tool to be used when highlighting any salivary cortisol and 

testosterone alterations that may occur during an overreached/OTS period. Therefore, the aim 

of this study is to examine the reproducibility of the physiological responses and the salivary 

cortisol and testosterone responses to the 55/80. It is hypothesized that HR and RPE to the 

55/80 will not differ across trials, and that both hormones will acutely elevate to the 55/80. It is 

also hypothesized that the HR, RPE and hormonal responses will be reproducible. 
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5.2  Methods 

 

5.2.1  Procedures 

 

This study was a randomized, crossover designed experiment and 11 recreationally active 

male individuals volunteered to take part. The participants’ anthropometric and physiological 

characteristics at baseline are outlined in Table 5.1. Each participant came to the University of 

Bedfordshire Sports Sciences Human Performance Laboratories on 5 different occasions 

separated by at least 7 days, to undertake a !̇#2max test and subsequent measurement of 

individual physiological characteristics, 3 main experimental trials and one resting control trial 

were completed. 

 

Table 5.1 Participants' anthropometric and physiological characteristics at baseline. 
 

 

 

 

 

 

 
 

 

 

A V̇O&'() test was completed on the first visit to the laboratories. This was used as the 

preliminary measurement trial, and it was completed within 3-5 days before the start of the main 

experimental trials. The V̇O&'() test was a continuous, incremental test on an electronically 

braked cycle ergometer (Lode, Groningen, The Netherlands) as detailed in 3.2.1. In brief, the 

test started at 180W with power output increased by 30W every 3 min until volitional exhaustion. 

Mean ± SD 

Age (years) 21 ± 2 

Height (cm) 178 ± 4 

Body mass (kg) 80.8 ± 12.2 

HRmax (beats·min-1) 188 ± 6 

V̇O&'() (mL·kg-1·min-1) 45 ± 3 

*̇max (Watts) 266 ± 24 

n = 11 
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Expired gas was analysed continuously via a breath-by-breath ergospirometry exercise 

testing system (MetaLyzer 3B, Cortex, Leipzig, Germany). Exercise intensities for the 55/80 

used in the main experimental trials were obtained from the determination of 55% and 80% of 

*̇max of each individual. 

 

Each main experimental trial followed the same protocol, however 1 of the experimental trials 

(CTL) did not contain any exercise session. Participants reported to the laboratory ~30 min 

before the exercise bout start time (i.e. 11:30). Hydration status (by measuring urine osmolality), 

body mass measurement, and completion of the RESTQ-76 recovery-stress questionnaire were 

completed. The 55/80 cycle bout was used in the main exercise trials and was started at the 

same time of day (12:00) to avoid diurnal variation influencing the hormonal concentrations 

being examined. Saliva samples were collected pre-exercise, immediately post-exercise, and 

30 min post-exercise. A standard breakfast chosen by each participant was consumed 4 hours 

before the exercise testing began and was replicated before each main trial. Each participant 

was requested to drink at least ~500 mL of water during that period to help to ensure a 

euhydrated state on arrival at the laboratory. 

 

Participants remained fasted until the end of each main experimental trial, but were allowed 

to drink water ad libitum throughout, except within the 10 min period before saliva sampling. HR 

and RPE were recorded at the last 15 s of each stage. Participants were asked to undertake 

their normal weekly training in between each main experimental trial to avoid training load 

alterations influencing the responses of the hormones examined in the current study. The 

participants abstained from exercise, caffeine and alcohol intake and were also requested to 

consume a diet as similar as possible in the 24 h leading up to each main experimental trial. 

Instructions on weighing and recording their food intake were given individually. Mean energy 

intake 24 hours prior to each trial was 9661 ± 3050 kJ (2309 ± 729 kcal), and carbohydrate 

(55% ± 12%), fat (27 % ± 12%), and protein (18% ± 6%) consumed (Dietplan version 6.70.74, 

Forestfield Software, West Sussex, UK) were determined. 
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5.2.2  Analytical Procedures 

 

Saliva collection and handling, and analysis procedures are described in Chapter 3, section 

3.6.1 and 3.6.2, respectively. 

 

5.2.3  Statistical Analysis 

 

Data were checked for normality (Shapiro-Wilk test) prior to further statistical analysis. If a 

data set was not normally distributed, a logarithmic transformation (log base 10) was performed 

on the data and rechecked for normality. Logarithmic data sets were used for salivary cortisol 

analysis only. When data sets were still not normally distributed (salivary testosterone was the 

only data set not normally distributed) a non-parametric Friedman’s ANOVA was used. On 

finding an effect, post hoc Wilcoxon signed-rank tests were used on the original data set. A 

factorial (two-way - Trial x Time) repeated measures ANOVA was used to analyse salivary 

cortisol values. For all comparisons where the assumption of sphericity was violated, 

Greenhouse-Geisser corrections were used. The RESTQ-76 Sport scores were analysed by 

running a one-way repeated measures ANOVA with Bonferroni adjustments. A one-way (Trial) 

repeated measures ANOVA was used to compare average HR responses and RPE scores 

during exercise and hormone responses during CTL. The CVi were presented as a percentage 

and were used to examine the reproducibility of the physiological and hormone responses to the 

55/80 bout. CVi were calculated by hand using the equation CVi = (SDt/X+ t)*100, where CVi is the 

intra-individual coefficient of variation, SDt is the standard deviation of the hormone responses 

to all 3 main experimental trials averaged, and X+ t is the average of the hormone concentrations 

at Pre-, Post- and 30 min Post-Exercise in all 3 main experimental trials averaged (Sale, 1991). 

The ICC used was a two way model, based on the examination of single measures, and will 

therefore be referred to as ICC (2,1). This ICC model includes both systematic and random 

error in its equation. The alpha significance was set as p < 0.05. Data are reported as mean ± 

standard deviation (SD).  
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5.3  Results 

 

Post-hoc power analysis demonstrated that the observed power for salivary cortisol and 

testosterone were 0.212 and 1.000, respectively. 

 

5.3.1  Hydration Status 

 

The hydration status of the participants did not alter across all trials (p > 0.05) and mean 

urine osmolality was 357 ± 121 mOsmol·kg-1 of H2O. 

 

 

5.3.2  Recovery-Stress Questionnaire 

 

Analysis of the RESTQ-76 Sport showed no significant disparities in any of the four main 

stress or recovery scales. 

 

 

 

 

 

 

 

 

Figure 5.1 RESTQ-76 Sport scores measured in all trials. 
Values are means ± SD. 
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5.3.3  Physiological Responses to Exercise 

 

No trial effect was shown for HR (F2,9 = 3.537, p = 0.07) or RPE (F2,9 = 1.522, p = 0.27). 

Average HR in T1, T2 and T3 was 169 ± 3 beats.min-1, 167 ± 2 beats·min-1 and 169 ± 3 

beats·min-1, respectively. The RPE scores were 15 ± 1 in T1, 15 ± 1, in T2, and 14 ± 2 in T3. 

The CVi for HR and RPE was 2 ± 1% and 5 ± 5%, respectively. 

 

 

5.3.4  Hormonal Responses During CTL 

 

a) Salivary Cortisol 

 

A time effect was shown for salivary cortisol during CTL (F2,9 = 30.386, p < 0.001). Post hoc 

analysis indicates that salivary cortisol decreased over time with Post- and 30 min Post-CTL 

being lower than Pre-CTL (both p < 0.01) (Figure 5.2). 

 

 

b) Salivary Testosterone 

 

Salivary testosterone did not alter during the CTL trial (F2,9 = 0.504, p = 0.62) (Figure 5.4). 

 

 

5.3.5  Hormonal Responses to Exercise 

 

a) Salivary Cortisol 

 

No trial effect (F2,9 = 1.428, p = 0.29) or time effect (F2,9 = 0.134, p = 0.88) was found when 

comparing T1, T2 and T3. However, although not significant, average percentage-increases 
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from Pre- to Post-Exercise of 29%, 44% and 38% were found in T1, T2 and T3, respectively 

(Figure 5.2). The effect size for the salivary cortisol responses to exercise across trials was h2 = 

0.222. 

 

 

 

 

 

 

 

Figure 5.2 Salivary cortisol responses to the 55/80 at Pre-, Post- and 30 min Post-Exercise. 
Values are means ± SD. 
*Different from Pre-Exercise values in CTL (p < 0.01). 
 

 

There was an individual nature to the salivary cortisol responses to the 55/80 bout with 

exercise-induced percentage-changes ranging from -58% (-4.9 nmol·L-1) to +228% (+12.1 

nmol·L-1) (Figure 5.3). The CVi for salivary cortisol across all exercise trials was 20 ± 11%. ICC 

values are presented in Table 5.2. 

 

 

 

 

 

 

 

 

 

Figure 5.3 Individual average absolute change in salivary cortisol (nmol·L-1) from Pre- to 
Post-Exercise across all trials. 
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b) Salivary Testosterone 

 

A non-parametric Friedman’s ANOVA with post hoc analysis via a Wilcoxon signed-ranked 

test showed no effect of trial, as there were no differences when comparing each time point 

between trials (p > 0.05 in all). However, a robust exercise-induced elevation from Pre- to Post-

Exercise was shown in all exercise trials (Z = -2.803, p = 0.005 in all) (Figure 5.4 B). 

 

Average absolute-change from Pre- to Post-Exercise in T1, T2 and T3 was +171.5 ± 154.9 

pmol·L-1 (+34%), +239.4 ± 233.5 pmol·L-1 (+35%), and +301.8 ± 127.3 pmol·L-1 (+53%), 

respectively. Individual absolute changes range from 56.3 pmol·L-1 to 508 pmol·L-1 (Figure 5.5). 

The CVi for salivary testosterone across all exercise trials was 10 ± 5%. ICC values are 

presented in Table 5.2. The effect size for the salivary testosterone responses to exercise 

across trials was h2 = 0.892. 

 

 

 

 

 

 

 

 

Figure 5.4 Salivary testosterone responses to the 55/80 at Pre-, Post- and 30 min Post-
Exercise. 
Values are means ± SD. 
*Different from Pre-Exercise values in all trials (p < 0.01). 
**Different from Pre-Exercise values in T2 and T3 (p < 0.05). 
† Different from Post-Exercise values in T2 and T3 (p < 0.05). 
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Figure 5.5 Individual average absolute change in salivary testosterone (pmol·L-1) from Pre- 
to Post-Exercise across all trials. 
 

 

Table 5.2 CVi and ICC values for the physiological and hormonal variables. 
 

 

 

 

 

 

  

 HR RPE Salivary cortisol Salivary testosterone 

CVi 2 ± 1 % 5 ± 5% 20 ± 11% 10 ± 5% 

ICC 0.873 0.565 0.479 0.627 

CVi = Intra-individual coefficient of variation; ICC = Intraclass correlation coefficient, 
model 2,1. Values are means ± SD. 
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5.4  Discussion 

 

This study aimed to examine the reproducibility of the salivary cortisol and testosterone 

responses to the 55/80 cycle bout. The CVi were used as a measure of absolute reliability and 

these were shown to be 20 ± 11% and 10 ± 5% for salivary cortisol and testosterone, 

respectively. ICC values for these hormones were 0.479 (salivary cortisol) and 0.627 (salivary 

testosterone). Salivary cortisol did not elevate in response to the 55/80, and these exercise-

induced responses were shown to have an individualised nature. In contrast, exercise-induced 

salivary testosterone acutely elevated to the 55/80 immediately Post-Exercise in all three trials. 

Salivary testosterone decreased from Post-Exercise to 30-min Post-Exercise, but remained 

elevated when compared to baseline in T2 and T3, but not in T1. The variables of HR and RPE 

did not alter when compared across all trials and have been shown to be reproducible, with a 

CVi of 2 ± 1% and 5 ± 5%, respectively. ICC (2,1) for these variables was 0.873 and 0.565, 

respectively. Euhydration, measured via urine osmolality, was confirmed and it was not different 

across all experimental trials. The responses to the RESTQ-76 Sport questionnaire were also 

unaltered during the study. 

 

In studies measuring the reproducibility of any variable there is a requirement to have some 

control measures in place. Plasma cortisol has been reported to elevate when an individual is in 

a hypohydrated state. Francesconi et al. (1985) and Maresh et al. (2006) have reported 

elevations in plasma cortisol when comparing individuals in a hypohydrated state to a 

euhydrated state. More specifically, Francesconi et al. (1985) found an increase of ~155% in 

plasma cortisol, elevating from 14.2 μg·mL-1 (euhydrated) to 36.2 μg·mL-1 (hypohydrated by 7% 

body mass) in a group of six adult healthy males. Maresh et al. (2006) supported this finding 

with an elevation of ~25% in plasma cortisol (increased from ~400 nmol·L-1 to ~500 nmol·L-1) 

when comparing individuals in a euhydrated state with a hypohydrated state (hypohydrated by 

5% body mass). It must be noted that Maresh et al. (2006) also examined the influence of 

hydration status on plasma testosterone concentrations and did not observed any effect of 
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hydration status on plasma testosterone. This finding was supported by Hoffman and 

colleagues who reported that pre-exercise moderate levels of hypohydration (-3.8% body mass) 

did not influence the exercise-induced or resting concentrations of plasma testosterone when 

compared to a euhydrated state (Hoffman et al., 1994). These findings suggest that 

testosterone may not be sensitive to changes in hydration status. Taken this information as a 

whole emphasizes the importance of a euhydrated state when examining cortisol 

concentrations. In this current study the participants consumed at least 500 mL of water within 

the hours preceding the main experimental trials in order to ensure a state of euhydration 

(confirmed by a urine osmolality measurement of below 700 mOsmol·kg-1 H2O) (Sawka et al., 

2007). In this present study, mean urine osmolality was 357 ± 121 mOsmol·kg-1 H2O, confirming 

that hydration status has not impacted the results reported in this current study. In addition, as 

detailed in Chapter 4, caffeine intake has also been reported to influence cortisol concentrations 

(Lovallo et al., 2006). In this present study, caffeine consumption was not allowed in the 24 h 

leading up to each main trial. Additionally, cortisol is known to be elevated during and after 

emotional and psychological stress (Burke et al., 2005, Kirschbaum et al., 1995, Skosnik et al., 

2000). Therefore, on the morning of each main trial, participants completed a RESTQ-76 

recovery-stress questionnaire. High scores of general and sport recovery in the RESTQ-76 

Sport denote an increased sense of well-being, whereas lower scores of general and sport-

specific stress emphasize a better predisposition to undertake physical activity (Kellmann and 

Kallus, 2001). Analysis of the questionnaire scores in this current study highlight no significant 

alterations in any of the recovery or stress scales when compared across all main experimental 

trials. These findings suggest that any alterations seen in the hormonal concentration values 

have not been influenced by a change in psychological and emotional wellbeing, and it also 

indicates that participants were in a similar state of wellbeing at the start of each main 

experimental trial. 

 

Cortisol is known to have a high intra-individual variability, with research reporting that 78% of 

total variation in the cortisol awakening response is due to intra-individual variability (Almeida et 

al., 2009). As stated in the introduction in this chapter, the within-subject variation is considered 
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an absolute measurement of reproducibility, as it gives an indication of the magnitude of change 

in a variable examined on several occasions within an individual (Hopkins, 2000, Šerbetar, 

2015). This current study reports a ~20% and ~10% CVi in the salivary cortisol and testosterone 

concentration levels, respectively. At first examination, these results may seem high, however, 

this finding is in line with previous research, which reported CVi values of 22% and 13% in 

resting circulating cortisol and testosterone in healthy male individuals, respectively (Maes et 

al., 1997). These data suggest that the variability observed in this present study in salivary 

cortisol and testosterone fall within the intra-individual variation associated with these 

hormones. Therefore, the CVi obtained in this current study may indicate that the salivary 

cortisol and salivary testosterone responses to the 55/80 when completed on several occasions 

in a similar state of wellbeing will be reproducible and within the normal variability associated 

with these hormones. In addition, the ~20% (salivary cortisol) and ~10% (salivary testosterone) 

CVi reported in this study are lower than the 166% and 21% blunted response of these 

hormones observed in active men following a period of intensified training, as reported by 

Hough et al. (2013). These blunted responses reported to occur after a training period in Hough 

et al. (2013), were considerably higher than the intra-individual variability associated with the 

salivary cortisol and testosterone responses when in a healthy state. Therefore, this suggests 

that a period of intensified training is likely to alter the exercise-induced salivary cortisol and 

testosterone responses to a magnitude above the intra-individual variability observed when in a 

healthy state, and therefore these blunted responses may be observed as an effect of exercise 

training stress. 

 

The ICCs obtained in this study for salivary cortisol and testosterone were 0.479 and 0.627, 

respectively. It is important to remember that ICCs are a measure of relative reliability as it is a 

ratio of the between-subject variability to the within-subject variability, and therefore the 

magnitude of ICC is dependent on the between-subject variability (Hopkins, 2000, Shrout and 

Fleiss, 1979). Thus, the ICCs presented in this current study may provide an indication of the 

variability in the hormone responses amongst the individuals who completed this study. As ICCs 

are dependent on sample heterogeneity, high ICCs may indicate a greater variability between 
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the individuals examined (Šerbetar, 2015, Vincent and Weir, 2012). The average between-

subject variability calculated by CV in response to the 55/80 was seen to be high in this current 

study at 55.4 ± 2.2% (salivary cortisol) and 46.8 ± 18.1% (salivary testosterone). 

 

Hough et al. (2011) and Hough et al. (2013) have reported a significant increase in salivary 

cortisol in response to the 55/80 of approximately 6 nmol.L-1 (120%) and 11 nmol.L-1 (210%), 

respectively. This present study was not able to replicate the findings from Hough et al. (2011) 

and Hough et al. (2013), as salivary cortisol did not acutely elevate in response to the 55/80 in 

any of the trials. However, there was an average percentage-change in salivary cortisol from 

Pre- to Post-Exercise of 29%, 44% and 38% in T1, T2 and T3, respectively. In an attempt to 

explain this unexpected finding, the hormonal responses in the CTL need to be examined. 

During the CTL trial a significant decrease of 35% in salivary cortisol was seen from Pre- to 

Post-CTL, and it decreased further within the following 30-min. Peak concentrations of cortisol 

occur shortly after awakening and start decreasing from this point forward until it reaches its 

nadir concentrations during the first hours of night sleep (Born et al., 1999, Van Cauter, 1990, 

Weibel et al., 1995). The response of the saliva cortisol values suggest that the circadian 

rhythm has led to the reduction in saliva cortisol reported during the CTL trial. Yet, individual 

exercise-induced responses of salivary cortisol were varied. These individual responses range 

from -4.9 nmol·L-1 to +12.1 nmol·L-1. Davies and Few (1973) have reported that exercise of 

short-duration (20 to 30 min) at an intensity of or above 60% !̇#2max will induce an acute 

elevation in circulating cortisol levels. In addition, Hough et al. (2011), Hough et al. (2013) and 

Hough et al. (2015) have all reported an acute elevation in salivary cortisol in response to the 

55/80. With this in mind, it was hypothesized from the findings in this present study that the 

contrasting individual responses to the 55/80 could be due to the different fitness levels of the 

participants. Participants in Hough et al. (2011) and Hough et al. (2013) presented an average 

!̇#2peak of ~52 mL·kg-1·min-1. However, the participants in this present study show considerably 

lower !̇#2max levels (45 ± 3 mL·kg-1·min-1). The data from this present study may suggest that 

perhaps athletes with lower fitness levels may have a dampened exercise-induced cortisol 
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activity, however further examination of this anecdotal relationship needs to be completed. Yet, 

a study done on 82 male individuals of which 32 were endurance athletes and 50 were 

untrained individuals has reported contrasting results (Viru et al., 1992). All participants (both 

athletes and untrained) in Viru et al. (1992) cycled for 2 hours at 60% V̇O&'(). The authors 

reported a high between-subject variability in the exercise-induced plasma cortisol responses 

with only half of the participants, regardless of training status, showing an increase in plasma 

cortisol concentrations to exercise, whereas the other half did not respond to it. A study by 

Hough et al. (2015) completed in elite triathletes was not able to replicate the blunted cortisol 

responses following a period of intensified training found by Hough et al. (2013). Hough et al. 

(2015) has reported no alterations in the exercise-induced salivary cortisol responses after a 10-

day training camp. The authors proposed that these unaltered responses found in cortisol 

concentrations when compared before and after an intensified training period were perhaps due 

to a low number of participants (n = 7) or the ability of the elite triathletes to cope with the 

intensification of the training sessions. The findings from this present study suggest that 

perhaps the unpredictable/individualised nature of cortisol (a between-subject variability of 

55.4%) may be a reasonable explanation for Hough et al. (2015) being unable to highlight a 

blunted response in the elite triathlete population. This may be supported by the findings from 

Viru et al. (1992) who have reported a high between-subject variability in cortisol, with only half 

of the participants showing an elevation in cortisol to a 2-h cycle bout at 60% V̇O&'(). 

 

Conversely, in this study salivary testosterone acutely elevated in response to the 55/80 in all 

main exercise trials by 34%, 35% and 53% in T1, T2 and T3, respectively. This is in line with 

other studies that have reported significant exercise-induced elevations in salivary testosterone 

to the 55/80 in the magnitude of 53% and 35% in normal trained male individuals (Hough et al., 

2013, Hough et al., 2011) and of 114% in an elite male triathlete population (Hough et al., 

2015). Hough et al. (2013) have previously suggested that the 55/80 may be a useful tool to 

highlight blunted salivary cortisol and testosterone responses when an individual is 

overreached. The blunted salivary cortisol and testosterone responses reported by Hough et al. 

(2013) were in the magnitude of 166% and 21% when compared to pre-training responses, 
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respectively. However, Hough et al. (2015) have suggested for the first time that exercise-

induced salivary testosterone responses are more sensitive to an intensification of training 

stress than the exercise-induced salivary cortisol. In addition, the authors observed that a 

blunted salivary testosterone response to a 55/80 after a period of intensified training occurred 

independently of a perceived increase in training stress. Hough et al. (2015) have also 

suggested that blunted salivary testosterone to a 55/80 bout may be a predictor of the incidence 

of overreaching. The acute increase in salivary testosterone observed in all three exercise trials 

suggests that this hormone may be indeed more sensitive to the 55/80 than salivary cortisol. 

Therefore, salivary testosterone may be a more reliable endocrine biomarker to be used to 

examine any alterations expected to occur following a period of intensified training. 

 

In conclusion, the CVi in the exercise-induced responses of salivary cortisol and testosterone 

found in this present study are within the intra-individual variation that has been reported for the 

resting concentrations of these hormones previously. In addition, these CVi are lower than the 

blunted response reported to happen following periods of intensified training. These data 

suggest that the 55/80 elicits consistent, reproducible salivary cortisol and testosterone 

responses within the normal variability associated with these hormones. The previously 

identified blunted responses of these hormones when comparing before and after an intensified 

period of training (Hough et al., 2013, Hough et al., 2015), implies that this exercise protocol 

may be a worthwhile test when diagnosing a potential dysfunction of the HPA and HPG axis 

demonstrated in athletes suspected to be overreached. Detailed examination of the exercise-

induced salivary cortisol and testosterone may suggest that perhaps testosterone, due to its 

sensitivity to exercise stress, lower individual variability, and consistent, reproducible, acute 

elevation in response to the 55/80, may be a more reliable endocrine biomarker compared to 

cortisol to be utilized when highlighting any hormonal alterations in athletes on the edge of 

overreaching. 
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6.1  Introduction	

 

As detailed previously in this Thesis, the 55/80 cycle bout has been proposed to be a 

suitable tool to highlight blunted cortisol and testosterone exercise-induced responses which 

may be associated with overreaching. In addition, Chapter 5 of this Thesis suggests that the 

intra-individual variability of the salivary cortisol and testosterone responses to the 55/80 lies at 

or below 20 ± 11% and 10 ± 5%, respectively. The intra-individual variability reported in cortisol 

and testosterone examined in Chapter 5 is within the intra-individual variability of these 

hormones reported in previous studies. Maes et al. (1997) has suggested that the resting intra-

individual variability in plasma cortisol is 21.7%, and in plasma testosterone is 12.6%. These 

findings suggest that the salivary cortisol and testosterone responses found in response to the 

55/80 are within the variability associated with these hormones and are therefore reproducible 

to the extent to which this variability allows. 

 

Hough et al. (2011) and Hough et al. (2013) reported robust elevations of salivary cortisol 

and testosterone concentrations in response to the 55/80 bout. However, as reported in Chapter 

5 we were unable to reproduce these elevations of cortisol concentrations in response to the 

55/80 bout. This may be due to the influence of a circadian rhythm on the cortisol responses. 

However, the CVi for both cortisol and testosterone presented in Chapter 5 have supported the 

reproducibility of these hormonal responses to the 55/80. 

 

Despite the promise of using the 55/80 bout as a tool to highlight altered biomarkers during a 

period of overreaching (Functional or Non-Functional), this exercise tool simply may not be an 

ideal tool for non-cyclists. Therefore, to expand the population that can be tested for 

overreaching utilising an exercise stress test to highlight blunted exercise-induced hormonal 

responses, this study seeks to design a running test capable of inducing an acute and 

reproducible elevation in plasma and salivary cortisol and testosterone in physically active, 

healthy males. A 30-min running bout at 80% V̇O&'() has been reported to elevate plasma 
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cortisol by ~20% (Verde et al., 1992). In addition, an acute elevation in plasma cortisol of ~97% 

and total testosterone of ~31% in response to a running test to exhaustion at 100% ventilatory 

threshold has been reported by Daly et al. (2005). These results suggest that a short duration 

(30 min) running test may be appropriate to induce robust elevations in both cortisol and 

testosterone when in a normal trained state (i.e. not a FOR, NFOR or OTS state). It is also 

reasonable to suggest that, like the 55/80 bout, a running bout could highlight alterations in 

cortisol and testosterone following a period of intensified training. To use the 55/80 cycle bout it 

is required to complete preliminary exercise testing for determination of the exercise intensities. 

This may sometimes not be practical, and therefore, this present study proposes to develop a 

self-paced running bout based on the individuals’ perceived exertion using the 6-20 Borg scale. 

This self-paced running bout could therefore be more practically applied in an athletic 

population. As it has been proposed that exercise intensity needs to be above a certain 

threshold (> 60% !̇O2max) for cortisol to significantly elevate (Davies and Few, 1973), the 

running bout developed in this present study was designed in an attempt to reproduce these 

exercise intensities. The 6-20 Borg scale was designed so that perceived exertion (ranging from 

6 to 20) matched HR, and consequently exercise intensity (Borg, 1970). Therefore, Borg (1970) 

proposed that the 6-20 scores on the RPE scale would designate a HR ranging from 60 to 200 

beats·min-1. The relationship between the 6-20 Borg scale, HR and exercise intensity has been 

examined (Eston and Williams, 1988, Smutok et al., 1980). Smutok et al. (1980) completed a 

study on 10 healthy men who undertook 3 different trials. On the first visit to the labs, all 

participants run on a treadmill at 4.7, 6.5, 11.3 and 12.9 km·h-1 and reported their perceived 

exertion on the 6-20 Borg scale. On the two following visits, the participants were asked to 

regulate their pace on the treadmill to run at a speed corresponding to the RPE scores they had 

reported at each speed on trial 1. Based on the results obtained by regression analyses, 

Smutok et al. (1980) concluded that treadmill-run exercise mediated by RPE elicits a consistent 

HR response if above an average 150 beats·min-1 (~80% HRmax) (r = 0.83). This suggests that 

the exercise bout used in the current study should be able to elicit consistent HR responses if 

the intensity leads the athlete to a HR above 150 beats.min-1. In this present study, it was 

hypothesized that RPE scores of 11 (light) and 15 (hard) could replicate the design of the 55/80 
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(alternating blocks of 1 min at low intensity, and 4 min at high intensity). 

 

However, if the running tool designed in this present study is to be used by practitioners to 

highlight hormonal alterations after periods of intensified training, the reproducibility of the 

hormonal responses to the bout must be examined. As described in Chapter 5, absolute and 

relative reliability are two different types of reliability testing. Relative reliability refers to the ratio 

of total between-subject variability to the within-subject variability, and therefore gives an 

indication of the magnitude of association of the between-subjects responses. In contrast, 

absolute reliability describes the intra-individual variability of a measure, independently of 

sample heterogeneity and should therefore be used a measure of the reproducibility of a 

variable (Atkinson and Nevill, 1998, Šerbetar, 2015). Atkinson and Nevill (1998) recommended 

that a measure of relative reliability could be used to support absolute reliability, as it may give 

an indication of the inter-individual variability of the variable being examined. The CVi and ICC 

(2,1) were used to examine the reproducibility of the physiological and hormonal responses to 

the running bout.  

 

The main aim of this study was to design a self-paced, short-duration (30 min), high-intensity 

running bout to elicit reproducible and robust elevations in plasma and salivary cortisol and 

testosterone when completed in a healthy state. 
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6.2  Methods	

 

6.2.1  Procedures 

 

This study was a randomized, crossover experiment and was conducted on 13 recreationally 

active male volunteers. The baseline physiological and anthropometric data are presented in 

Table 6.1. 

 

Table 6.1 Participants' anthropometric and physiological characteristics at baseline. 
 

 

 

 

 

 

 

 

On the first visit to the laboratories, participants completed a preliminary V̇O&'() test on a 

motorised treadmill, as detailed in section 3.2.2 of this Thesis. On the following visits, 

participants completed 4 more trials in total – three main exercise trials and one resting trial 

(CTL). The main experimental trials and CTL were completed at 12:00 to avoid the influence of 

diurnal variation of the hormones being examined. A standard breakfast was consumed before 

09:00 and was replicated before each main trial. Participants were requested to consume ~500 

mL of water in the morning of the trial and euhydration was confirmed by a urine osmolality 

<700 mOsmol·kg-1 H2O (Sawka et al., 2007). All participants reported to the laboratory at 

~11:30 and completed a RESTQ-76 Sport questionnaire. Participants remained fasted until the 

end of each main experimental trial, but were allowed to drink water ad libitum throughout the 

exercise bout, except within the 10 min period before providing a saliva sample. Body mass was 

Mean ± SD 

Age (years) 22 ± 6 

Height (cm) 177 ± 5 

Body mass (kg) 77.7 ± 13.4 

HRmax (beats·min-1) 190 ± 8 

V̇O&'() (mL·kg-1·min-1) 53 ± 5 

n = 13 
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measured pre- and post-exercise and HR and RPE were measured in the last 15 s of each 

stage. The !̇O2max test was used to determine the levels of physical fitness of the participants. 

 

Participants were requested to consume a similar diet during the 24 hours preceding each 

trial, which was measured via a weighed food diary as detailed in 3.8.3 in this Thesis. Mean 

energy intake 24 hours prior to each trial was 8941 ± 2565 kJ (2137 ± 613 kcal), and 

carbohydrate (57% ± 15%), fat (23 % ± 9%), and protein (20% ± 6%) consumed were 

determined. 

 

 

6.2.2  Main Experimental Trials 

 

In 3 of the main experimental trials a running bout was completed. The first main exercise 

trial consisted of a running bout to familiarise the participant with the stress of the running bout 

to be used in the two other main exercise trials (T1 and T2). The running bout was referred to 

as the RPEtreadmill and consisted of continuously alternating blocks of 1 min at a perceived 

exertion equivalent to 11 (fairly light) and 4 min at 15 (hard) on the 6-20 Borg’s RPE scale on a 

motorised treadmill for 30 min (Figure 6.1). The treadmill speed could be adjusted but not seen 

by the participant to maintain the RPE in the target range. A 30-min resting trial (CTL) where no 

exercise was undertaken was also completed. In all exercise trials, the treadmill slope was set 

at 1% gradient to more accurately reflect the energetic cost of outdoor running (Jones and 

Doust, 1996). Participants were required to abstain from exercise, caffeine and alcohol intake in 

the 24 hours leading up to the trial, and from food ingestion four hours before each main trial. 

To avoid baseline peak circulating cortisol levels due to circadian rhythm, all participants were 

asked to wake up no later than 08:00 on the morning of the trial. Each of the main experimental 

trials was separated by 4-7 days. Saliva and blood samples were collected Pre-Exercise, Post-

Exercise, and 30 min Post-Exercise in T1 and T2, and Pre-, Post- and 30 min Post-CTL. 
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Figure 6.1 Schematic presentation of the RPEtreadmill running bout. 
 

 

6.2.3  Analytical Procedures 

 

Collection, handling and analysis of blood and saliva samples were accomplished as 

described in Chapter 3. 

 

 

6.2.4  Statistical Analysis 

 

All data were checked for normality and for homogeneity of variance. Non-normally 

distributed data sets (plasma cortisol, and salivary cortisol and testosterone) were log 

transformed (to base 10) and rechecked for normality. Normally distributed data sets were 

analysed using a two-way repeated measures ANOVA. On finding an effect, subsequent paired 

sample t-tests were used with Bonferroni adjustments. A one-way repeated measures ANOVA 

with subsequent paired-sample t test with Bonferroni corrections was used to examine HR and 

speed in CTL and exercise trials, and hormonal responses during CTL. Reproducibility analysis 

was accomplished by determining the CVi of all physiological and hormonal measurements as 

detailed in the previous chapter (section 5.2.3). The two-way ICC model, based on single 

measures was determined. Effect sizes (ES) were determined by hand as detailed in Vincent 

and Weir (2012, p. 165) to examine the magnitude of hormonal change between trials (Hopkins 

et al., 2009). The alpha level of significance was set as p < 0.05. Data is reported as mean ± 

SD.   

4 min at 15 RPE 

				 		 		 		 		

30 min 

1 min at 11 RPE 
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6.3  Results	

 

Post-hoc power analysis demonstrated that the observed power for plasma cortisol and 

testosterone was 0.326 and 1.000, respectively. The observed power for salivary cortisol and 

testosterone was 0.376 and 0.713, respectively. 

 

 

6.3.1  Hydration Status 

 

Urine osmolality did not differ across all trials and was 345 ± 198 mOsmol·kg-1 H2O in T1, 

310 ± 168 mOsmol·kg-1 in T2, and 301 ± 166 mOsmol·kg-1 H2O in CTL (p > 0.05). 

 

 

6.3.2  Recovery-Stress Questionnaire 

 

No changes in the RESTQ-76 Sport scores were found in any of the stress or recovery 

scales across all trials (p > 0.05). 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 RESTQ-76 Sport scores measured in all trials. 
Values are means ± SD. 
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6.3.3  Physiological Responses to Exercise 

 

No differences in HR or speed were found when comparing FAM, T1 and T2 (p < 0.05). 

Average HR was 169 ± 6 beats·min-1 in FAM, 171 ± 8 beats·min-1 in T1, and 169 ± 13 

beats·min-1 in T2. Average speed was 12.1 ± 2.0 km·h-1 in FAM, 12.1 ± 1.9 km·h-1 in T1, and 

12.0 ± 1.8 km·h-1 in T2. Reliability data for speed and heart rate are presented in Table 6.2. 

 

 

Table 6.2 CVi and ICC values for speed and heart rate to both running bouts. 
 

 

 

 

 

 

 

6.3.4  Hormonal Responses During CTL 

 

a)  Plasma Cortisol and Testosterone 

Plasma cortisol significantly decreased from Pre- to Post-CTL (p < 0.01) by ~18% ± 16% 

(Figure 6.3). Plasma testosterone did not alter over time (p > 0.05) (Figure 6.5). 

 

 

b)  Salivary Cortisol and Testosterone 

Salivary cortisol significantly decreased from Pre- to Post-CTL (p < 0.01) by ~32% ± 16% 

(Figure 6.3). Salivary testosterone did not alter over time (p > 0.05) (Figure 6.5). 

 

 

 

 HR Speed 

CVi 1.8 ± 1.3% 2.2 ± 1.8% 

ICC 0.912 0.955 

CVi = Intra-individual coefficient of variation (%); ICC = Intraclass 
Correlation Coefficient, model 2,1. 
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6.3.5  Hormonal Responses to Exercise 

 

a)  Plasma Cortisol  

 

No trial effect (F1,12 = 0.131, p = 0.72) or time effect (F1,12 = 3.943, p = 0.07) were found when 

comparing T1 and T2 (Figure 6.3). However, although not significantly plasma cortisol 

increased from Pre- to Peak Post-Exercise by 34% in T1, and by 47% in T2. 

 

The plasma cortisol responses were showed to be variable between individuals, with individual 

exercise-induced changes ranging from -40% to +304% (Figure 6.4). The CVi was 12 ± 7%. The 

effect size for the plasma cortisol responses to exercise across trials was h2 = 0.266. 

 

 

b)  Salivary Cortisol  

 

No trial effect (F1,12 = 0.134, p = 0.72) or time effect (F1,12 = 2.84, p = 0.10) were found when 

comparing T1 and T2 (Figure 6.3). However, although not a significant alteration, salivary 

cortisol increased from Pre- to Peak Post-Exercise by 58% in T1, and by 70% in T2. 

 

The salivary cortisol responses were showed to be variable between individuals, with 

individual exercise-induced changes ranging from -55% to +370% (Figure 6.4). The CVi was 17 

± 17%. The effect size for the salivary cortisol responses to exercise across trials was h2 = 

0.164. 

 

Pearson’s correlation coefficient revealed that the exercise-induced salivary cortisol 

moderately correlated with its plasma measures (r = 0.578, p = 0.217). 
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Figure 6.3 Plasma and salivary cortisol responses to exercise and CTL. 
Values are means ± SD. *Different from Pre-Exercise values (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.4 Individual average absolute changes in plasma and salivary cortisol from Pre- to 

Peak Post-Exercise. 
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c)  Plasma Testosterone  

 

No trial effect (F1,12 = .504, p = .49) was found when comparing T1 and T2 (Figure 6.5). 

However, a time effect was present (F2,11 = 44.403, p < .001). Pairwise comparisons showed 

that plasma testosterone acutely elevated in both exercise trials (p < 0.01) and returned to 

baseline levels at 30 min Post-Exercise (p < 0.05). On average plasma testosterone elevated 

from Pre- to Peak Post-Exercise by 46% in T1, and by 38% in T2. 

 

Individual responses of plasma testosterone range between +6% and +82% (Figure 6.6). 

The CVi was 12 ± 9%. The effect size for the plasma testosterone responses to exercise across 

trials was h2 = 0.890. 

 

 

d)  Salivary Testosterone  

 

No trial effect (F1,12 = .328, p = .58) was found when comparing T1 and T2 (Figure 6.5). A 

time effect was found (F2,11 = 4.962, p < .05) with pairwise comparisons showing salivary 

testosterone elevating in both exercise trials (p < 0.01) and remained elevated above Pre-

Exercise values at 30 min Post-Exercise in T2 only (p < 0.05). Salivary testosterone increased 

from Pre- to Peak Post-Exercise by 26% in T1, and by 57% in T2. 

 

Individual responses of salivary testosterone range from +1% to +114% (Figure 6.6). The CVi 

was 14 ± 10%. The effect size for the salivary testosterone responses to exercise across trials 

was h2 = 0.304. 

 

Pearson’s correlation coefficient revealed that the exercise-induced salivary testosterone 

moderately correlated with its plasma measures (r = 0.538, p = 0.051). 
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Figure 6.5 Plasma and salivary testosterone responses to exercise and CTL. 
Values are means ± SD. 
*Different from Pre-Exercise values in the exercise trials (p < 0.01 and p < 0.05. for plasma and 
salivary values). 
†Different from Post-Exercise values in the exercise trials (p < 0.05). 
**Different from Post-Exercise values in T2 (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Individual absolute changes in plasma and salivary testosterone from Pre- to 
Peak Post-Exercise. 
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Table 6.3 CVi, ICC and ES values for the hormone responses to the RPEtreadmill bouts. 
 

 

 

 

 

 

 

 

  

 CVi ICC ES 

Plasma Cortisol (nmol·L-1) 12 ± 7% 0.62 0.03 

Plasma Testosterone (nmol·L-1) 12 ± 9% 0.58 0.04 

Salivary Cortisol (nmol·L-1) 17 ± 17% 0.49 0.1 

Salivary Testosterone (pmol·L-1) 14 ± 10% 0.44 0.01 

CVi = Intra-individual coefficient of variation (%); ICC = Intraclass Correlation 
Coefficient, model 2,1; ES = Cohen’s Effect Size. 
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6.4  Discussion	

 

This study aimed to examine the reproducibility of plasma and salivary cortisol and 

testosterone responses to a continuous, self-paced, 30-min, high-intensity running bout, 

referred to as the RPEtreadmill. It was hypothesized that the RPEtreadmill would be stressful enough 

to induce an acute elevation in plasma and salivary cortisol and testosterone and that these 

responses would be reproducible. Despite an average percentage-increase in exercise-induced 

plasma cortisol concentrations from Pre- to Peak Post-Exercise of 34% in T1, and 47% in T2, 

and in salivary cortisol (58% in T1 and 70% in T2), these changes were not significant in any 

trial. Contrastingly, plasma testosterone (46% in T1 and 38% T2) and salivary testosterone 

(26% in T1 and 57% in T2) markedly elevated in response to both exercise trials from Pre- to 

Peak Post-Exercise. The intra-individual variability in plasma and salivary cortisol (12 ± 7%, and 

17 ± 17%, respectively) and testosterone (12 ± 9%, and 14 ± 10%, respectively) observed in 

this study are within or close to the normal variability associated with these hormones, and 

therefore support the reproducibility of the hormonal and physiological responses to the 

RPEtreadmill. 

 

As explained in Chapter 5, in measuring the reproducibility of the hormonal responses to 

exercise some important control measures must be in place. Hydration status has been 

reported to influence cortisol and testosterone concentrations. As outlined in Chapter 5 cortisol 

concentrations have been shown to elevate when in a hypohydrated state compared to a 

euhydrated state (Francesconi et al., 1985, Maresh et al., 2006). In this current study hydration 

status was measured at the beginning of each main experimental trial. All participants were 

confirmed to be in a euhydrated status with a urine osmolality measure of below 700 

mOsmol.kg-1 H2O (Sawka et al., 2007). This confirms that hydration status has had no influence 

on the salivary and plasma cortisol and testosterone responses reported in this current study. In 

addition to the control of hydration status, caffeine an alcohol intake was also restricted in the 

24 h period before each main experimental trial. As detailed in the previous Chapter, Lovallo et 
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al. (2006) have reported an acute elevation in plasma cortisol concentrations following a 30-min 

cycle bout at an average 75 W combined with consumption of a 250 mg dose of caffeine, when 

compared to exercise on its own. In addition, alcohol consumption has also been shown to have 

an influence on the cortisol concentrations (Ireland et al., 1984). In their study, Ireland et al. 

(1984) have shown that consumption of a moderate dose of alcohol (740 mL of cold non-

alcoholic beer to which were added 0.5 mL of ethanol per kg body mass) has induced elevated 

plasma cortisol concentrations when compared to the cortisol concentrations examined after 

consumption of a similar volume of water. Similarly, plasma testosterone has also been 

proposed to be altered following acute alcohol intake (Mendelson et al., 1977). These authors 

reported a marked fall in testosterone levels occurring in parallel with a gradual elevation of 

alcohol concentrations in blood, during a period of acute alcohol intoxication. In this present 

study, alcohol consumption was not allowed in the 24 h preceding each main experimental trial. 

This suggests that the responses of cortisol and testosterone have not been influenced by 

alcohol consumption. In addition, cortisol is known to be a stress-related hormone that is 

elevated during and after emotional and psychological stress (Burke et al., 2005, Kirschbaum et 

al., 1995, Skosnik et al., 2000). The RESTQ-76 Sport was used to examine the participants’ 

general- and sport-specific recovery and stress scores before each main trial. In this study, 

analysis of the RESTQ-76 Sport scores showed no significant disparities in any of the stress 

and recovery scales, which details that the participants were in a similar state of wellbeing and 

predisposition to undertake physical activity on every trial and therefore the hormonal responses 

reported have not been influenced by a change in wellbeing in the participants. 

 

The reproducibility of the physiological responses to the RPEtreadmill was examined in the 

current study. Monitoring HR during exercise testing is a common method used to categorize 

exercise intensities (Kenny, 1990). Being a self-paced exercise bout, the RPEtreadmill could 

provoke different HR responses if the speeds chosen by the runners were different when 

completing the running bout on different occasions. In this study, HR responses and speed in 

the RPEtreadmill did not alter across all main exercise trials. These results are important, as an 

alteration in the speeds would be indicative of a subsequent alteration in exercise intensity, and 



 Chapter 6: Reproducibility of Steroid Hormone Responses to a Running Bout 
 

 138 

therefore influence the response of both cortisol and testosterone. Additionally, the HR and 

speed responses were shown to be reproducible, with CVi of 1.8 ± 1.3% for HR, and CVi of 2.2 

± 1.8% for speed. The ICCs obtained for these measures were 0.912 and 0.955, respectively. 

As detailed in Chapter 5, ICC is a measure of the between-subject variability relative to the 

within-subject variability. Therefore, a high between-subject variability will generate a high ICC. 

The ICCs calculated for the HR and speed responses in this present study may give an 

indication of the varied HR and speed responses when comparing the participants between 

each other. However, the low CVi show that HR and speed to both trials did not show to be 

varied. These data suggest that the RPEtreadmill bout induces a similar physiological strain and 

therefore elicits similar HR and running speed. This finding strengthens the use of this exercise 

stress test may induce a similar physiological stress on individuals when completed on different 

occasions. 

 

Similar studies to this one have reported a significant elevation of salivary cortisol and 

testosterone in response to a continuous 30-min, cycle bout when in a healthy state, as stated 

in previous chapters in this Thesis (Hough et al., 2013, Hough et al., 2011, Hough et al., 2015). 

It has been established that duration and intensity of exercise sessions are two important 

factors known to cause an exercise-induced increase in plasma and salivary cortisol 

concentrations (Bloom et al., 1976, Galbo et al., 1977, Kuoppasalmi et al., 1980, Nieman et al., 

1994). It has been proposed that the exercise intensity needs to exceed a threshold of 60% 

V̇O&'() for at least 20-30 min for cortisol to significantly elevate (Davies and Few, 1973). More 

recently, Hill et al. (2008) supported these findings by reporting no change in plasma cortisol 

levels to a 30-min cycle bout at 40% !̇O2max. Plasma and salivary cortisol did not significantly 

increase in response to the RPEtreadmill in this current study. There was, however, a percentage-

elevation from Pre- to Peak Post-Exercise in both trials of 34% in T1, and 47% in T2 (plasma 

cortisol), and 58% in T1 and 70% in T2% (salivary cortisol). Detailed examination of the 

individual cortisol responses shows contrasting responses, ranging from moderate decreases to 

marked acute increases. As the RPEtreadmill is a self-paced running bout based on the 6-20 Borg 

scale, each participant will exercise at an intensity dependant of an individual perceived 
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exertion. Although the RPEtreadmill bout was designed to elicit an RPE of 15 (hard) for the 

majority of the test (24 min), it was not confirmed whether this would provoke an exercise 

intensity stressful enough to acutely elevate cortisol levels. A robust and consistent exercise-

induced elevation in plasma and salivary testosterone was seen in both trials. Furthermore, 

testosterone levels did not change with time during CTL, whereas cortisol significantly 

decreased from Pre- to Post-CTL (within 30 minutes). Similarly to the study presented in 

Chapter 5, the circadian rhythm of cortisol is likely to have lead to RPEtreadmill being unable to 

induce the hypoThesised elevations in plasma and salivary concentrations. In this present 

study, all participants were asked to rise at least 4 h before the start of the experimental trial to 

circumvent elevated cortisol concentrations associated with diurnal variation. However, we did 

not confirm with the participants whether they have indeed awakened at this time as required. 

Not following this procedure may influence the cortisol concentrations at the time of testing, as 

cortisol is known to be at its peak concentrations shortly after awakening (Debono et al., 2009). 

In addition, cortisol has also been shown to have a high intra-individual variability (Bertagna et 

al., 1994), with research reporting that 78% of total variation in the cortisol awakening response 

is due to intra-individual variability (Almeida et al., 2009), as detailed in the previous chapter. 

When examining the intra-individual variation across trials, as presented in Table 6.3, this study 

shows an intra-individual variation of ~12% and ~17% in the plasma and salivary cortisol 

responses, respectively. At first examination, these data may seem a little high, however, the 

within subject variability in cortisol has already been reported to be 21.7% (Maes et al., 1997). 

However, the CVi for salivary testosterone reported in this chapter is above the previously 

reported 12.6% (Maes et al., 1997) and the 11.8% (Sartorius et al., 2012) average intra-

individual variability in serum testosterone. This may be due to the fact that these studies have 

examined the variability of these hormones while at rest, while the present chapter has looked 

at the exercise-induced responses. Overall, the data from this experimental chapter suggest 

that the variability found falls or tends to fall within normal biological variability values reported 

previously, certainly for plasma and salivary cortisol and plasma testosterone. The results from 

the repeated measures ANOVA showed no differences between trials. The ES were used to 

examine the magnitude of change between trials within the running test (Cohen, 1988). Cohen 
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(1988, p. 21) has proposed that an effect size value of 0.8 represents large differences and that 

the lower this value, the less pronounced the differences, with small differences reported if ES = 

0.2. The ES for plasma cortisol, plasma testosterone, salivary cortisol and salivary testosterone 

were 0.03, 0.04, 0.1 and 0.01, respectively. The ES values presented in this experimental 

chapter indicate that the differences between T1 and T2 were trivially small. These data 

supports the trivial changes in the responses of the hormones examined in this study when 

compared across trials. 

 

It was hypothesized that plasma and salivary cortisol and testosterone would acutely elevate 

in response to the RPEtreadmill and that this running bout would provoke reproducible hormonal 

and physiological responses. The examination of the hormonal responses measured in this 

study, suggests that testosterone may be a better indicator of a hypothalamic-pituitary activation 

following short-duration, high-intensity exercise when compared to cortisol responses. This 

study has shown a robust elevation of plasma and salivary testosterone in response to the 

RPEtreadmill with a reasonable intra-individual variability of 12 ± 9% and 14 ± 10%, respectively. 

This study suggests that the RPEtreadmill bout may elicit reproducible plasma and salivary cortisol 

responses, but does not significantly elevate the cortisol concentrations from pre- to post-

exercise. This means it may be difficult to use the RPEtreadmill in an attempt to measure cortisol 

responses as an endocrine biomarker to highlight exercise-induced stress levels. However, both 

plasma and salivary testosterone significantly elevated to this running tool and these responses 

were reproducible. The advantage of using the RPEtreadmill is that it will not require a V̇O&'() to 

determine exercise intensities and may be practically used in the field, as a suitable tool to be 

used to induce a significant elevation certainly in testosterone levels. It is expected that the 

RPEtreadmill will also induce blunted testosterone responses following a period of intensified 

training, as reported by Hough et al. (2013) and Hough et al. (2015), highlighting its usefulness 

to prevent the incidence of NFOR/OTS. This study also proposes that cortisol is individualised 

and that the exercise-induced responses may be influenced by a circadian rhythm. However, 

the intra-individual variability of plasma and salivary cortisol and testosterone responses is at a 
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level that suggests that the RPEtreadmill could highlight blunted exercise-induced cortisol and 

testosterone responses following a period of intensified training. (Hill et al., 2008) 
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7.1  Introduction 

 

Chapter 6 proposes that the RPEtreadmill bout induces reproducible HR, running speed and 

plasma and salivary cortisol and testosterone responses. In addition, the intra-individual 

variability of plasma and salivary cortisol and testosterone responses is at a level that suggests 

that the RPEtreadmill could highlight blunted exercise-induced cortisol and testosterone responses 

following a period of intensified training. 

 

As a reminder, the incidence overreaching (FOR/NFOR) and the OTS commonly occur 

during an athlete’s competitive career. Morgan et al. (1987) have reported that 60% of female 

and 64% of male elite distance runners have reported being in an overreached/OTS state at 

least once in their career. Birrer et al. (2013) reported similar prevalence rates (60%) of 

overtraining symptoms in mid to long distance runners. The prevalence of these states is not 

isolated to individual endurance sports as highlighted by Matos et al. (2011) who reported that a 

total of 110 out of 376 athletes (29%) from individual and team-sports self-reported symptoms 

associated with overtraining at least once in their career. In conclusion, the prevalence rates of 

overreaching/OTS are high and can have an immense impact on an athlete’s health and 

wellbeing. 

 

Signs of overreaching have been reported to occur within a period as short as 7 days 

(Halson et al., 2002). The early detection of signs of overreaching is important in preventing the 

incidence of an FOR/NFOR/OTS. The early recognition of overreaching is difficult but athletes 

in this state normally experience acute decrements in athletic performance, which is sometimes 

accompanied with increased levels of fatigue together with disturbed mood states (Meeusen et 

al., 2004, Urhausen et al., 1995). For this reason, it has been proposed that the use of a 

performance test should be considered when tracking individuals in danger of overreaching 

(Budgett, 1998, Meeusen et al., 2013, Urhausen et al., 1995). Time-trial tests may be a good 

tool to indicate any alterations in athletic performance when in an overreached state, as 
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significant increases in time to completion have been reported in several studies (Halson et al., 

2002, Halson et al., 2003). Halson et al. (2002) have reported a significant increase in the time 

to complete a simulated time trial performance test (65.3 ± 2.6 min) after a 2-week period of 

intensified training, when compared with a 2-week of normal training (59.4 ± 1.9 min). This time 

trial test involved completing an individualised predefined amount of work, determined by 

multiplying their workload at 75% !̇#2max by 3600 as described by Jeukendrup et al. (1996). 

(Jeukendrup et al., 1996) 

As reported in the previous chapters in this Thesis, overreaching/OTS may be accompanied 

by endocrine dysfunction, the most commonly examined occurring within the HPA and HPG 

axes. Meeusen et al. (2004) were the first to propose that examination of the exercise-induced 

responses of cortisol and its precursor ACTH, could provide an indication of an overreached 

state. These researchers reported blunted exercise-induced responses of these hormones to 

the second of a double cycle to fatigue test separated by a 4 h recovery period when trained 

cyclists were overreached, in comparison to when in a normal-trained, healthy state. Despite 

the interesting findings, the duration of the protocol used by Meeusen et al. (2004) may not be 

suitable to practically apply in an athletic population, and therefore a shorter exercise test could 

be more appropriate. Following on from these studies, Hough et al. (2013) reported exercise-

induced blunted responses of salivary cortisol (~166%) and testosterone (~21%) to a 30-min 

cycle bout following an 11-day period of intensified training suspected to have induced 

overreaching. However, Hough et al. (2015) were not able to reproduce these blunted exercise-

induced salivary cortisol responses following a period of intensified training, when tested in an 

elite male triathlete population. It was proposed that this could be due to the capability of the 

elite athletes to cope with an intensification in training load. 

 

Almost every cell in the human body contains receptors for cortisol, and therefore cortisol 

has a wide-range of functions depending on the cells it is acting upon. One of these actions of 

cortisol is an immunosuppressive effect in the human body (Le Tulzo et al., 2004, Voorhis et al., 

1989). Malm et al. (2004) have reported that a marked decrease in T-lymphocytes (specifically 

CD3+ CD4+ CD8+ and CD3+ CD4- CD8-) and NK cell numbers to two consecutive 45 min football 
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games were associated with an elevation in serum cortisol concentration levels. In addition, 

strenuous exercise of long-duration (~90 min) has also been associated with 

immunosuppression, by reducing circulating lymphocytes, SIgA concentration levels, and 

suppressing NK cell activity (Mackinnon and Hooper, 1994, Pedersen et al., 1996). As 

overtraining is characterized by increased-volume training sessions with limited recovery 

episodes, it has been suggested that immunosuppression may occur in overreached athletes 

and that, therefore preventive measures should be considered (Hackney, 2012). Again, this 

exercise-induced immunosuppression is often associated with elevated cortisol concentrations, 

with consequent inhibition of anti-inflammatory cytokine production (Munck and Guyre, 1991). In 

addition, leucocyte functions such as T-lymphocyte CD4+/CD8+ ratio have been reported to 

drop, although not significantly, in long-distance runners following 3 weeks of intensified training 

(38% increase in training volume) (Verde et al., 1992). These heavy training periods leading to 

a decreased immunity state are associated with an elevated risk of URS. Increased symptoms 

of URS have been reported within the first weeks following marathon and ultra-marathon 

competitive events (Nieman, 2009). It has been recognized that symptoms of URS may arise 

with the occurrence of overreaching. Increased symptoms of URS have been associated with 

decreased concentrations of the marker of mucosal immunity SIgA (Gleeson et al., 1999b, 

Nieman and Nehlsen-Cannarella, 1991). SIgA has been extensively examined in response to 

exercise of different duration and intensity as a marker of immune status (Bishop and Gleeson, 

2009). Acute decreases of SIgA (52%) have been observed in competitive swimmers following 

a 2-hour training session (D'Ercole et al., 2016), as well as following heavy exertion (e.g. 140-

km ultramarathon), with an increase in the susceptibility to URS (Nieman et al., 2006). Previous 

research had already proposed that low levels of SIgA are commonly associated with an 

elevated occurrence of URS (Hanson et al., 1983). However, it is still unclear what the effects of 

overreaching on SIgA are, as increases (Gleeson et al., 2000), decreases (Gleeson et al., 

1999b, Tharp and Barnes, 1990) and no changes (Mackinnon and Hooper, 1994, Tiollier et al., 

2005) have been reported following periods of intensified training. This may be due to the 

different training protocols, exercise duration and intensity, the fitness level of participants, and 

even the method used to express IgA data (Bishop and Gleeson, 2009). However, the 
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fluctuations in SIgA in response to exercise and its association with URS in athletes may be a 

good indicator of mucosal immunity in athletes suspected to be overreached. 

 

Another important indicator of immunity status is phagocytic activity. A decreased phagocytic 

function has been associated with intensified training leading to overreaching, with neutrophil 

activity decreasing independently of unchanged cortisol levels (Robson et al., 1999a). An 

increase in the production of reactive oxygen species following prolonged, high-intensity 

exercise and activation of the immune system have been shown to potentially induce an 

elevation in oxidative stress as reviewed by Bermon et al. (2017) in their latest Consensus 

Statement. In addition, an 80% increase in oxidative stress per cell has been associated with a 

consequent 20% decrease in phagocytic activity in resting samples in female judoists following 

a 20-day pre-competition training period (Yaegaki et al., 2007). 

 

It was hypothesized that a 12-day period of intensified training would be stressful and intense 

enough to induce a state of FOR. The aim of this experimental chapter is to examine the 

exercise induced plasma and salivary cortisol and testosterone responses to the RPEtreadmill 

running bout before and after a 12-day period of intensified training. It is hypothesized that this 

exercise bout may be a suitable tool to highlight blunted exercise-induced hormonal (certainly 

testosterone) responses associated with overreaching. Furthermore, this chapter aims to 

examine the effect of a 12-day training period on immunity. It was hypothesized that after the 

training period, resting and exercise-induced SIgA concentrations and secretion rate will be 

reduced. Resting total whole blood leucocyte and PMN counts, and PMN phagocytic activity are 

also expected to be reduced following the intensified training period compared to before the 

intensified training period. 
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7.2  Methods 

 

7.2.1  Procedures 

 

For this experimental study, 8 healthy young males who exercised at least 3 hours a week 

visited the laboratories on 17 occasions in total. The participant’s anthropometric and 

physiological characteristics at baseline are outlined in Table 7.1 presented below. 

 

Table 7.1 Participants' physiological and anthropometric characteristics at baseline. 
 

 

 

 

 

 

 

 

 

A familiarisation trial was completed at least three days prior to the start of the study to 

acquaint the participants with the exercise bout completed in the main experimental trials. 

Subsequently, each participant completed a main experimental trial on two separate occasions 

(followed by a V̇O&'() test the day after), i.e. before and after a 12-day period of intensified 

training. The V̇O&'() tests were completed to examine if the training period had an influence in 

the fitness level of the participants. During the 12 days of training, all participants completed 

three different exercise sessions in an intercalated manner. This strategy was used to reduce 

the monotony during the training period and the exercise sessions were designed as follows: 

 

Mean ± SD 

Age (years) 21 ± 5 

Height (cm) 178 ± 5 

Body mass (kg) 72.8 ± 6.6 

HRmax (beats·min-1) 187 ± 8 

V̇O&'() (mL·kg-1·min-1) 59 ± 6 

,V̇O&'() (km·h-1) 16.6 ± 2.2 

n = 8 
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A) A 90-min continuous treadmill-run, subdivided in one block of 70 min at 55% of the 

individuals’ vV̇O&'() and one 20-min block at 75% vV̇O&'(). The vV̇O&'() was calculated as 

detailed in 3.2.2 in the methods chapter; 

 

B) A 5-km time-trial; 

 

C) A 70-min, self-paced, continuous treadmill-run at a speed corresponding to an RPE of 12 

(light) on the 6-20 Borg scale for the first 30 min, at 13 (somewhat hard) during the following 30 

min, and at 15 (hard) for the final 10 min. 

 

Each session was completed 4 times over the 12-day period. This training programme was 

designed to increase the participants’ normal training load. All participants completed a training 

diary during a 12-day period of normal training. During the 12-day intensified-training period, the 

TRIMP scores increased by 124% (713 to 1598) and the duration of training by 143% (7 h to 17 

h), when compared to the normal training period. Participants’ body mass, rating of sweat loss, 

HR and RPE were monitored on every training day and water was provided ad libitum. Training 

diaries were completed to monitor the training sessions completed outside the lab environment 

during this period. A 24-h food diary was completed the day before the first main experimental 

trial and replicated in the 24 hours leading up to main trial completed after the training period. 

Participants were required to abstain from exercise, and alcohol and caffeine intake in the 24 

hours preceding each main experimental trial. A schematic presentation of the study design is 

presented in Figure 7.1. 

 

 
 
 
 
 
 
 
 
 
 
Figure 7.1 Schematic presentation of the study design. 
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All main experimental trials started at 11:30. Participants gave a urine sample and sat down 

for the remainder 20 minutes. During this period, a RESTQ-76 Sport questionnaire and a URS 

log using the Jackson score were completed as detailed in the methods section in this Thesis. 

The 30-min running bout, i.e. the RPEtreadmill, started at ~12:00. Saliva and blood samples 

(collection methods detailed in 3.6.1 and 3.7.1, respectively) were collected before, up to 1 

minute after, and 30 minutes after the running bout. Saliva samples were collected immediately 

after blood was drawn. Each main trial ended with the completion of a 10-km time-trial test 

(10TT), which was started 60 minutes after the end of the running bout. This test was used as a 

measure of athletic performance. A schematic presentation of this sequence is outlined below. 

A V̇O&'() test was undertaken the day after each main trial. 

 

 

 

 

 

Figure 7.2 Schematic presentation of each main experimental trial. 
 

 

7.2.2  Maximal Oxygen Uptake Assessment 

 

The protocol used for determination of V̇O&'() is explained in detail in the section 3.2.2 in this 

Thesis. 

 

 

7.2.3  Analytical Procedures 

 

All analytical procedures were detailed in Chapter 3. As a reminder, 3-min unstimulated 

saliva samples and 15 mL of whole blood were drawn Pre-, Post-, and 30 min Post-RPEtreadmill in 

the main experimental trials. In summary, K3EDTA-treated whole blood samples were used for 

10-km TT 

30 min 90 min 60 min 

RESTQ-76 
URTI 

				 		 		 		 		

RPEtreadmill 
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plasma extraction, and isolation of whole blood leucocytes and PMNs. Total leucocytes were 

used for subsequent leucocyte phenotyping, and the harvested PMNs were used for 

examination of phagocytic activity. As a reminder, 50,000 events were acquired for leucocyte 

phenotyping via flow cytometry, and percentage of monoclonal antibody-stained leucocyte 

subsets was examined. 

 

 Saliva samples were weighed to the nearest milligram and saliva volume was estimated 

assuming saliva density to be 1.0 g.mL-1 (Cole and Eastoe, 1988). From this, saliva flow rate 

was determined by dividing the sample volume by the collection time, and SIgA secretion rate 

was subsequently calculated by multiplying the obtained concentration by saliva flow rate. 

 

 

7.2.4  Statistical Analysis 

 

Data were checked for normality (Shapiro-Wilk test) and homogeneity of variance. If 

normality was not achieved, logarithmic transformations of base 10 were performed on the data 

prior to re-assessment of normality. When logarithmic data sets violated normality (saliva flow 

rate, haemoglobin, whole blood leucocyte counts, CD19 B-cells, CD11c+ dendritic cells and 

phagocytosis data), multiple Wilcoxon signed rank tests were completed on the original data to 

compare Pre-, Post-, and 30 min Post-Exercise at Pre- and Post-Training. Logarithmic data sets 

were used for the examination of salivary cortisol, SIgA, γδ T-lymphocytes, CD4+/CD8+ ratio, 

and NK cells. A one-way (trial) repeated measure ANOVA with Bonferroni adjustments was 

applied to urine osmolality, RESTQ-76 Sport, !̇#2max and 10-km time-trial data. The URS 

questionnaires were analysed with Student’s paired sample t test (Pre-Training vs. Post-

Training for each scale). A two-way (trial x time) repeated measures ANOVA was used with 

Bonferroni corrections on all other variables. For all comparisons where the assumption of 

sphericity was violated, Greenhouse-Geisser corrections were used. When required, Student’s 

paired sample t tests were used. The HR and speed data were examined over time at the end 
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of each 1 min and 4 min stages, and average HR and speed for trial (Pre- and Post-Training) 

were determined taking into account the duration of each stage (i.e. ((average of data in the 1 

min stages x 6) + (average of data in the 4 min stages x 24))/30). The presented effect sizes 

were calculated by hand, by dividing the difference between the means of the groups by the 

pooled SD (Cohen, 1988). Statistical significance was accepted at p < 0.05. All data were 

presented as mean ± SD unless stated otherwise. 
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7.3  Results 

 

Post-hoc power analysis demonstrated that the observed power for plasma cortisol and 

testosterone was 0.457 and 0.980, respectively. The observed power for salivary cortisol and 

testosterone was 0.550 and 0.694, respectively. The SIgA analyses showed an observed power 

of 0.637, whereas SIgA secretion rate showed an observed power of 0.414. Phagocytic function 

analysis showed an observed power of 0.930. 

 

 

7.3.1  Hydration Status 

 

Urine osmolality did not differ across all trials and was 345 ± 198 mOsmol·kg-1 H2O Pre-

Training and 301 ± 166 mOsmol·kg-1 H2O Post-Training (p > 0.05). 

 

 

7.3.2  Recovery-Stress Questionnaire 

 

There is a trial effect when comparing Pre- to Post-Training in the General Stress (F1,7 = 

7.083, p < 0.05) and in the Sport Stress scales (F1,7 = 7.250, p < 0.05), with an increase of these 

scales at Post-Training, compared to Pre-Training (Figure 7.3). Further examination shows 38% 

greater scores on the subscale Injury at Post-Training (p < 0.01) (Figure 7.4). 
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Figure 7.3 RESTQ-76 Sport scores before and after a 12-day period of intensified training. 
Values are means ± SD. 
*Different from Pre-Training (p < 0.05). 
 

 

 
Figure 7.4 RESTQ-76 Sport scores in all subscales. 

Values are means ± SD. 
*Different from Pre-Training (p < 0.01). 
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7.3.3  Upper Respiratory Symptoms (URS)  

 

There are no differences in average URS scores when comparing Pre- with Post-Training in 

any of the URS scales (p > 0.05), apart from the Headaches scale, in which increased scores 

were observed Post-Training, compared to Pre-Training (p < 0.01) (Figure 7.5). However, 5 

individuals have reported increased URS, from which 3 have reported more severe symptoms 

after the 12 days of intensified training (Figure 7.6). 

Figure 7.5 Average upper respiratory symptoms (URS) scores at Pre- and Post-Training. 
Values are means ± SD. 
*Different from Pre-Training (p < 0.01). 
 

 

 

 

 

 

 

 

 

 

Figure 7.6 Sum of individual upper respiratory symptoms (URS) scores at Pre- and Post-
Training. 
P# refers to participant number. 

0.00

1.00

2.00

3.00 Pre-Training

Post-Training

*

Av
er

ag
e 

sc
or

es

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4 P5 P6 P7 P8

Pre-Training

Post-Training

Su
m

of
 U

R
S 

sc
or

es



 Chapter 7: Endocrine and Immune Impairments After Intensified Training 
 

 155 

7.3.4  Physiological Responses to Exercise 

 

There was no trial effect when comparing HR responses (F1,7 = 1.326, p = 0.29) or speed 

(F1,7 = 0.279, p = 0.61) across time at Pre- and Post-Training. !̇#2max was also unaffected by the 

training period (F1,7 = 0.013, p = 0.91), being 59 ± 6 mL·kg-1·min-1 and 59 ± 7 mL·kg-1·min-1 

before and after the 12 days of training, respectively. 

 

Average HR for trial was 154 ± 15 beats·min-1 at Pre-Training and 150 ± 18 beats·min-1 at 

Post-Training. Heart rate responses to each stage during the RPEtreadmill is presented in Figure 

7.7. 

 

 

 

 

 

 

 

 

 

Figure 7.7 Heart rate responses during the RPEtreadmill at Pre- and Post-Training. 
Values are means ± SD. 
 

 

Average speed for trial was 12.0 ± 2.9 km·h-1 at Pre-Training and 12.2 ± 2.5 km·h-1 at Post-

Training. Average speed at each stage during the RPEtreadmill is presented in Figure 7.8. 
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Figure 7.8 Average speed at each stage during the RPEtreadmill at Pre- and Post-Training. 
Values are means ± SD. 
 

 

7.3.5  10-km Time Trial Performance Test 

 

There was no trial effect when comparing the time to completion in 10-km time-trial at Pre- 

and Post-Training (F1,5 = 0.356, p = 0.577) (Figure 7.9). Although the difference in time to 

completion was not significant, time to completion was 1:21:04 ± 00:39:39 (min:s:ms) higher at 

Post-Training (p > 0.05), with ES = 0.3. 

 

 

 

 

 

 

 

 

Figure 7.9 Time to completion in 10-km time-trial test. 
Values are means ± SD. 
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7.3.6  Hormonal Responses to Exercise 

 

a) Plasma Cortisol 

 

No trial effect (F1,7 = 0.564, p = 0.48), or time effect (F2,6 = 0.553, p = 0.09) was found (Figure 

7.10). Absolute change from Pre- to Post-Exercise was -41.7 nmol·L-1 (-14%) Pre-Training, and 

31.7 nmol·L-1 (+15%) Post-Training (Figure 7.11). Plasma cortisol showed to be individualised 

with individual absolute changes ranging between -88.5 nmol·L-1 and +169.5 nmol·L-1. The 

effect size for the plasma cortisol responses was h2 = 0.553. 

 

 

b) Salivary Cortisol 

 

No trial effect was found (F1,7 = 0.042, p = 0.84). However, a time effect was found (F2,6 = 

6.854, p < 0.05), with salivary cortisol decreasing from Post- to 30 min Post-Exercise at Pre-

Training (Figure 7.10). Absolute change from Pre- to Post-Exercise was -0.5 nmol·L-1 (0%) Pre-

Training, and 2.3 nmol·L-1 (+46%) Post-Training (Figure 7.11). Salivary cortisol also showed to 

be very individualised with absolute changes ranging between -8.0 nmol·L-1 and +19.2 nmol·L-1. 

The effect size for the salivary cortisol responses was h2 = 0.609. 

 

Pearson’s correlation coefficient revealed that the exercise-induced salivary cortisol 

correlated strongly with its plasma measures (r = 0.836, p = 0.005). 
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Figure 7.10 Plasma and salivary cortisol at Pre- and Post-Training. 
Values are means ± SD. 
*Different from Pre-Exercise values Pre-Training (p < 0.01). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.11 Absolute change from Pre- to Post-Exercise in plasma and salivary cortisol at 
Pre- and Post-Training. 
Values are means ± SD. 
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c) Plasma Testosterone 

 

No trial effect was found (F1,7 = 1.692, p = 0.24). However, a time effect was observed (F2,6 = 

16.882, p = 0.003), with plasma testosterone acutely elevating from Pre- to Post-Exercise at 

Pre-Training only (Figure 7.12). Absolute change from Pre- to Post-Exercise decreased from 

4.6 nmol·L-1 (43%) at Pre-Training to 1.9 nmol·L-1 (19%) at Post-Training (Figure 7.13). The 

effect size for the plasma testosterone responses was h2 = 0.849. 

 

 

d) Salivary Testosterone 

 

No trial effect was found (F1,7 = 0.108, p = 0.75). However, a time effect was found (F2,6 = 

6.854, p < 0.05), with salivary testosterone elevating from Pre- to Post-Exercise at Pre-Training 

only (Figure 7.12). Absolute change in salivary testosterone decreased from 227.8 pmol·L-1 

(55%) at Pre-Training to 105.3 pmol·L-1 (24%) at Post-Training (Figure 7.13). The effect size for 

the salivary testosterone responses was h2 = 0.683. 

 

Pearson’s correlation coefficient revealed that the exercise-induced salivary testosterone 

moderately correlated with its plasma measures (r = -0.514, p = 0.124). 
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Figure 7.12 Plasma and salivary testosterone at Pre- and Post-Training. 
Values are means ± SD. 
*Different from Pre-Exercise values at Pre-Training (p < 0.01). 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13 Absolute change from Pre- to Post-Exercise in plasma and salivary testosterone 
at Pre- and Post-Training. 
Values are means ± SD. 
*Different from Pre-Exercise values at Pre-Training (p < 0.01). 
†Different from Pre-Training values (p < 0.05). 
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7.3.7  Salivary Immunoglobulin A (SIgA) 

 

No trial (F1,7 = 0.181, p = 0.68) or time effect were observed (F1,7 = 1.989, p = 0.17), with 

SIgA remaining unchanged at Pre-Training and Post-Training (Figure 7.14). Saliva flow rate and 

SIgA secretion rate were both unaffected by exercise or training period (p > 0.05 in all). The 

SIgA secretion rate is presented in Figure 7.15. The effect sizes for the SIgA concentration and 

secretion rate were h2 = 0.655 and h2 = 0.524, respectively. 

 

 

 

 

 

 

 

 

 

Figure 7.14 SIgA responses at Pre- and Post-Training. 
Values are means ± SD. 

 

 

 

 

 

 

 

 

 

 

Figure 7.15 SIgA secretion rate over time at Pre- and Post-Training. 
Values are means ± SD. 

S
Ig

A
 (m

g.
L-

1 )

50

70

90

110

130

150

170

190

210

Pre-Exercise Post-Exercise 30 min Post-
Exercise

Pre-Training

Post-Training

0

10

20

30

40

50

60

70

80

Pre-Exercise Post-Exercise 30 min Post-
Exercise

Pre-Training

Post-Training

S
Ig

A
 s

ec
re

tio
n 

ra
te

  (
μg

. m
in

-1
)



 Chapter 7: Endocrine and Immune Impairments After Intensified Training 
 

 162 

7.3.8  Total Leucocytes and Polymorphonuclear Leucocytes 

 

Total whole blood leucocytes were unaffected by exercise or the training period (p > 0.05 in 

all) (Figure 7.16). However, an exercise-induced mobilisation of PMN numbers was seen at 

Post-Training (p < 0.05) (Figure 7.17). Average cell numbers are presented in Table 7.2. 

 

 

 

 

 

 

 

 

 

Figure 7.16 Total whole blood leucocyte counts. 
Values are means ± SD. 
 

 

 

 

 

Figure 7.17 Total polymorphonuclear leucocyte (PMN) counts. 
Values are means ± SD. 
*Different from Pre-Exercise values at Post-Training (p < 0.05). 
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7.3.9  Leucocyte Phenotyping 

 

The 12-day training period had no effect on any of the leucocyte populations at rest (p> 

0.05). Yet, exercise had an effect on γδ T-lymphocytes by acutely increasing its circulating 

levels by 3.1% to 9.2%, and on CD19 B-lymphocytes by decreasing its levels from 6.4% to 

4.6% at Pre-Training (p < 0.05). Post-Training, percentage of circulating CD56 NK cells has 

acutely elevated (p < 0.05). 

 

Haematological parameters (i.e. haemoglobin, haematocrit and plasma volume) did not alter 

with exercise or training (p > 0.05), apart from an exercise-induced increase in haemoglobin 

observed at Post-Training (p < 0.05). Table 7.2 presented below outlines all haematological 

data, total leucocytes and PMN counts, and leucocyte subset percentages in a 50,000-cell 

population. 
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Table 7.2 Haematological, total and differential leucocyte counts and leucocyte phenotyping at Pre- and Post-Training. 
 
 

 

 

 Pre-Training Post-Training 

 Pre-Exercise Post-Exercise 30 min Post Pre-Exercise Post-Exercise 30 min Post 

General haematology 

Haematocrit (%) 44 ± 1 44 ± 2 43 ± 1 44 ± 1 44 ± 2 42 ± 2 

Haemoglobin (g·L-1) 152 ± 3 155 ± 4 151 ± 4 148 ± 6 153 ± 6** 151 ± 11 

Plasma volume (%) 56 ± 1 56 ± 2 57 ± 1 57 ± 1 56 ± 2 58 ± 2 

Leucocyte counts 

Total (x 106·mL-1) 3.6 ± 0.9 3.4 ± 0.7 3.4 ± 0.5 3.4 ± 0.2 3.4 ± 0.3 3.4 ± 0.3 

PMNs (x 106·mL-1) 1.9 ± 0.5 2.2 ± 0.5 2.1 ± 0.6 1.9 ± 0.5 2.4 ± 0.5** 2.0 ± 0.8 

Leucocyte phenotyping (% in 50,000 events) 

γδ T-lymphocytes 3.1 ± 3.8 9.2 ± 14.3* N/A 8.5 ± 15.1 8.8 ± 15.5 N/A 

CD4+ 28.9 ± 6.6 23.1 ± 10.9 N/A 27.9 ± 9.1 24.3 ± 8.0 N/A 

CD8+ 23.8 ± 8.6 21.9 ± 12.8 N/A 19.4 ± 7.1 21.5 ± 8.9 N/A 

CD4+/CD8+ 1.3 ± 0.3 1.2 ± 0.3 N/A 1.6 ± 0.7 1.3 ± 0.8 N/A 

CD19+ B-cells 6.4 ± 3.1 4.6 ± 3.0* N/A 5.0 ±2.0 4.4 ± 2.2 N/A 

CD56+ NK cells 1.8 ± 2.3 1.9 ± 2.2 N/A 1.6 ± 1.2 2.4 ± 1.9** N/A 

CD11c+ 8.3 ± 4.5 9.3 ± 5.1 N/A 5.0 ± 3.5 9.4 ± 7.9 N/A 

CD15+ 55.7 ± 27.6 46.6 ± 32.6 N/A 55.8 ± 30.5 71.0 ± 22.6 N/A 

PMN – Polymorphonuclear leucocytes; CD4+ - Helper T-cells; CD8+ - Cytotoxic T-cells; CD11c+ - Dendritic cells; CD15+ - 
Neutrophils. Values are means ± SD. 
*Different from Pre-Exercise values at Pre-Training (p < 0.05). 
**Different from Pre-Exercise values at Post-Training (p < 0.05). 
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7.3.10  Phagocytic Function 

 

An exercise-induced 20% decrease in phagocytic function was observed at Pre-Training (p < 

0.05). In addition, baseline phagocytic function was reduced by 47% Post-Training, when 

compared to Pre-Training (p < 0.05) (Figure 7.18). The effect size for the PMN phagocytic 

function was h2 = 0.742. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18 Phagocytic activity of zymosan-stimulated PMNs at Pre- and Post-Training. 
Values are means ± SD. 
*Different from Pre-Exercise values at Pre-Training (p < 0.05). 
†Different from Pre-Training values (p < 0.05). 
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7.4  Discussion 

 

The main findings of this study were that plasma and salivary cortisol were unaffected in 

response to the RPEtreadmill when completed before and after the 12-day training period. There 

was no significant elevation of testosterone (saliva or plasma) to the RPEtreadmill Post-Training, 

while the RPEtreadmill caused and acute elevation in the hormone Pre-Training. Mucosal 

immunity, measured by SIgA concentration levels and secretion rate analysis was unaffected by 

exercise or training. However, a tendency for increased URS symptoms was found (Post-

Training when compared with Pre-Training. A 197% acute elevation of γδ T-lymphocytes was 

shown Pre-Training. However, unchanged responses were observed Post-Training. CD56 NK 

cells have acutely elevated by 50% Post-Training, but no change was observed Pre-Training. 

Baseline phagocytic function significant decreased by 47% Post-Training, when compared to 

Pre-Training. 

 

Increased scores of General-, and Sport-related stress were observed after the training 

period when compared to Pre-Training, with further examination showing higher scores on the 

‘Fitness/Injury’ subscale. These scores were calculated by adding together the responses to the 

four statements: ‘Parts of my body were aching’; ‘My muscles felt stiff or tense during 

performance’; ‘I had muscle pain after performance’; and ‘I felt vulnerable to injuries’. Hough et 

al. (2013) used a shorter version of the recovery-stress questionnaire used in this study 

(RESTQ-56) and have reported elevated scores of Burnout and Fatigue in overreached 

individuals following an 11-day cycling training period. In this study, despite the greater scores 

in the stress-related scales and perceived susceptibility to injuries, the athletic performance 

levels were unaffected. A 10-km time-trial test was completed before and after training, and no 

statistically significant differences were observed in time to completion when comparing Pre- to 

Post-Training. These results suggest that the increased psychological and social stress levels 

did not influence athletic performance. However, detailed examination of the data shows that 

time to completion was 1:21:04 ± 00:39:39 (min:s:ms) higher at Post-Training compared to Pre-
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Training. Cohen’s ES was calculated and was 0.3. Although this ES represents small 

differences, as proposed by Cohen (1988), it is recognized that a difference of this magnitude 

may be considered an impactful difference in athletic performance. 

 

No differences in any of the physiological characteristics examined have been observed, with 

HR and speed in the RPEtreadmill being similar at Pre- and Post-Training. In addition, !̇#2max was 

also unaffected, which suggests that any differences that may be seen in endocrine or immune 

markers have not been influenced by physiological stress or fitness level. Furthermore, these 

findings also suggest that the RPEtreadmill was of similar intensity before and after training, and 

consequently the imposed exercise-induced stress was also analogous. 

 

Hough et al. (2013) reported a 166% and 21% blunted exercise-induced salivary cortisol and 

testosterone responses, respectively after completion of 11 days of intensified aerobic training 

(cycling) in physically active, young and healthy males. It has been proposed that exercise of > 

60% !̇#2max for at least 20-30 min is required for cortisol levels to acutely increase (Davis et al., 

1991). This present study shows an absolute change of -41.7 nmol·L-1 (-14%) Pre-Training, with 

individual absolute changes ranging from -88.5 nmol.L-1 to +169.5 nmol.L-1. A similar response 

of salivary cortisol was shown, with concentrations being significantly lower at 30-min Post-

Exercise, compared to Post-Exercise. Individual acute responses of salivary cortisol range 

between -8.0 to 19.2 nmol.L-1. However, plasma and salivary cortisol increase from Pre- to 

Post-Exercise at Post-Training (although not significantly) by 15% and 40%, respectively. As the 

previous chapter confirmed the reproducible character of cortisol to the RPEtreadmill, this opposite 

response of cortisol Post-Training may be due to increased stress levels associated with a 

period of intensified training. It has been suggested that one of the HPA patterns during 

exercise and psychological chronic stress may be a hyperresponsiveness of the pituitary gland 

inducing a higher secretion of ACTH levels with concomitant elevated levels of circulating 

glucocorticoids (Aguilera, 1994). However, this study shows significantly lower resting levels of 

plasma cortisol, which have also been previously reported as an effect of a 6-week, 6 days a 

week training programme in trained cyclists (Lehmann et al., 1993). These lower levels of 
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resting circulating cortisol levels were suggested to be due to an exhaustion of the adrenal 

gland, observed in professional cyclists over the course of a 3-week tour race (Lucia et al., 

2001). However, it has been recognized that examination of resting levels of cortisol may not be 

ideal when highlighting overreaching/OTS as incongruent results have been reported to date, 

and therefore should not be taken as a marker of overreaching (see Table 2.2, section 2.3.5 b). 

As a reminder, the RPEtreadmill is composed of 6 blocks of 1 min at an RPE of 11 (light), and 6 

blocks of 4 min at 15 (hard) continuously intercalated. Although it was designed to include 24 

min of hard running exercise, the RPEtreadmill is a self-paced, running bout based on self-

perception of exertion using the 6-20 Borg scale. All participants in this study had a high fitness 

level (59 ± 6 mL.kg-1.min-1). Detailed examination of the average running speeds in the Pre-

Training trial (12.0 ± 2.9 km.h-1) may suggest that perhaps the RPEtreadmill may not have been 

stressful enough to induce an acute elevation in plasma and salivary cortisol, as hypothesized 

based on the findings from Hough et al. (2011) and Hough et al. (2013). However, plasma and 

salivary testosterone both showed to significantly elevate in response to the RPEtreadmill before 

the training period. This exercise-induced elevation of testosterone has been associated with a 

concomitant elevation in serum LH, both reported to acutely respond to 20 min of progressive 

maximal intensity exercise (Cumming et al., 1986). In addition, the absolute change in plasma 

testosterone presented in this study showed to be blunted with absolute changes of 4.6 nmol.L-1 

(43%) at Pre-Training, and 1.9 nmol.L-1 (19%) at Post-Training. Absolute change in salivary 

testosterone, although not significantly different, was 227.8 pmol.L-1 (55%) at Pre-Training, and 

105.3 pmol.L-1 (24%) at Post-Training. This is in line with the findings from Hough and 

colleagues (2013 & 2015), who have reported a 21% and 44% blunted salivary testosterone 

response following an 11-day period of training and a 10-day training camp in healthy male 

individuals and male elite triathletes, respectively. Cumming et al. (1983) reported that 

dysfunctional gonad production of testosterone could be associated with high levels of cortisol 

in the circulation. This was proposed following drug administration- (insulin or hydrocortisone) 

induced hypercortisolism, resulting in an acute increase of cortisol occurring alongside with a 

depressed response of testosterone, perhaps due to an inhibitory effect of cortisol upon the LH 

receptors present in the Leydig cells in the testes. This mechanism may explain the results 
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found in this present study, where elevated exercise-induced plasma cortisol at Post-Training, 

was associated with a blunted plasma testosterone response.  

 

It has been proposed that temporary mucosal immune deficiencies are associated with an 

increased susceptibility to experience URS (Tomasi et al., 1982). This has been supported by 

several studies (Fahlman and Engels, 2005, Gleeson et al., 1999a, Gleeson et al., 1999b, 

Novas et al., 2003). In this study, SIgA concentrations and secretion rate were both unaffected 

by exercise or training. This may be due to the fitness level of the participants who have 

completed this present study. In a cohort of 54 competitive swimmers a 52% decrease in SIgA 

was observed after a 2-hour training session (D'Ercole et al., 2016). However, D’Ercole et al. 

(2016) reported no changes in SIgA in 69 non-competitive swimmers following a similar training 

session. Low levels of SIgA have been suggested to be related to a decreased saliva flow rate 

and, consequently considered as a potential risk factor in increasing the incidence of URS 

(Gleeson et al., 2012, Gleeson and Bishop, 2013). Although low levels of SIgA may be 

expected following periods of intensified training (Fahlman and Engels, 2005, Gleeson et al., 

2012, Gleeson et al., 1999b, Neville et al., 2008), research has shown that this is not always the 

case. Significant increases in resting (peak increase was ~100%) and exercise-induced (peak 

increase was ~50%) SIgA have been reported over a 12-week training programme in elite 

swimmers, with the researchers proposing that perhaps the 12-week training period may not 

have been of sufficient duration to examine the hypothesized low levels of mucosal immunity, 

specifically SIgA (Gleeson et al., 2000). In contrast, Tiollier et al. (2005) have reported 

unchanged SIgA levels after a 3-week period of high-intensity, military combat-like training. The 

different findings reported so far, including the results from this present study, may be due to the 

different training protocols, exercise duration and intensity and the fitness level of participants 

(Bishop and Gleeson, 2009). These authors also suggest that the reported inconsistent findings 

may be partially due to the different methods used to report IgA data. SIgA data may be 

erroneously interpreted if saliva flow rate is not determined, as a decrease in saliva volume has 

been associated with exercise (Bishop et al., 2000, Walsh et al., 1999). In addition, Bishop and 

Gleeson (2009) suggest that perhaps determination and examination of SIgA secretion rate 
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may be more appropriate, as it takes into account saliva flow rate, calculated from sample 

volume and collection time. Concluding, the fluctuations in SIgA in response to exercise and its 

association with URS in athletes may be a good indicator of mucosal immunity in athletes 

suspected to be overreached. With this in mind, although no changes in SIgA have been 

observed in this study, there was a propensity for a slight exacerbation of the symptoms 

consistent with airway inflammation Post-Training compared with Pre-Training. Individual 

examination of URS indicates that 5 participants have experienced increased URS, from which 

3 have reported considerably higher symptoms at Post-Training when compared to before the 

training period. However, and despite the more frequent and statistically significant increased 

headaches experienced by the participants Post-Training, this alone is not a strong indicator of 

the existence of respiratory infection or illness. Moreover, these data reinforce that extrapolating 

data from small cohorts may lead to wrongful conclusions, and therefore potentially providing 

unreliable URS data. 

 

It has been well established that leucocytosis may occur in response to exercise and that the 

magnitude of leucocytosis (total and differential) will depend on the exercise intensity and 

duration (McCarthy and Dale, 1988, Sand et al., 2013). Whole blood leucocyte numbers have 

been reported to markedly elevate by ~65% in healthy male and female individuals in response 

to a self-paced running test to exhaustion (time to completion was 60-90 min), explained by a 

97% significant elevation in PMNs, but no change in lymphocyte numbers (Risøy et al., 2003). 

Unexpectedly, total leucocyte counts did not alter acutely in response to exercise or when 

comparing Pre- with Post-Training. To the author of this Thesis knowledge, only one study has 

reported no changes in total circulating leucocytes in response to exercise. This referred study, 

was completed on 37 individuals who completed a graded exercise test to exhaustion in a 

motorized treadmill where the speed and gradient were increased every 3 min (Wardyn et al., 

2008). Wardyn et al. (2008) report that it is unclear why this inexistent leucocytosis is present 

and speculate that this irresponsiveness not seen in other studies may be due to the different 

exercise stimulus used in the different studies. As for the present experimental chapter, total 

leucocytes were isolated from whole blood samples using a 1x RBC lysis buffer (the incubation 
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times were respected and replicated every time) and the harvested leucocytes were counted 

using a handheld cell counter. Interestingly, Wardyn et al. (2008) reported a significant increase 

in haemoglobin in the individuals. The present study also shows a significant increase in 

haemoglobin from Pre-Exercise at Post-Training. Haemoglobin levels have been reported to 

increase to 30 minutes of cycling at 65% V̇O&'()	 (Bruunsgaard et al., 1997). This may be due 

mainly due to haemoconcentration (a decrease in plasma volume in relation to red blood cells) 

due to intracellular fluid shifts and fluid lost with sweating (Wasserman et al., 1987). When 

considering the differential blood counts, it was hypothesized that neutrophils would significantly 

elevate in response to the RPEtreadmill when in a healthy state, and that exercise-induced 

neutrophilia would be greater following a period of intensified training. Again, no significant 

changes were found in exercise-induced PMNs from whole blood at Pre-Training, but a modest 

16% percentage increase was seen. However, a significant 26% acute elevation was shown 

after the 12 days of training. PMNs are a class of leucocytes also referred to as granulocytes, 

and therefore include basophils, eosinophils and neutrophils, the latter accounting for the 

majority (~90%) of PMNs (Gleeson, 2006a). However, no significant differences were found 

when examining the percentage of granulocytes expressing CD15, which are likely to be 

neutrophils. This increase in PMNs at Post-Training may be due to a more marked elevation in 

eosinophils and basophils numbers than neutrophils. Basophil and eosinophil circulating 

numbers have been shown to elevate by ~61% and ~ 36%, respectively in healthy adolescents, 

following a 6-min cycling bout at 80-90% HRmax (Schwindt et al., 2007). However, neutrophil 

numbers have been extensively reported to elevate in response to exercise of different duration 

and intensity (Anane et al., 2009, Nieman et al., 1994, Pedersen, 1991, Ronsen et al., 2001). In 

this study, although not significantly, the percentage of CD15+ cells examined in a population of 

50,000 cells increased by 27%. Therefore, the increase in PMNs reported after the 12-day 

period of intensified training in this study may be due to an increase in the circulating numbers 

of neutrophils as well. 

 Previous research has shown that an exercise-induce increase in total circulatory leucocytes 

may be attenuated with regular exercise (Blannin et al., 1996), presumably by reducing the 

physical stress and fatigue levels provoked by the exercise bout itself (Vrabas et al., 1999). 
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Blannin et al. (1996) has demonstrated that endurance trained individuals (!̇#2max was 61 ± 9 

mL·kg-1·min-1) had lower neutrophil counts when compared to sedentary individuals (!̇#2max was 

37 ± 7 mL·kg-1·min-1). In addition, albeit neutrophil counts elevated in response to a 15 min 

submaximal cycling test in both groups, this change was significantly less accentuated in the 

trained individuals. All participants in this study presented a good fitness level (average !̇#2max 

was 59 ± 6 mL·kg-1·min-1) and exercised regularly. It may be reasonable to suggest that 

perhaps the modest increase in PMNs at Pre-Training may be due to the fitness level of the 

participants, and that a greater neutrophilia occurred as an effect of increased stress levels after 

the 12 days of training. In addition, the unchanged levels of total leucocytes and PMNs at 30 

min Post-Exercise may be due to the previously reported return of leucocyte counts to baseline 

levels within 30 minutes of exercise cessation (McCarthy et al., 1992b).  

 

The resting CD4+/CD8+ ratio has been proposed to fall (although not significantly) in 

endurance-trained runners who underwent a 3-week period of intensified training (Verde et al., 

1992). The present study did not show any changes in either resting, or exercise-induced 

CD4+/CD8+ ratio. Anane et al. (2009) have been the first to identify the cytotoxic γδ T-

lymphocytes as stress responsive cells (either psychological or physical stress). The authors 

reported a significant elevation in this cell population to an acute speech stress task (~50% 

elevation) and to a 16-min cycling test at 85% +̇,-. (~200% elevation), in combination with 

increased numbers of NK (CD3-CD56+) cells (~200% and ~900%, respectively) and CD8+ T 

cells (~100% change to exercise only). No change was reported in B cells or CD4+ T cells. This 

present study has shown a significant elevation in cytotoxic γδ T-lymphocytes of 197% from 

Pre- to Post-Exercise at Pre-Training, which is in line with the stress responsiveness firstly 

reported by Anane et al. (2009). Also before the training period, there was an exercise-induced 

reduction in CD19+ B-cells of 28%. B-lymphocytes isolated through the CD19 antigen (Funderud 

et al., 1990) have been shown to be unaffected after a 120 min treadmill-run bout at 65% !̇#2max 

(Shek et al., 1995) or after eccentric one-legged exercise (Palmø et al., 1995). In contrast, 

Bruunsgaard et al. (1997) have reported an increased proliferation of CD19+ cells to 30 minutes 



 Chapter 7: Endocrine and Immune Impairments After Intensified Training 
 

 173 

of cycling at 65% V̇O&'()	. These contrasting findings are inconclusive as to understanding the 

responsiveness of CD19+ B-cells to exercise. However, lymphocyte concentrations, including 

CD19+, have been reported to rapidly decrease in the recovery period following high-intensity 

(>75% V̇O&'()	), long-duration (> 1 h) exercise (McCarthy and Dale, 1988). 

 

Although most lymphocyte populations are known to increase in the circulation in response 

to strenuous exercise, NK cells have been reported to be the population that shows a more 

marked increase during/after high-intensity, long–duration exercise (Anane et al., 2009, Gabriel 

et al., 1991, Pedersen, 1991, Shek et al., 1995). Pre-Training, exercise did not have an effect 

on NK cell numbers. A study performed on trained and sedentary individuals who underwent an 

incremental cycling test to exhaustion has reported similar results, with no changes in the 

absolute number of NK cells (Brahmi et al., 1985). However, the 12 days of training had an 

effect on the CD56+ NK cells, with this population increasing by 50% from Pre- to Post-Exercise 

when compared to Pre-Training. This finding is in contrast with common findings from previous 

research, showing decreased total CD56 NK cells in elite swimmers being observed over the 

course of a winter training season (Rama et al., 2013). Considering an elevation in overall 

stress in the participants occurring during the 12 days, this increased percentage of NK cells in 

the circulation may be considered as an adaptive effect caused by the training period.  

 

A marked effect that overreaching has in immunity is a decreased neutrophil function. 

Robson et al. (1999a) has observed that athletes who were overreached following a period of 

intensified training have shown substantial decrements in neutrophil function, independent of 

cortisol responses. Supporting these findings, Yaegaki et al. (2007) have reported an 80% 

increase in oxidative stress per cell at rest occurring after 20 days of intensified training in 

preparation for a competition in association with a subsequent 20% decrease in phagocytic 

activity. The present study shows a 20% decrease in PMNs phagocytic function in response to 

the RPEtreadmill occurring at Pre-Training. Similar findings have been shown in 18 healthy male 

individuals who completed an exercise session at 55% V̇O&'()	for up to 3 hours, with indices of 
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decreased neutrophil function regardless of an elevation in circulating neutrophils (Robson et 

al., 1999b). In parallel with the findings from Robson et al. (1999a) and Yaegaki et al. (2007) the 

current study has shown that the 12-day intensified-training period has induced a significant 

47% decrease in phagocytic function when at rest. This is an impactful finding as it reinforces 

the negative effects that intensified periods of training with limited recovery may have in 

immunity. 

 

In conclusion, it has been hypothesized that the 12 days of training would be stressful enough 

to induce a state of overreaching in the participants and that this would be supported by a 

blunted response of plasma and salivary cortisol and testosterone responses to the RPEtreadmill. 

Plasma and salivary cortisol did not show to acutely elevate to the RPEtreadmill at Pre-Training, 

and these responses were certainly not blunted as hypothesized following on the findings from 

Hough et al. (2013) and Hough et al. (2015). As Chapter 6 has confirmed that cortisol and 

testosterone are reproducible in response to the RPEtreadmill, the results from this present study 

may suggest that either the RPEtreadmill is not intense enough to induce an acute elevation of 

cortisol concentration levels, which will therefore not show the expected blunted response when 

overreached, or the cortisol may not be an ideal endocrine marker to be used to highlight 

overreaching due to its anecdotal nature and intra-individual variability. In contrast, plasma and 

salivary testosterone have shown to consistently acutely elevate to the RPEtreadmill, with blunted 

plasma and considerably lower saliva (although not significant) values occurring at Post-

Training. With this in mind, the responses observed in plasma and salivary testosterone and its 

more reliable character suggest that perhaps this may be a more reliable indicator of a HPG 

dysfunction associated with overreaching. In addition, albeit SIgA was unaffected by exercise or 

period of training, increased symptoms consistent with URS have been observed in some 

participants, with headache symptoms being significantly higher at Post-Training, compared 

with Pre-Training. Increased scores of general stress and sport stress in the RESTQ-76 Sport 

after the 12 days also suggest that perhaps the training period may have induced overreaching 

in the participants. As reported by Anane et al. (2009) who for the first time have proposed that 

γδ T-lymphocytes are stress responsive cells, this present study has also shown a significant 
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197% exercise-induced increase in this leucocyte population at Pre-Training. A significant 47% 

decrease in the capability of PMNs (mainly neutrophils) to undergo phagocytosis suggests that 

the training period designed in this experimental chapter induced detrimental effects in immunity 

associated with overreaching. In conclusion, the training period in this study may have induced 

a state of overreaching. Additionally, testosterone may be a suitable endocrine biomarker to 

highlight the early incidence of overreaching, and certainly the RPEtreadmill may be a suitable tool 

to be used to examine these exercise-induced responses of testosterone when tracking 

individuals at risk of suffering from overreaching in an attempt to reduce the incidence of OTS. 

Future studies may require the completion of a recovery period to help confirm overreaching 

(certainly FOR) was achieved. 
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This present chapter discusses the novelty of the data reported and its applications in the 

field of sport and exercise science. The sequence of studies presented in the experimental 

Chapters 4 to 7 were designed to examine the effects of short-duration (30 min), high-intensity 

exercise on the acute plasma and salivary cortisol and testosterone responses (Chapters 4-7), 

the effects of water consumption in the 10 min period before saliva sampling on the salivary 

cortisol and testosterone concentration levels (Chapter 4), the confirmation of the reproducibility 

of salivary hormone responses to a cycling test designed by Hough et al. (2011) to highlight 

overreaching, and the design and development of a self-paced, short-duration running test to be 

practically used in the field as a tool to highlight the onset of overreaching in an athletic 

population (Chapters 6 and 7). The final experimental chapter (Chapter 7) also examines the 

effects of a period of intensified-training (12 days) on several parameters of immunity status. 

The main aim of this Thesis was to develop a running test capable of highlighting abnormal 

endocrine responses associated with early stages of overreaching, in an attempt to reduce the 

incidence of NFOR/OTS. This test was designed to be short in duration (30 min) and self-

paced, in order to allow practitioners and exercise scientists to use this tool throughout an 

athlete’s career to track individuals at risk of developing such symptoms associated with 

overreaching, with no requirement for preliminary testing for determination of exercise 

intensities. In addition, it was also intended to identify any immune impairments associated with 

overreaching. 

 

Meeusen et al. (2004) were the first to propose that the examination of the exercise-induced 

responses of particular hormones may be a more reliable method to observe any abnormal 

endocrine responses associated with overreaching compared to the sole examination of resting 

concentrations alone. They examined the responses of plasma ACTH, cortisol, GH and 

prolactin to a double incremental cycle to fatigue test separated by a 4h resting period, before 

and after a training camp. Meeusen et al. (2004) aimed to establish a difference in hormonal 

responses between healthy trained athletes and those diagnosed as overreached (overreached 

athletes showed a greater decrease in physical performance compared to a healthy state). 

Meeusen et al. (2004) reported an exercise-induced increase of ACTH of 310% in trained, 
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healthy athletes to the second of a 2-cycle to exhaustion test separated by 4 hours, which was 

reduced to 83% when in an overreached state. In contrast, plasma cortisol showed an exercise-

induced increase of 45% in trained, healthy athletes to the second cycle to exhaustion test, with 

a 6% decrease observed when in an overreached state. Despite the interesting findings, the 

duration of the protocol used in Meeusen et al. (2004) may not be practical when used in 

overreached athletes, or indeed to fit in a busy schedule of healthy athletes and coaching 

sessions. Following on from these findings, Hough et al. (2011) designed a 30-min, high-

intensity cycling bout (the 55/80) capable of acutely elevating plasma and salivary cortisol and 

testosterone responses in male individuals when in a healthy, normal-trained state, with blunting 

responses occurring after a period of intensified training. In addition, Hough et al. (2015) 

reported a similar blunting in salivary testosterone, but not in salivary cortisol in elite male 

triathletes following a 10-day training camp. The data presented in Chapter 5 in this Thesis 

suggest that the variability examined in both hormones to the 55/80 are within their normal 

hormonal variability. To support this inference, the blunted responses reported by Hough et al. 

(2013) exceed the intra-individual variability found for cortisol and testosterone. Therefore, it is 

reasonable to suggest that the 55/80 cycle bout could highlight blunted cortisol and testosterone 

that will not be influenced by the normal random variability in this hormone measurement. 

 

Despite the usefulness of the 55/80 developed by Hough et al. (2011, 2013 & 2015) and the 

reproducible character of salivary cortisol and testosterone to this exercise bout, as examined in 

Chapter 5 in this Thesis, the 55/80 may not be an ideal tool to be used on an athlete who is not 

accustomed or familiar with cycling exercise. Therefore, Chapter 6 focused on designing a 

similar intensity and duration treadmill-running bout that could be readily applied to a running 

population. As with the 55/80 cycling protocol it was necessary to examine the reproducibility of 

plasma and salivary cortisol and testosterone responses to the treadmill bout. The running bout 

designed was self-paced and exercise intensities were based on the 6-20 Borg scale. This 

running test, the RPEtreadmill, was designed to replicate the effects of the 55/80 cycle bout 

developed by Hough et al. (2011) on the hormones examined. As referred in Chapter 6, an 

acute plasma and salivary cortisol elevation in response to the RPEtreadmill was not observed. 
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Importantly during a resting trial completed in this study both plasma and salivary cortisol 

decreased significantly over time. This finding indicates that the exercise-induced responses of 

cortisol to the RPEtreadmill have been influenced by the diurnal variation of this hormone perhaps 

leading to the lower than expected hormone responses found. However, it cannot be discounted 

that the RPEtreadmill simply was not stressful enough to induce an acute elevation in cortisol 

concentration levels. Although this running bout (30 min in duration) was designed so the 

athletes completing it run for 24 min at an RPE of 15 (hard), this study did not examine if these 

intensities would be equivalent to an exercise intensity sufficient to induce an acute elevation in 

this hormone, as described by Davies and Few (1973). With this in mind, another important 

challenge of measuring cortisol concentrations is its individualised and variable character, and 

therefore, the data from this Thesis proposes that this may not be an ideal endocrine biomarker 

to be used to highlight acute effects of exercise. As reported in Chapter 6, the absolute changes 

to the RPEtreadmill ranged from -40% to +304% (plasma cortisol) and -55% to +370% (salivary 

cortisol). In contrast, the low intra-individual variability observed in plasma and salivary 

testosterone may give an indication of the more appropriate usefulness of this hormone as a 

biomarker to highlight acute changes to physical stressors. The intra-individual variation in 

plasma and salivary testosterone was 12 ± 9% and 15 ± 10%, respectively. Despite the CVi of 

plasma and salivary testosterone responses to the RPEtreadmill are slightly above the 12.6% and 

11.8% described by Maes et al. (1997) and Sartorius et al. (2012), respectively, these 

researchers have examined the intra-individual variability of these hormones at rest. The CVi 

presented in this present study include the exercise-induced responses and for this reason, the 

CVi may need to be adjusted. At first examination of the responses of cortisol and testosterone, 

it was suspected that any differences in the exercise-induced response of testosterone or 

cortisol could be due to an individual’s ventilatory or lactate thresholds. A 40-week cycling 

training programme has elicited a 12.6% improve in individual’s anaerobic threshold (Fellmann 

et al., 1985), with these researchers reporting that this increase in anaerobic threshold post-

training, occurred in parallel with an elevation in the exercise-induced responses of cortisol and 

testosterone, when compared to before training, with no alteration in the baseline 

concentrations. These findings support this present study’s speculative findings that the 
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differences in the individual exercise-induced hormonal responses may be due to the individual 

anaerobic thresholds. Despite the inconclusive findings regarding the exercise-induced 

responses of cortisol to the RPEtreadmill, this Thesis proposes that the RPEtreadmill elicits 

reproducible plasma and salivary cortisol and testosterone responses when completed on 

different occasions. It is, however, unlikely that this exercise tool will highlight blunted cortisol 

responses following a period of intensified training. However, both plasma and salivary 

testosterone elevate in response to the RPEtreadmill when in a normal trained state. Therefore, the 

data from this Thesis support the suitability of the RPEtreadmill as an appropriate tool to induce a 

reproducible acute elevation of plasma and salivary testosterone when in a healthy (non-

overreached) state. However, the use of a control, resting trial is highly advised not only for 

determination of the individualised exercise-induced responses, but also due to the influence 

diurnal variation is known to have in both hormones. 

 

Chapter 7 has subsequently examined the effects of a 12-day period of intensified training on 

both the plasma and salivary cortisol and testosterone responses to the RPEtreadmill bout. The 

results from this experimental chapter suggest that the 12 days of training have increased the 

overall stress levels in the participants, which was supported by the increased scores of general 

and sport-specific stress found on examination of the recovery-stress questionnaire, which was 

observed alongside an exercise-induced blunted response of testosterone in both the circulation 

and in saliva. These results are in line with previous research that reported a decrease in HPG 

activity following a period of intensified training (Hough et al., 2013, Hough et al., 2015, Lucia et 

al., 2001). This downregulation of the HPG activity may be explained by the findings of 

Cumming et al. (1983). These authors suggested that high levels of circulating cortisol were 

potentially associated with a dysfunctional testosterone production following drug-induced 

hypercortisolism resulting in an inhibition of the LH receptors in the Leydig cells. The impactful 

reduction in physical performance and increased fatigue levels, lead the researcher to consider 

that the training period was stressful enough to induce a state of overreaching. These data, 

together with the observed blunted exercise-induced plasma and salivary testosterone after the 

training period direct to a recommendation to implement the RPEtreadmill bout as an appropriate 
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exercise test that may be used to highlight any dysfunction in the HPG axis during 

overreaching, in an attempt to avoid more prolonged states of maladaptation. However, the 

RPEtreadmill bout may not be stressful enough to induce an acute elevation in plasma or salivary 

cortisol levels, and therefore, should future researchers wish to use this tool to examine acute 

changes in the latter hormone, it may be appropriate to design and develop a similar duration, 

but more intense running protocol. Following in depth examination of the data in this Thesis and 

the existing literature, it is hypoThesised that perhaps increasing the intensity on the 4-min 

stage to 17 on the RPE Borg scale may be more appropriate to significantly witness an 

elevation in cortisol levels in plasma and saliva. 

 

One of the main findings of Chapter 7 was that baseline granulocyte phagocytic function was 

impaired by 47% following the 12 days of intensified training. These results are in line with the 

results from Robson et al. (1999a) and Robson et al. (1999b) who reported decreased 

neutrophil function in overreached endurance athletes, and from Yaegaki et al. (2007) who have 

observed a decreased phagocytic function in female judoists after a pre-competition training 

programme. Yaegaki et al. (2007) proposed that this decreased phagocytic function may be due 

to increased levels of oxidative stress provoked by an elevation in the production of reactive 

oxygen species. Future directions should perhaps focus on understanding the molecular 

mechanism leading to the reduction in phagocytic function, potentially due to an increased 

oxidative stress, aiming to highlight early signs of the onset of a decrement in phagocytic 

function, in attempt to avoid it. 

 

In addition, future directions also lead to the examination of γδ T-lymphocytes as stress 

responsive cells. An impactful increase in the mobilisation of this population has been observed 

firstly and solely by Anane et al. (2009), with Chapter 7 being, to this Thesis’ author´s 

knowledge, the second experimental study to focus on this cell subset in response to a physical 

stress. An impactful acute elevation in the γδ T-lymphocyte numbers when in a healthy state 

was presented in this Thesis, with markedly elevated baseline numbers being observed after 12 

days of intensified exercise training. This may suggest that γδ T-lymphocytes will acutely 
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elevate in response to stress when in a healthy state only, and that following a period of 

excessive exercise or chronic stress this population mobilisation will be greater. This current 

finding may be presented as novel data, with potential for future applications not only in sports 

performance, but also and especially in the medical field. 

 

This Thesis provides compelling evidence that a 12-day period of intensified training with 

limited recovery may develop symptoms associated with overreaching, which is in turn 

associated with increased overall stress levels (psychological, social and physiological), a 

dysfunction of endocrine, hypothalamic-pituitary axes, especially the HPG axis, and decreased 

immunity, supported by a decreased capacity of PMNs (mainly neutrophils) for phagocytosis. 

This Thesis also suggests that testosterone may be a reliable endocrine biomarker to be 

examined when tracking individuals on the edge of overreaching, and that the RPEtreadmill may 

be a suitable tool to be used to examine testosterone responses in an attempt to avoid the 

incidence of overreaching. The RPEtreadmill is a short-duration, high-intensity and self-paced 

treadmill-running test that elicits reproducible hormonal responses and can be practically used 

in the field by practitioners willing to highlight an early stage overreaching, with no need for 

preliminary testing for determination of individual exercise intensities. It may be important to 

also assess the usability of the RPEtreadmill in a population of female athletes, to determine if the 

findings in this Thesis would be applicable to this population as well, would the expectation that 

similar results would be found. However, a disadvantage of using the present exercise test is 

the cost of hormonal and immune markers analysis and the need for highly specialised staff, 

and therefore there are a number of variables that are recommended as useful when tracking 

overreaching in a non-elite population. These recommendations include the use of time-trial 

tests to track for athletic performance decrements (Halson et al., 2002, Meeusen et al., 2013), 

recovery-stress questionnaires and URS logs to track for psychological distress, physical 

wellbeing and the onset of respiratory illness (Meeusen et al., 2013), and eventually 

examination of the maximal and resting heart rate and heart rate variability (HRV) of the 

individuals (Makivić, Nikić and Willis, 2013) as preventive measures to diagnose early stage 

overreaching.  
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Appendix 1: Physical activity readiness questionnaire (PAR-Q) 

 

Please circle the correct answer: 

 

1. Have you ever been told by your doctor that you have a heart condition and advised only 

to participate in physical activity approved by your doctor? 

Yes / No 

 

2. Do you experience any chest pains when you participate in physical activity? 

Yes / No 

 

3. Have you recently experienced any chest pains whilst not participating in physical 

activity? 

Yes / No 

 

4. Do you ever lose consciousness? 

Yes / No 

 

5. Do you ever lose your balance as a result of dizziness? 

Yes / No 

 

6. Do you have any problems with your bones and joints that could cause further 

problems if you participate in physical activity? 

Yes / No 

 

7. Are you aware of any reasons as to why you should not participate in physical 

activity? 

Yes / No 

 

Name: .................................…………………………. 

Signature: ........................................  Date: …./…./…….. 
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Appendix 2: Blood screening analysis form 

 

Please read the following: 

 

a. Are you suffering from any known active, serious infection? 

b. Have you had jaundice within the previous year? 

c. Have you ever had any form of hepatitis? 

d. Have you any reason to think you may be HIV positive? 

e. Have you ever been involved in intravenous drug use? 

f. Are you a haemophiliac? 

g. Is there any other reason you are aware of why taking blood might be hazardous to your 

health? 

h. Is there any other reason you are aware of why taking your blood might be hazardous to 

the health of the technician? 

 

 

Can you answer Yes to any of questions a-g? Please tick your response in the box below: 

 

Yes  No 

 

Samples of your blood will be collected in the manner outlined to you by the qualified 

laboratory technician. All relevant safety procedures will be strictly adhered to during all testing 

procedures (as specified in the Risk Assessment document available for inspection in the 

laboratory). 

 

I declare that this information is correct, and is for the sole purpose of giving the tester 

guidance as to my suitability for the test. 

 

Name  ……………………………………… 

 

Signed  ……………………………………… 

 

Date  …./…./…….. 

If there is any change in the circumstances outlined above, it is your responsibility to tell the 

person administering the test immediately. 
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Appendix 3: Health-related daily routine questionnaire 

 

To be completed by the participant: 

 

Name:……………………………………............................... Date:…./…./…….. 

 

Please read the following carefully and answer as accurately as possible. Your answers will 

be treated as strictly confidential. If you have any doubts or difficulties with any of the questions 

please feel free to ask the researcher responsible for the study. 

 

 

Are you asthmatic? 

 

 

Do you have any allergies (e.g. Hay Fever)? 

 

 

In your regular daily routine: 

 

Do you smoke? 

 

 

Do you drink alcohol? 

 

 

You consider your diet is… 

 

 

Hours of sleep? 

 

 

Thank you very much! 

 

 

The Researcher: ____________________________  ____/____/________ 

The Participant: ____________________________ 

 

  

   Daily Occasionally Never 

   Balanced Unhealthy Specific 

   Daily Occasionally Never 

   Below 5 5-7 hours Above 7 

   Yes No 

   Yes No 
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Appendix 4: Recovery-stress questionnaire for athletes (RESTQ-76) 

 

RESTQ-76 Sport 
Participant no. _____ 

Age: _____  Gender: M / F  Date: __/__/____ Time: __:__ 

 
This questionnaire consists of a series of statements. These statements possibly 
describe your psychic or physical well-being or your activities during the past few days 
and nights. 
 
Please select the answer that most accurately reflects your thoughts and activities. 
Indicate how often each statement was right in your case in the past days. 
 
The statements related to performance should refer to performance during competition 
as well as during practice. 
 
For each statement there are seven possible answers.Please make your selection by 
marking the number corresponding to the appropriate answer. 
 
 
Example: 
 
In the past (3) days/nights 
 
… I read a newspaper. 
 
 

 

In this example, the number 5 is marked. This means that you read a newspaper very 
often in the past three days. 

Please do not leave any statements blank. 

If you are unsure which statement to choose, select the one that most closely applies to 
you. 

Please turn the page and respond to the statements in order without interruption. 

  

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 
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In the past (3) days/nights 
 
 

  
0  1  2   3  4  5  6 

           never                 seldom       sometimes             often       more often        very often           always 

1) … I watched TV 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

2)… I ldid not get enough sleep 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

3)… I finished important tasks 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

4)… I was unable to concentrate well 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

5)… everything bothered me 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

6)… I laughed 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

7)… I felt physically bad 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

8)… I was in a bad mood 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

9)… I felt physically relaxed 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

10)… I was in good spirits 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

11)… I had difficulties in concentrating 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

12)… I worried about unresolved problems 
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0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

13)… I felt at ease 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

14)… I had a good time with friends 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

15)… I had a headache 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

16)… I was tired from work 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

17)… I was successful in what I did 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

18)… I couldn’t switch my mind off 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

19)… I fell asleep satisfied and relaxed 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

20)… I felt unconfortable 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

21)… I I was annoyed by others  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

22)… I felt down 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

23)… I visited some close friends 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

24)… I felt depressed 
 



Appendices 

 225 

 

  0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

25)… I was dead tired after work  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

26)… other people got on my nerves 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

27)… I had a satisfying sleep 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

28)… I felt anxious or inhibited 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

29)… I felt physically fit 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

30)… I was fed up with everything 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

31)… I was lethargic 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

32)… I felt I had to perform well in front of others 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

33)… I had fun 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

34)… I was in a good mood 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

35)… I was overtired 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

36)… I slept restlessly 
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0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

37)… I was annoyed  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

38)… I felt as if I could get everything done 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

39)… I was upset 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

40)… I put off making decisions 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

41)… I made important decisions 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

42)… I felt physically exhausted 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

43)… I felt happy 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

44)… I felt under pressure 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

45)… everything was too much for me 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

46)… my sleep was interrupted easily 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

47)… I felt content 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

48)… I was angry with someone 
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  0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

49)… I had some good ideas  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

50)… parts of my body were aching 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

51)… I could not get rest during the breaks. 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

52)… I was convinvced I could achieve my set goals during performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

53)… I recovered well physically 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

54)… I felt burned out by my sport  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

55)… I accomplished many worthwhile things in my sport 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

56)… I prepared myself mentally for performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

57)… my muscles felt stiff or tense during performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

58)… I had the impression there were too few breaks 
 

59)… I was convinced that I could achieve my performance at any time 
 

60)… I dealt very effectively with my teammates’ problems 
 

           never                 seldom       sometimes             often       more often        very often           always 
0  1  2   3  4  5  6 

           never                 seldom       sometimes             often       more often        very often           always 
0  1  2   3  4  5  6 
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  0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

61)… I was in a good condition physically  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

62)… I pushed myself during performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

63)… I felt emotionally drained from performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

64)… I had muscle pain after performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

65)… I was convinced that I performed well 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

66)… too much was demanded of me during the breaks 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

67)… I psyched myself up before performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

68)… I felt that I wanted to quit my sport 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

69)… I felt very energetic 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

70)… I easily understood how my teammates felt about things 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

71)… I was convinced that I had trained well 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

72)… the breaks were not at the right times 
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0  1  2   3  4  5  6 

           never                 seldom       sometimes             often       more often        very often           always 

73)… I felt vulnerable to injuries  
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

74)… I set definite goals for myself during performance 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

75)… my body felt strong 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

76)… I felt frustrated by my sport 
 

0  1  2   3  4  5  6 
           never                 seldom       sometimes             often       more often        very often           always 

77)… I dealt with emotional problems in my sport very calmly 
 

Thank you very much! 
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Appendix 5: Jackson score upper respiratory tract illness questionnaire 

 

 

JACKSON SCORE UPPER RESPIRATORY TRACT ILLNESS QUESTIONNAIRE 

Name ...............................................    Subject Number…. Date………….. 

Trial………………… 

 
Do you think that you are suffering from a common cold or flu today?   
Fill in the circle if your answer is YES o 
 
If yes please complete all the questions below-   
Are any of the following symptoms of the common cold or flu present today? Please 
indicate your response by filling in one circle for each of the following symptoms: 
 
 
SYMPTOM         DEGREE OF DISCOMFORT            
 
                       None at all            Mild         Moderate          Severe         
Sneezing        o  o  o  o           
 
Headache    o  o  o  o            
 
Malaise    o  o  o  o 
(feeling of being generally unwell,  
 run down or out of sorts) 
 
Nasal discharge   o  o  o  o            
(runny nose) 
 
Nasal obstruction   o  o  o  o  
(blocked nose)           
 
Sore throat    o  o  o  o            
 
Cough     o  o  o  o          
 
Ear ache    o  o  o  o 
 
Hoarseness    o  o  o  o 
 
Fever     o  o  o  o           
 
Chilliness        o  o  o  o            
 
Joint aches and pains  o  o  o  o         
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Appendix 6: Food intake diary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name:

Date
Time Weight

Time Weight

Time Weight

Time Weight

:

:

:

:

Food

Food

Height:                            cm Body mass:                  kg

Food

Breakfast (day 
before testing)

Lunch (day before 
testing)

Breakfast 
(morning of the 

trial)

Dinner (day before 
testing)

Daily totals:

Food

Age:

Effects of a 12-day intensified-training period on the endocrine and immune systems

FOOD INTAKE DIARY (24 h before each main trial)
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Appendix 7: Training diary 

 

 

 

 

Rating of Perceived Exertion (RPE) scale 

 

Numerical rating How hard you are exercising 

6 No exertion at all 

7 Extremely light 

8  

9 Very light 

10  

11 Light 

12  

13 Somewhat hard 

14  

15 Hard 

16  

17 Very hard 

18  

19 Unbearably hard 

20 Maximal exertion 

 

  
ü You will need to use this scale to measure your perceived exertion every time 

you finish your daily training, so you can fully fill out your training diary; 

 
ü A heart rate monitor will also be worn at all time during your training session. 
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