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Abstract 
A polymer escaping from a confining external potential represents a generic description of long 
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state theory (HTST) with dynamical corrections (DC), Langer's theory, and Forward flux 
sampling (FFS). FFS and HTST with DC both predict the rate by Langevin and Brownian 
dynamics simulations quantitatively within a factor of two. We also introduced a new method 
for computing dynamical corrections using forward flux sampling type of algorithm and 
compared computational efficiency of the different methods. 
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1. Introduction

The polymer escape problem is a generic description of a long macro-

molecule escaping from a confining external potential. In the problem,

a polymer escapes from an initial metastable state by thermal activation

by crossing an energy barrier. The barrier can be of entropic origin due

to geometric confinement, in which case it becomes a free energy barrier,

or of electromagnetic origin for polyelectrolytes, in which case it can be

modelled by an external potential function. When there is no external

potential barrier present, the barrier is purely entropic. In the polymer

escape problem, there is an entropic barrier present in addition to the

bare external potential.

Experimental examples of relevant systems include polymer transloca-

tion [1, 2], where a polymer crosses a membrane through a pore [3], or

narrow μm-scale channels with traps [4]. Recent experiments by Liu et

al. involve the escape of DNA molecules from an entropic cage [5]. Sim-

ilar translocation and escape processes are common in cell biology and

have possible bioengineering applications, such as DNA sequencing [6]

and biopolymer filtration [7].

Polymer escape is often a rare event, which makes it difficult to model it

with conventional numerical simulation methods. The problem exhibits

a separation of time scales; the internal vibrational time scale of a poly-

mer chain is orders of magnitude faster than the time scale of the ac-

tual escape. In molecular dynamics simulations, the fast vibrations in

the polymer chain need to be explicitly modelled, which consumes most of

the simulation time, and infrequent escape events are not efficiently sam-

pled. Rate theories and accelerated simulation methods can be introduced

to address this problem.

Kramers [8] has developed a theory for a one-dimensional particle es-

caping from an external potential well, which was later generalised to

9
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multidimensional systems by Langer [9]. The first theory for a polymer

escaping from an external potential well was developed by Park and Sung

[10] who evaluated the escape rate of a discrete ideal polymer from an

asymmetric potential well using lattice statistics.

Sebastian [11] has proposed a kink diffusion mechanism for long chains

when one end of the polymer has moved over the barrier, while the other

end is still in the initial state. The kink corresponds to the beads in the

region of the energy barrier, and it moves along the chain as the poly-

mer moves from one potential well to another. In Ref. 12, Sebastian and

Paul describe the polymer escape of long chains as a two-step process. In

the first step, the polymer is thermally activated to bring one end over

the energy barrier and into the final state, and the second step involves

diffusive motion of the kink as intermediate beads move in and out of

the barrier region. A rate theory approach similar to Langer’s [9] mul-

tidimensional extension of Kramers’ theory was proposed for activation

[12]. More recently, Sebastian and Debnath studied the thermal activa-

tion mechanism for short chains [13] and simulated kink diffusion for one-

and three-dimensional systems [14].

Lee and Sung studied polymer escape in a symmetric external potential

well and proposed a rate theory approach to predict the rate for linear [15]

and for semiflexible ring polymers [16]. They also found that for linear

polymers, the stretched kink solution is the dominant escape mechanism

for chains longer than a certain crossover length NC . Below NC , the poly-

mer crosses the barrier in a coiled form while polymers that are longer

than NC are stretched during the transition, analogous to instantons in

quantum mechanical tunnelling of a particle. Paul [17] has studied the es-

cape problem of star polymers in a system mimicking experiments carried

out by Han et al. [4].

The polymer escape problem with an asymmetric external potential well

has previously been studied numerically using path integral hyperdynam-

ics by Shin et al. [18] and by Ikonen in his doctoral thesis [19].

In this thesis, we study numerically the polymer escape problem in one-

and two-dimensional systems. We perform molecular dynamics (MD) sim-

ulations and then use rate theories to predict the escape rate obtained by

MD. A confining two-dimensional external potential and a one-dimensional,

bistable, double-well external potential are studied with various polymer

chain models. We mainly focus on solving the escape rate but also exam-

ine the configurations that the polymer takes during the escape.

10
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This thesis is organised as follows. In Sec. 2 we give a short review of the

theoretical background presenting the used polymer models and potential

functions. In the section the existing rate theories such as Kramers’ the-

ory, Langer’s theory and the harmonic transition state theory (HTST) are

introduced. Numerical methods including Langevin dynamics (LD) simu-

lation, Path integral hyperdynamics (PIHD), Nudged elastic band (NEB)

and Forward flux sampling (FFS) are presented in Sec. 3.

In Sec. 4 we present the results of this thesis. The results describe

the effect of external confinement to the polymer escape dynamics in the

two dimensional well. The results also show that instead of numerically

heavy LD simulations, the quantitatively correct escape rate can be ob-

tained with HTST followed by dynamical corrections (DC) and with FFS.

We show that the HTST with DC obtains better estimate for the escape

rate than previously used Langer’s theory when compared with LD sim-

ulations. We present novel way of computing DC using FFS type of algo-

rithm. In Sec. 5 we summarise and discuss the results.

11



Introduction

12



2. Theory

2.1 Problem description

In the theoretical description of the polymer escape, a polymer is initially

placed in a confining external potential well. The polymer is coupled to a

heat bath and after long enough time it has reached thermal equilibrium

in the initial state. At a long enough time scale, the polymer eventually

escapes over the energy barrier by thermal activation. The polymer es-

cape is a rare event since the time scale of the actual escape is orders of

magnitude longer than the time scale of internal relaxation of the polymer

chain. In Fig. 2.1 the polymer escape for a self-avoiding chain escaping

from a two-dimensional asymmetric external potential is visualised.

The polymers here are modelled using the canonical bead-spring model

[20, 21] where individual beads (monomers) are connected with springs.

The system is described by the Hamiltonian

H({ri,vi}) =
N∑
i=1

m

2
|vi|2 + E({ri}), (2.1)

where the ri and vi are the positions and velocities of the beads, respec-

tively, m is the mass of an individual bead, and E the total potential en-

ergy functional of the system. The total potential energy consist of an

external potential energy and the interaction potential energy between

the monomers as: E({ri}) = V (ri) + U({ri}), where V (ri) is the external

potential and U({ri}) the interaction potential.

Real polymers are usually in a solvent, so a convenient choice for de-

scribing their dynamics is the Langevin equation which allows us to model

the hydrodynamic interactions using simplest approximation where the

solvent acts as a dissipative heat bath to the polymer. Thus, Langevin

equation does not take hydrodynamics explicitly into account. To this end,

13



Theory

Figure 2.1. An example of a polymer escaping from a potential well visualised using data
from molecular dynamics simulations. The blue surface represents the po-
tential energy surface of the external potential well. a) The polymer is in its
initial configuration after equilibration. b) The polymer exhibiting a coiled
state. c) The polymer in a stretched state. d) The polymer starting to sur-
mount the barrier. e) The polymer at the limit after which it is considered to
have crossed the barrier. f) The polymer is almost completely over the barrier.

other coarse-grained simulation methods such as the fluctuating lattice-

Boltzmann method [22] should be used. In Langevin dynamics, the equa-

tion for one particle is

mr̈(t) + γṙ(t) +∇E(r) = ξ(t), (2.2)

where γ is the friction coefficient. A Gaussian random force ξ(t) describes

the effect of collisions by the solvent molecules and is defined in such

a way that 〈ξ(t)〉 = 0 and 〈ξμ(t)ξν(t′)〉 = 2γkBTδμ,νδ(t − t′). Here 〈. . . 〉
denotes the ensemble average, μ and ν Cartesian coordinate indices, kB
the Boltzmann constant, T the temperature, δ(t) the Dirac delta function

and δμ,ν Kronecker’s delta. For a multidimensional system, such as the

bead-spring polymer model, the Langevin equation is written as

mr̈i(t) + γṙi(t) +∇iE({ri}) = ξi(t), (2.3)

where i refers to an individual bead.

In the limit of strong coupling with the heat bath, i.e. the high friction

limit, the dynamics become overdamped and are described by the Brown-

ian equation of motion

γṙi(t) +∇iE({ri}) = ξi(t). (2.4)

14



Theory

In this limit the friction coefficient high enough such that |γṙi(t)| � |mr̈i(t)|.
Since a polymer has multiple internal degrees of freedom, some collec-

tive variables need to be defined to describe the polymer. We can define

the centre of mass (centroid) coordinate for a polymer with monomers

having equal masses by

Rc(t) :=
1

N

N∑
i=1

ri(t). (2.5)

Another essential parameter is the radius of gyration Rg(t) defined by

R2
g(t) :=

1

N2

N∑
i=1

(ri(t)−Rc(t))
2. (2.6)

Later on, the thermally averaged absolute value of Rg is denoted as Rg :=√
〈R2

g〉.
One commonly used model for polymers is the Rouse model. The Rouse

model describes the polymer chain in its continuum limit and a continu-

ous variable n is introduced to describe a position in the chain. For an

ideal polymer, the harmonic potential

U({ri}) =
N−1∑
i=0

1

2
kharm(ri − ri+1)

2, (2.7)

couples the monomers. Using the continuum description, the following

Langevin equation describing polymer dynamics in the continuum limit

can be obtained [23]:

γ
∂rn(t)

∂t
= kharm

∂2rn(t)

∂n2
+ ξn(t). (2.8)

The polymer has to satisfy the conditions

∂rn(t)

∂n

∣∣∣∣
n=0

= 0 and
∂rn(t)

∂n

∣∣∣∣
n=N

= 0, (2.9)

and the random force ξn(t) the conditions

〈ξ(t)〉 = 0, and (2.10a)

〈ξμ,n(t)ξν,m(t′)〉 = 2γkBTδμ,νδ(t− t′)δ(m− n). (2.10b)

Equations (2.8), (2.9), (2.10a) and (2.10b) define the Rouse model of an

ideal polymer.

To obtain a more realistic model of polymers, the excluded volume inter-

actions are added to the chain so that beads cannot overlap. The excluded

volume interactions make the chain non-ideal and the Rouse model no

15
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longer applies. However, the scaling exponents for the radius of gyration

Rg can be found for both the ideal and the non-ideal chains [23]:

Rg ∼ N1/2 for ideal polymers,

Rg ∼ Nν for non-ideal polymers,
(2.11)

where ν is the Flory exponent. The Flory exponent in 3D is ν = 0.588

(≈ 3/5) and in 2D ν = 3/4 exactly.

Normal coordinates describing the polymer, sometimes referred to as

the Rouse modes, can be obtained by a cosine-transformation using the

equation [24]

Xp(t) =
√

2/N
N∑
i=1

ri(t) cos
[pπ
N

(i− 1/2)
]
, p ≥ 1. (2.12)

The zeroth Rouse mode X0(t) corresponds to the centre of mass of the

polymer given by Eq. (2.5) and the first X1(t) describes a quantity similar

to the radius of gyration by Eq. (2.6) while not being exactly the same.

Using normal coordinates the autocorrelation function Cp(t) can be calcu-

lated as [23]

Cp(t) = 〈Xp(0)Xp(t)〉 = 〈Xp(0)
2〉 exp(−t/τp), (2.13)

where τp represents the relaxation (correlation) time of the pth mode,

which scales with the number of monomers as [23]

τp ∼ N2ν+1. (2.14)

The scaling law presented above can be used to determine the equili-

bration time of the polymer when generating uncorrelated samples from

an initial distribution. These samples, used for initial configurations for

molecular dynamics trajectories, can be generated by letting the system

evolve according to its dynamics for a time 2τp to make the correlations

with the previous sample to decay to 1/e2 ≈ 0.1.

The Zimm model [23] can be introduced to model hydrodynamic in-

teractions for the polymers in a solvent. For the Zimm model with the

Θ-condition satisfied (at the Θ-temperature the polymer chain becomes

nearly ideal and excluded volume effects can be neglected), the Langevin

equation in the continuum limit reads as

∂rn(t)

∂t
=

∑
m

Hnm ·
(
kharm

∂2rm(t)

∂m2
+ ξm(t)

)
. (2.15)

In Eq. (2.15) the mobility matrix Hnm is defined as

Hnn = I/γ,

Hnm = 1
8πη|rnm| [̂rnmr̂nm + I] for n 	= m,

(2.16)
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where I is an identity matrix, η the viscosity of the solvent, rnm = rn− rm,

and r̂nm is the unit vector in the direction of rnm. When the Θ-condition

is satisfied the Zimm model chains act like ideal polymers and the scaling

law for the diffusion coefficient of the centre of mass is D ∼ N−1/2. Due

to hydrodynamic interactions in the Zimm model, outside the Θ-condition

the excluded volume effects need to be taken into account and the scaling

law for diffusion constant is D ∼ N−ν . [23]

2.2 Chain models and potentials

In the work presented in this thesis, three different chain models were

studied:

1. An ideal harmonic chain.

2. An ideal chain where the beads are connected by finite extension non-

linear elastic (FENE) springs with Lennard-Jones (LJ) interaction be-

tween adjacent beads. This model is referred to as the ideal FENE-LJ

chain.

3. A self avoiding chain where the beads are connected with FENE springs

and LJ interaction is between all the beads. This model is referred to as

the self-avoiding FENE-LJ chain.

The simplest chain model studied was a discrete ideal harmonic chain,

where the beads with no excluded volume interaction are connected with

harmonic springs given by Eq. (2.7). This model will be referred as an

ideal harmonic chain.

A more ’realistic’ chain is modelled using FENE springs accompanied

with a truncated LJ potential. This FENE-LJ model consist of the inter-

action potential

U({ri}) =
N−1∑
i

UFENE(|ri − ri+1|) +
N∑

〈i,j〉
ULJ(|ri − rj |), (2.17)

where

UFENE(r) = −1

2
kFR

2
0 ln(1− r2/R2

0), (2.18)

and

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4]. (2.19)
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Figure 2.2. The FENE-LJ interaction potential between adjacent beads, see Eq. (2.17).
The LJ potential acts between all the beads in the self-avoiding chain model
but only between consecutive beads in the ideal chain model. The UFENE

component of the potential diverges at R0 = 2.0, setting a maximum in the
separation between consecutive beads.

Above, kFENE is the FENE spring constant, R0 gives the maximum sep-

aration of the adjacent beads. In the LJ potential, σ is the radius of the

excluded volume, and ε the energy parameter. The repulsive interaction

between the beads is a LJ potential that is truncated and shifted so that

ULJ(r) = 0 if r > 21/6σ. The shift by ε ensures continuity of the function.

The FENE-LJ interaction potential between adjacent beads is illustrated

in Fig. 2.2. When the second summation in Eq. (2.17) is carried out over

all the pairs, the model will be referred to as the self-avoiding FENE-LJ

chain. When the summation is only over adjacent beads, the model is

referred to as the ideal FENE-LJ chain.

Polymer escape was studied in two different external potentials: a one-

dimensional potential shown in the left panel of Fig. 2.3, and a two-

dimensional potential shown in the right panel of Fig. 2.3. The one-

dimensional external potential is a quartic double well with the function

V (x) = −ω2

2
x2 +

ω2

4a20
x4, (2.20)

where ±a0 gives the location of the minima, the energy has a maximum

at x = 0, and ω2 is the curvature of the energy barrier. The same external

potential with Brownian dynamics for ideal harmonic polymers was used

in Ref. 15.

The two-dimensional external potential with confinement in the y-direction

is

V (x, y) =

⎧⎨
⎩

1
2ω

2
0(x

2 + y2), x ≤ x0;

ΔV − 1
2ω

2
b (x− xb)

2 + 1
2ω

2
0y

2, x > x0;
(2.21)
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where the quantities ω0 and ωb give the curvature of the well and of the

barrier, respectively, ΔV is the height of the barrier located at xb and

x0 the cross-over point between the two parabolas. A potential function

with the same x-dependence but without confinement in the y-direction

was used in the work of Shin et al. [18] and was compared in the work

presented in this thesis. The two-dimensional external potential without

confinement in the y-direction is

V (x, y) =

⎧⎨
⎩

1
2ω

2
0x

2, x ≤ x0;

ΔV − 1
2ω

2
b (x− xb)

2, x > x0.
(2.22)

Figure 2.3. left: The one-dimensional external potential of Eq. (2.20). right: The two-
dimensional external potential of Eq. (2.21).

2.3 Rate theories

As a rare event, polymer escape is often computationally too expensive to

be numerically solved by ’brute-force’ simulations. Section 3.1 describes

the molecular dynamics (MD) methodology to simulate the escape rate

directly. However, there is a separation of time scales in the problem: in-

ternal vibrations which need to be sampled in MD are orders of magnitude

faster than an actual escape event. When sampling the MD trajectories,

the system spends most of the simulation time in the initial minimum and

rarely escapes over the energy barrier. This leads to inefficient sampling

of the escape events.

To overcome this problem rate theories are introduced. In rate theories,

the escape rate is solved using a toolkit from statistical mechanics and

there is no need to sample long time scale trajectories. This section de-

scribes two commonly used rate theories: the harmonic transition state

theory and Langer’s theory.

19



Theory

2.3.1 Harmonic transition state theory

In transition state theory (TST) the phase space of the system is divided

by the transition state (TS) hyperplane into the initial (I) and the final

states (F) (reactant and product states in the original context) [25, 26].

The escape rate is then given by

RTST = Prob(’system in TS’)× ’flux out of TS’. (2.23)

The probability that system reaches the transition state from the ini-

tial state can be estimated by the fraction of the configuration integrals

ZTS/ZI, where ZI is the configuration integral over I, and ZTS is the con-

figuration integral over TS. The flux out of TS can be computed analyti-

cally and it is the average of the equilibrium velocity perpendicular to the

TS hyperplane at the TS 〈v⊥〉 =
√

kBT/(2πμ⊥), where μ⊥ is the reduced

mass for the perpendicular component of the system. Thus, the TST rate

expression becomes

RTST =

√
kBT

2πμ⊥
ZTS

ZI
. (2.24)

The four assumptions made in TST are

1. The Born-Oppenheimer approximation.

2. Classical dynamics of nuclei.

3. Boltzmann distribution in initial state.

4. No recrossings of TS.

The first two assumption are clearly met for the coarse-grained poly-

mer model in the temperature range studied. The third assumption is

satisfied when the energy barrier of the escape is high enough, roughly

ΔE > 5kBT . For the current problem, the last assumption is generally not

met. Keck has shown that the effect of recrossings can be minimised by

variationally optimising the transition state dividing surface [27]. Also,

dynamical corrections to TST can be calculated with various methods to

estimate the effect of recrossing trajectories [28, 29]. Two methods for

computing the dynamical correction factor are explained in Secs. 2.3.2

and 3.4.1.

Instead of full numerical sampling, the configuration integrals ZTS and
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ZI can be computed with a harmonic approximation of the potential en-

ergy [30, 31]. The maximum energy along the minimum energy path

(MEP) from I to F is a saddle point (‡) which represents the bottleneck

for the transition. The rate expression of the harmonic transition state

theory (HTST) is

RHTST =
1

2π
√
μ⊥

√√√√∏N
i=1 λ

0
i∏N

i=2 λ
‡
i

e−ΔE/kBT , (2.25)

where ΔE is the height of the energy barrier along the MEP, λ0
i and λ‡

i are

the eigenvalues of Hessian matrices H0 and H‡ at the initial minimum

and at the saddle point, respectively. The elements of the Hessian matrix

Hp are given by

(Hp)ij =
∂2E(r)

∂ri∂rj

∣∣∣∣
r=rp

, (2.26)

where p refers to a point on the MEP.

For the polymer escape problem in the external potential of Eq. (2.20),

it is known that short ideal chains cross the barrier in a coiled state when

polymer length is below the critical length: N < NC . Above NC the poly-

mer is in a stretched state at the barrier top. Lee and Sung [15] have

derived an analytical expression for NC using a continuum chain model:

NC =

√
Kπ2

ω2
. (2.27)

At NC the eigenvalue of the second lowest eigenmode at the saddle point

λ‡
2 approaches zero and therefore causes a divergence in the escape rate.

The anharmonic corrections to this mode can be introduced to reduce this

divergence

g(α) =

√
α

2π

∫ ∞

−∞
dQe−(α/2)Q2−(3/8)Q4

, (2.28)

where α = λ‡
2a0

√
N/(kBT )/ω [15]. Thus, the corrected HTST rate becomes

RHTST+AHC = g(α)RHTST. (2.29)

2.3.2 Dynamical corrections

The assumption of no recrossings of the TS in TST is often not satisfied for

energy barriers that are flat. The effect of the recrossings can, however,

be estimated using calculations of classical trajectories started at the TS.

This provides dynamical corrections (DC) to the TST rate estimate. The
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correction factor, κ, is [29]:

κ =
2

Ntraj

Ntraj∑
i=1

sgn(vi)θ(X
final
0 ), (2.30)

where sgn(vi) is the sign of the initial net velocity vi =
∑N

j=1 vj of a

trajectory i assigned from the Maxwell-Boltzmann distribution P (v) ∝
exp[−v2/(2kBT )], and θ(Xfinal

0 ) is unity if the system resides in F at the

end of the trajectory and zero otherwise. Thus, each trajectory that ends

in F, contributes positively to κ if it starts with a velocity pointing towards

F, but contributes negatively if the initial velocity points towards I. Tra-

jectories ending in I do not contribute to κ. The corrected rate estimate

is

RHTST+AHC+DC = κRHTST+AHC, (2.31)

where RHTST+AHC is given by Eq. (2.29). While direct dynamical calcula-

tions of transitions can be impossibly long for systems with low transition

rates, the calculation of DC requires only short trajectories and can be

carried out with much less computational effort.

2.3.3 Kramers’ and Langer’s rate theory

Kramers’ rate theory gives the escape rate for a particle from a one-

dimensional potential well by thermal activation [8, 32]. In the moderate-

to-strong friction regime the expression for the rate is

RK =

[(
γ2

4
+ ω2

B

) 1
2

− γ

2

]
ω0

2πωB
eΔE/kBT , (2.32)

where ωB is the curvature at the barrier top, ω0 the curvature at the initial

minimum, ΔE the height of the potential energy barrier, and γ the friction

coefficient. For the strong friction regime γ � ωB, the overdamped limit,

the Eq. (2.32) simplifies to

RK =
ω0ωB

2πγ
eΔE/kBT . (2.33)

The escape rate for a multidimensional system is derived by Langer in

the overdamped limit [9]. In general form, the expression for the rate is

[15]

RL =
ωB

2πγ

Z‡
Z0

√
2πkBTe

−ΔE/kBT , (2.34)

where Z‡ and Z0 are the partition functions near the saddle point and near

the initial minimum. Using the harmonic approximation, the partition
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functions can be evaluated to obtain

RL =

√
|λ‡

1|
2πγ

√√√√∏N
i=1 λ

0
i∏N

i=2 λ
‡
i

e−ΔE/kBT , (2.35)

where λ0
i and λ‡

i are the eigenvalues of Hessian matrix of Eq. (2.26), and

the eigenvalue of the unstable mode
√
|λ‡

1| is taken to represent the cur-

vature at the barrier top. The rate resembles the HTST expression of

Eq. (2.25) but it is derived from different assumptions. The derivation

of Langer’s equation (2.35) follows the same steps as Kramer’s equation

(2.33). In Kramers’ and Langer’s theory, a harmonic approximation is

made also along the MEP, while in HTST the harmonic approximation is

only made for directions perpendicular to the MEP.
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3. Numerical methods

3.1 Molecular dynamics

The most straightforward way to calculate the escape rate is to use molec-

ular dynamics (MD). Within MD, the equations of motion are numerically

integrated to generate trajectories representing transitions from the ini-

tial state (I) to the final state (F). The dynamics of the system can be

described either by the Langevin Eq. (2.3) or the Brownian Eq. (2.4).

In MD, a polymer is initially placed in I and let to reach thermal equilib-

rium for a time interval twice as long as the correlation time τ . The cor-

relation time scales with the polymer length as τ ∝ N2ν+1 [23]. For ideal

chains ν = 1/2 and for self-avoiding chains in two-dimensions ν = 3/4.

Equilibration in the initial state ensures the generation of uncorrelated

samples from the Boltzmann distribution PI(r) ∝ exp(−E(r)/kBT ). Dur-

ing the equilibration the polymer is confined to the initial state by a re-

flecting wall at the barrier top.

For trajectories from I to F, the escape probability can be determined as

Pesc(t) = (1/Ntraj)

Ntraj∑
i=1

θ(t− ti), (3.1)

where Ntraj is the number of simulated trajectories, θ(t− ti) the Heaviside

step function and ti the time of the ith escape event. An escape event is

considered to have occurred when the centre of mass of the system X0 has

reached a predefined threshold value. Usually a value larger than the

barrier width is used so that the system is unlikely to return to I. The

dynamical escape rate is given by

RMD =
dPesc(t)

dt
, (3.2)

where the derivative is computed by fitting the curve Pesc = RMDt + b,
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where b is a constant, over the time interval where Pesc(t) is close to being

a linear function of t. The error ΔRMD is estimated as the standard de-

viation of the derivative dPesc(t)/dt in the fitting interval divided by
√
Ns,

where Ns is the number of data points in the fitting interval. The average

time in between the escape events is tesc = 〈ti〉 = (1/Ntraj)
∑Ntraj

i=1 ti.

Equation (2.3) describing Langevin dynamics is numerically integrated

using the Brünger-Brooks-Karplus (BBK) integration scheme [33, 34].

The integrator reads as

v(tn +
1

2
δt) = (1− 1

2
γδt)v(tn) +

1

2m
[−F(r(tn)) + ξ(tn)]δt; (3.3a)

r(tn + δt) = r(tn) + v(tn +
1

2
δt)δt; (3.3b)

v(tn + δt) =
v(tn + 1

2δt) +
1
2m[−F(r(tn + δt)) + ξ(tn + δt)]δt

1 + 1
2γδt

,(3.3c)

where δt is the time step, and F(r(tn))+ξ(tn) the net force of the system at

time tn. Equation (2.4) describing Brownian dynamics is integrated with

the forward Euler method

r(tn + δt) = r(tn) +
δt

γ
[−F(r(tn)) + ξ(tn)]. (3.4)

3.2 Path integral hyperdynamics

The Path Integral Hyperdynamics (PIHD) method is a reweighting scheme

in which the external potential is modified to accelerate the simulations

[35]. The escape rate is computed in a modified external potential where

the escape events are more frequent and the escape rate in the original

potential is obtained by reweighting the trajectories simulated in the mod-

ified potential. In addition to the polymer escape problem [18] PIHD has

been applied to adatom diffusion in a periodic potential and shown to work

even with a time-dependent bias force [36]. In this section we explain the

idea of PIHD in one particle case and present a way of computing the

escape rate for multidimensional systems.

3.2.1 One degree of freedom

The probability of finding a particle at position rf at time tf , given it has

been at r0 at time t0, is

P (r0, t0|rf , tf ) = C

∫
[Dr] exp(−βI[r(t)]), (3.5)
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where C is a normalisation constant and [Dr] presents integration over

all possible trajectories r(t). Each trajectory r(t) has an action

I[r(t)] =
1

4γ

∫ tf

t0

dt′[mr̈(t′) + γṙ(t′) +∇V (r)]2, (3.6)

where V (r) is the external potential of the system. In the PIHD method

the external potential is modified by a bias potential Vbias(r) resulting in a

boosted potential Vb(r) = V (r) + Vbias(r). The action I[r(t)] is then written

in terms of the boosted potential and algebraically modified into two parts

as

I[r(t)] =
1

4γ

∫ t

t0

dt′[mr̈(t′) + γṙ(t′) +∇Vb(r)−∇Vbias(r)]
2

=
1

4γ

∫ t

t0

dt′[mr̈(t′) + γṙ(t′) +∇Vb(r)]
2

︸ ︷︷ ︸
=Ib[r(t)]

(3.7)

+
1

4γ

∫ t

t0

dt′[∇Vbias(r)
2 − 2ξ(t′)∇Vbias(r)]︸ ︷︷ ︸

=Iξ[r(t)]

= Ib[r(t)] + Iξ[r(t)], (3.8)

where ξ(t′) comes from Eq. (2.2). Now Eq. (3.5) can be written as

P (r0, t0|rf , tf ) = C

∫
[Dr] exp(−βIb[r(t)]) exp(−βIξ[r(t)]). (3.9)

An escape event is considered to occur when a particle leaves the initial

state I and enters the final state F defined as r ≥ r′. The probability for

an escape event is

Pesc(t) =

∫
r≥r′

dr

∫
r0<r′

dr0P (r0)P (r0, t0|r, t), (3.10)

where the first integration is over the final state F and the second inte-

gration is over the initial state I. P (r0) is the equilibrium distribution of

the initial configurations. In the numerical simulations, integration over

the equilibrium distribution is handled by letting the system equilibrate

in the initial state. The integration over the final state is numerically

computed by sampling the trajectories initiated from I and ending in F.

Thus, the escape probability of Eq. (3.10) can be written in the sampling

form

Pesc(t) =
1

Nξ

Ntraj∑
i=1

θ(t− ti) exp(−βIξ[ri(t)]), (3.11)

where ti is the time of an escape event, θ(. . . ) the Heaviside step func-

tion, and exp(−βIξ[ri(t)]) a PIHD weight assigned to each trajectory. The
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normalisation factor Nξ is computed as

Nξ =

Ntraj∑
i=1

exp(−βIξ[ri(t)]). (3.12)

The action Iξ[r(t)] is numerically integrated during the simulation as

Iξ[r(t)] =
1

4γ

∫ t

t0

dt′∇Vbias(r)[∇Vbias(r)− 2ξ(t′)]. (3.13)

3.2.2 Multiple degrees of freedom

In a multidimensional system the action Iξ[r(t)] of Eq. (3.13) is computed

individually for each degree of freedom

Ii,ξ[ri(t)] =
1

4γ

∫ t

t0

dt′∇iVbias(ri) · [∇iVbias(ri)− 2ξi(t
′)]. (3.14)

The net action Iξ[r(t)] is then a sum over the individual degrees of freedom

Iξ[r(t)] =
N∑
i=1

Ii,ξ[r(t)] =
1

4γ

N∑
i=1

∫ t

t0

dt′∇iVbias(ri) · [∇iVbias(ri)− 2ξi(t
′)]. (3.15)

The integral over time can be computed in a discrete form as

Iξ[r(t)] =
1

4γ

N∑
i=1

tk=t∑
tk=0

∇iVbias(ri,k)) · [∇iVbias(ri,k))− 2ξi,k]δt, (3.16)

where k referers to discretised time and δt is the time step. The normali-

sation factor for a multidimensional system is

Nξ =

Ntraj∑
j=1

N∑
i=1

e−βIi[rj(t)]. (3.17)

The effect of PIHD on the escape probability curve is shown in Fig. 3.1.

PIHD smoothens the escape probability curve thus reducing the variance

in the fitted line whose tangent is the escape rate R.

3.2.3 Bias potential

The bias potential for each bead was chosen here to be

Vbias(x, y) =

⎧⎨
⎩ −1

2bω
2
0x

2, x ≤ x0;

−bΔV + 1
2bω

2
b (x− xb)

2, x > x0.
(3.18)

where b is a parameter to be chosen between 0 ≤ b < 1. Thus the bias

potential flattens the external potential along the x-axis making escape

events more frequent. We tried a few different choices of the bias poten-

tial, including a constant force on all the beads as well as dragging the

chain from one end. The one described by Eq. (3.18) here worked best.
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Figure 3.1. The escape probability for a self-avoiding chain of length N = 32 using MD
and PIHD and corresponding linear fits to obtain the escape rate. The figure
shows that the PIHD smoothens the escape curve therefore improving the
accuracy of the estimate for the escape rate.

3.3 Nudged elastic band

In order to apply the harmonic transition state theory (HTST) of Eq.

(2.25) in the one-dimensional external double well potential of Eq. (2.20),

the saddle point of transition (‡) and the initial minimum need to be

known. To find the saddle point, the minimum energy path (MEP) from

I to F is computed using the Nudged Elastic Band (NEB) method [37, 38,

39] in the external potential of Eq. (2.20). In the NEB method, a set of

replicas of the system, referred to as images, {rp}Pp=1 are placed along a

path between the initial state minimum rI = −a01 and the final state

minimum rF = a01, where =[1, 1, . . . , 1] is a vector of length equal to the

polymer length N .

The images represent a discretisation of the path and to control the dis-

tribution of these discretisation points, the images are connected with har-

monic springs with spring constant kNEB. An estimate of the tangent [37]

to the path is used to project out the parallel component of the true force

acting on the beads and the perpendicular component of the spring force

(the ’nudging’). The images are then displaced iteratively using Velocity

Verlet integration with velocity projection so as to zero the net force acting

on the beads until the images lie along the MEP.

At the end of the NEB calculation the images give a discrete represen-

tation of the MEP, but no image will be exactly at the saddle point. An

accurate estimate of the saddle point was found here by identifying the

image with the highest energy and then minimising the force on this im-
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age with the Newton-Raphson method. The method consists of iterations

r(n+1) = r(n) −H−1Fsys(r(n)), where Fsys(r) is the force of the real system

(no NEB spring forces) and H−1 is an inverse of the Hessian matrix (Ja-

cobian matrix of the force) with elements given by Eq. (2.26). Within a

few iterations, the method converges to a point r‡ where F(r‡) = 0. If the

initial point is close enough to a saddle point, then the Newton-Raphson

method will most likely converge into the saddle point rather than other

points where the force is zero. The activation energy is then given by

the energy difference between the initial state and the saddle point as

ΔE = E(r‡) − E(r0). The Hessian matrices H0 and H‡ of Eq. (2.26) are

evaluated using the finite difference method.

3.4 Forward flux sampling

The forward flux sampling (FFS) method was initially developed to study

rare events in non-equilibrium systems with stochastic dynamics [40, 41,

42, 43]. FFS is generally speaking a class of methods based on a series

of interfaces, or planes, between the initial and final states. A rare event

transition from the initial state to the final state is described by the order

parameter λ which is used to define the initial and final states. A series of

interfaces λ0, λ1, . . . , λn is then placed between the initial and final states.

The rate constant is computed by sampling the dynamics between these

interfaces.

Using FFS, the rate constant is obtained as [41]

RFFS =
Φ̄I,0

h̄I
P (λn, λ0), (3.19)

where Φ̄I,0/h̄I is the initial flux across the first plane λ0 towards the final

state and P (λn|λ0) is the probability for the system to reach the plane λn

given it was initially at λ0. In the current work the ’direct’ FFS method

was used to obtain the escape rate of a polymer in the external symmetric

double well potential. The following procedure describes the ’direct’ FFS

algorithm.

1. The initial flux is calculated by running a long trajectory in the ini-

tial state for time tinit and counting the number of crossings q of the

first interface λ0 towards the final state. Therefore, the initial flux is

Φ̄I,0/h̄I = q/tinit.
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2. A configuration is picked up randomly from the initial configurations

generated and a trajectory starting from this configuration is simulated

until λ1 is reached or until the trajectory returns to the initial state by

crossing λ0. Each successful crossing of λ1 is stored. The probability

P (λ1|λ0) is then estimated as a fraction between the number of success-

ful crossings and the number of all trajectories.

3. The previous step is repeated using the end points of the successful tra-

jectories at λ1 as initial configurations. The trajectories are simulated

until λ2 is reached or until the trajectory returns to the initial state by

crossing λ0. The probability P (λ2|λ1) is estimated again as a fraction

between the number of successful crossings and the number of all tra-

jectories.

4. The procedure is repeated until λn is reached and the probability P (λn|λ0)

can be computed as

P (λn|λ0) =
n−1∏
i=0

P (λi+1|λi). (3.20)

A Gaussian statistical error estimate for the rate is obtained by repeating

the FFS calculation several times.

The most straightforward way to position the planes is to place them

between the initial and final states with equal spacing. The computa-

tional efficiency of the ’direct’ FFS method can be optimised by adjusting

the plane positions [42, 44]. The planes are adjusted in a way that the

flux P (λi+1|λi) across the planes stays as constant as possible. Additional

planes are added to the region where the flux is small and planes are

removed from where the flux is large.

3.4.1 Dynamical corrections using forward flux sampling

The computation of the dynamical correction factor κ for transition state

theory was presented in Sec. 2.3.2. In this thesis we studied an alterna-

tive way of computing the dynamical correction factor κ using FFS. In-

stead of placing the first plane near the initial state we place the first

plane at the barrier top where the centre of mass of the polymer is exactly

at the barrier top. The last plane is placed near the final minimum.

In the computation of κ, the initialisation is done by simulating the

polymer confined into the initial hyperplane at the barrier top. At each
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time step, the net force is reduced from each bead as Fi − 1/N
∑N

i=1 Fi, so

that the centre of mass of the polymer stays in the hyperplane. Uncorre-

lated initial configurations in the hyperplane are generated by letting the

polymer relax twice the correlation time τ while confined on the hyper-

plane. For each initial configuration generated, a random velocity from

the Maxwellian distribution P (vi) ∝ exp(−mv2i /2) is assigned to each de-

gree of freedom i. If the net velocity of the polymer
∑N

i=1 vi is negative the

velocities of individual beads are reversed as vi → −vi. This ensures that

the samples generated present trajectories crossing the hyperplane to the

direction of the final state.

Using these initial configurations, the forward flux to the final state is

computed according to Eq. (3.20). The expression for κ is then

κ = P (λn|λ0) =

n−1∏
i=0

P (λi+1|λi). (3.21)

3.5 Effective potentials

The escape rate of the multidimensional polymer system can also be es-

timated with one-dimensional Kramers’ Eq. (2.33) when the multidimen-

sional energy landscape is coarse-grained into a single reaction coordi-

nate. One possibility is to choose the x-coordinate of the centre of mass

xC as the independent variable. An effective potential energy curve for

this one degree of freedom is then obtained by thermally averaging over

all the other degrees of freedom. The thermal average of a function f(r)

for a fixed value of the x-coordinate of the centre of mass is

〈f〉C =
1

ZN (xC)

∫ N∏
i=1

dr′if({r′i})δ(xC − 1

N

N∑
j=1

x′j︸ ︷︷ ︸
=x′

C

)e−βE({r′i}), (3.22)

where

ZN (xC) =

∫ N∏
i=1

dr′iδ(xC − 1

N

N∑
j=1

x′j)e
−βE({r′i}). (3.23)

By applying this averaging to the total potential energy, an effective

energy curve Eeff(xC, N) = 〈E〉C is obtained. The friction coefficient for

this reduced dimensionality system is γeff ≈ NγK . The effective friction

coefficient in the Kramers rate expression, γK , was adjusted here to ob-

tain a good estimate of the simulated escape rate of a single particle and

turned out to be γK = 0.82γ in the two-dimensional external potential of
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Eq. (2.21). The Kramers approximation for the escape rate of a polymer

with N beads is thus obtained as

RK(N) =
ω0,eff(N)ωB,eff(N)

2πγeff
e−βΔEeff(N). (3.24)

From the shape of the effective potential curves, the parameters ω0,eff(N),

ωB,eff(N) and ΔEeff(N) were estimated by fitting parabolas at the initial

state minimum and at the barrier maximum.

The internal degrees of freedom of the polymer contribute to the ef-

fective potential curve Eeff . Alternatively, an effective external potential

curve without including the interaction between the beads can be calcu-

lated as Veff(xC, N) = 〈Vext〉C. We compare the two energy curves and the

Kramers rate estimates obtained from each one in Sec. 4.1.

More accurately, a two-dimensional energy surface can be sampled by

thermal averaging with the reaction coordinate defined as (xc, Rg), where

Rg is the radius of gyration. The thermal average for a two-dimensional

reaction coordinate is

〈f〉C,Rg =
1

ZN (xC, Rg)

∫ N∏
i=1

dr′if({r′i})δ(Rg −R′
g)δ(xC − x′C)e

−βE({r′i}),

(3.25)

where

ZN (xC, Rg) =

∫ N∏
i=1

dr′iδ(Rg −R′
g)δ(xC − x′C)e

−βE({r′i}). (3.26)

Equation (3.25) can be used to sample the two-dimensional total potential

energy surfaces Eeff(xC, Rg, N) = 〈E〉C,Rg of escape events.
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4. Results

4.1 Escape in an asymmetric potential well

In Publication I, the escape rates of ideal and self-avoiding FENE chains

were studied in the two-dimensional system. Two variants of the exter-

nal potential were used: the external potential of Eq. (2.21) with a con-

finement in the y-direction and the external potential of Eq. (2.22) with-

out a confinement in the y-direction. The external potential without the

y-directional confinement has been previously considered by Shin et al.

[18]. The escape rate was solved with the path integral hyperdynamics

(PIHD) simulations and with Kramers’ Eq. (3.24) using effective poten-

tials. Chain lengths studied were N = {8, 16, . . . , 80}.

The values of the parameters used in the simulations were m = m0 =

1870 amu, kBT = 1.2 and σ = 1.02 nm, which roughly correspond to three

base pairs of double stranded DNA. These parameters fix the mass, length

and energy scales resulting in a time scale characteristic of the LJ poten-

tial as tLJ =
√
mσ2/ε = 30.9 ps, where ε = 1 kBT . The external potential

was defined by parameters ω0 = 0.0014, ωb = 0.032, ΔV = 0.3 kBT . The

barrier was located at position xb = 16 and the crossover between the two

parabolas at x0 = 12. The parameter in the FENE spring constant was

kF = 15 and the maximum FENE separation R0 = 2.0. The Langevin

equation was integrated in time using the BBK integration scheme of Eq.

(3.3) with a time step of δt = 0.005. The BBK-integrator is particularly

well suited for PIHD. The criterion for a crossing event in the PIHD sim-

ulations was that the x-coordinate of the centre of mass xC has reached

xb + 4.0. The PIHD bias parameter b in Eq. (3.18) was chosen between

0.7 . . . 0.9. The effective potential curves Φeff and Veff were sampled hold-

ing the centre of the mass of the system still at a given position xC while
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the samples were generated.

The friction chosen in the Langevin dynamics, γ = 0.7 (= 3.8×10−6 kg/s),

corresponds to the high friction range of Kramers’ theory γ � πωb [8].

With this choice of friction, the effective viscosity of the fluid surrounding

the polymer can be estimated to be η ≈ 1.3 × 10−5 g(cm s)−1 (for water

η = 1 g (cm s)−1) [22].

4.1.1 Effect of confining external potential

The escape rates for a self-avoiding chain from both external potentials,

with the y-directional confinement of Eq. (2.21) and without the y-directional

confinement Eq. (2.22), are shown in Fig. 4.1. With both external poten-

tials the escape rate has a minimum around N = 32, after which the

escape rate starts to increase. This increase is larger when the confine-

ment in the y-direction is present. This is due to ’crowding’ in the po-

tential well; with the confining external potential, the long polymers no

longer fit in the potential well and obtain a higher potential energy at the

minimum. The effective potentials at the minimum Veff(0, N) and at the

barrier top Veff(xb, N) are shown in Fig. 4.2. The potential energy at the

minimum increases faster when the y-directional confinement is present.

This lowers the energy barrier of the escape thus enhancing the escape

rate.

No confinement in y-direction

Confinement in y-direction

Figure 4.1. The escape rate of a self-avoiding polymer from the external potential of Eq.
(2.22) without confinement in y-direction and from the confining external po-
tential of Eq. (2.21). The decreasing escape rate shows a minimum at the
chain length N = 32 after which it starts to increase. Increase in the escape
rate for longer chains is more pronounced in the potential with y-directional
confinement.

Figure 4.2 also shows the effective potentials at the barrier top. In the

confining external potential, the effective potential at the barrier top is

increasing while in the potential without the y-directional confinement it
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starts to decrease after N = 32 indicating that the chain is more elongated

at the barrier top. The same ’crowding’ effect explains this: while the

centre of the mass is still at the barrier top, most of the chain is still in

the initial well and cannot ’fit’ in the well same way as it can fit into the

external potential without the confinement in the y-direction, where it has

more space to spread out. This ’crowding’ effect is seen for self-avoiding

chains only.

No confinement in y-direction

Confinement in y-direction

No confinement in y-direction

Confinement in y-direction

Figure 4.2. The effective external potentials at the minimum (circles) and at the barrier
top (triangles), thermally averaged according to Eq. (3.22) in the both exter-
nal potentials, with and without the y-directional confinement.

4.1.2 Escape rate in a confining potential

The escape rate of the polymer system was computed in the confining ex-

ternal potential of Eq. (2.21). The escape rate calculated from Kramers’

Eq. (3.24), using both Eeff(xC, N) and Veff(xC, N), is compared with the

PIHD simulation rate in Fig. 4.3. Here, the rates obtained by the PIHD

simulations present the correct results for the escape rate within the nu-

merical errors.

Solving the escape rate with Kramers’ Eq. (3.24) using both Eeff(xC, N)

and Veff(xC, N) results in the same escape rate for the ideal FENE chain.

The escape rate of the ideal FENE chain decreases monotonically and

Kramers’ equation gives good agreement with PIHD simulations for chains

of length N < 24. Kramers’ equation overestimates the rate for ideal

chains longer than this, yet still producing qualitatively correct rates.

The escape rates obtained with Kramers’ Eq. (3.24) for the self-avoiding

FENE chain differ more from the PIHD simulation rates. Kramers’ Eq.

(3.24) clearly overestimates rates for chains longer than N = 32. The

difference in the escape rate with PIHD simulations is larger when the

escape rate is obtained using Eeff(xC, N). This indicates that the reaction
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Figure 4.3. The polymer escape rate from the confining two-dimensional external poten-
tial of Eq. (2.21) for the ideal FENE chain model (left panel) and for the
self-avoiding FENE chain model (right panel). The ideal chain model shows
monotonic decrease and fairly good agreement between the PIHD simulation
and Kramers’ rate for the short chains. For the self-avoiding chain model, the
curve obtained using the effective potential energies and Kramers’ Eq. (3.24)
is qualitatively similar to curve obtained by PIHD but vastly overestimates
the rate for the longer chains. The purple dot represents the rate estimate
obtained by averaging the potential energy over a tilted line shown in Fig.
4.5.

coordinate for the escape process is not defined accurately enough.

The curves for the effective potentials Eeff(xC, N) and Veff(xC, N) are

thermally averaged according to Eq. (3.22) and are shown in Fig. 4.4. The

parameters ω0,eff(N), ωB,eff(N) and ΔEeff(N) for Eq. (3.24) were obtained

by fitting parabolas, shown in red and green, to the minima and maxima

of the curves.

Figure 4.5 shows the total potential energy surface Eeff(xC, Rg, N) as

a function of the x-coordinate of the centre of mass xC and the radius

of gyration Rg, sampled according to Eq. (3.25) for self-avoiding FENE

chains of length N = 8 and N = 40. In the figure it can be seen that the

energy barrier of the escape for the polymer of length N = 8 follows a

vertical line and therefore the escape event is likely to happen in a coiled

state; the radius of gyration of the polymer does not increase when moving

to the barrier top. For the chain of length N = 40 the figure shows that the

energy barrier is tilted and the polymer tends to stretch out at the top of

the barrier. The minimum energy path of the escape is trough the region

of a larger radius of gyration. Tilting of the energy barrier is the reason

why the one-dimensional reaction coordinate is not sufficient to describe

the actual escape event. The curves of Fig. 4.4 do not include the effect

of the tilted energy barrier and the activation energy is too low leading to

an overestimate of the escape rate as shown in Fig. 4.3 (right panel). The

escape rate estimate is improved when the energy at the barrier top is

38



Results

averaged over the tilted line in Fig. 4.5 (right panel). This is shown with

the purple dot in Fig. 4.3 (right panel).

Figure 4.4. The effective external potential Veff(xC, N) (left panel) and effective total
energy Eeff(xC, N) (right panel) curves for chain lengths N = 8, . . . , 80.
Eeff(0, N) increases linearly with N , approximately as Eeff(0, N) ≈ 9N , so the
effective energy at the minimum Eeff(0, N) is reduced from each curve to fit
the curves in the same figure. The red and green lines represent parabolic fits
to the minima and maxima which are used to calculate ω0,eff(N), ωB,eff(N),
and ΔEeff(N) for Eq. (3.24).

Figure 4.5. The effective energy landscape Eeff(xC, Rg, N) according to Eq. (3.25) as a
function of the centre of mass and the radius of gyration of a polymer of length
N = 8 (left panel) and N = 40 (right panel). The dashed lines represent the
case when the reaction coordinate is defined using the centre of mass only.
For the chain of length N = 8 the energy barrier closely follows the dashed
line and a good reaction coordinate can be defined using the centre of mass
only. For the polymer of length N = 40 the energy barrier is tilted, and the
centre of mass based reaction coordinate leads to undersampling of the saddle
point region and underestimates the activation energy. A two-dimensional
reaction coordinate can be defined and averaging at the barrier can be done
along the dotted line giving a higher activation energy. Thermal averaging
along the dotted line samples the saddle point region correctly as it is shown
in the inset where the probabilities along the lines are plotted. The purple
dot in Fig. 4.3 presents the rate computed by averaging over the tilted dotted
line.
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4.2 Escape in a double well potential

In Publication II and Publication III the escape of an ideal harmonic poly-

mer from a one-dimensional potential well was studied. The escape rate

was computed using Brownian dynamics (BD) simulations of Eq. (2.4),

Langevin dynamics (LD) simulations of Eq. (2.2), forward flux sampling

(FFS) of Eq. (3.19), and the harmonic transition state theory (HTST) of

Eq. (2.25) accompanied with dynamical corrections (DC). The DC were

computed using the methodology by Voter and Doll [29], and a novel

method based on FFS described in Sec. 3.4.1. The external potential well

was given by Eq. (2.20) and was the same as used by Lee and Sung [15].

The BBK integration scheme of Eq. (3.3) was used for LD with a time

step of δt = 0.005 and the forward Euler integration of Eq. (3.4) for BD

with a time step δt = 0.01. Chains with different number of beads N in the

range N ∈ {1, . . . , 120} were simulated with parameters γ = 1.0, m = 1.0

and kBT = 1.0. The parameters for the external potential of Eq. (2.20)

were ω2 = 1.5 and a20 = 1.5. The parameters are the same as those used in

Ref. 15. If we choose the units of length, mass and energy to be l0 = 1.02

nm, m0 = 1870 amu, corresponding to a double stranded DNA, and kBT at

T = 300 K, the unit of time becomes t0 =
√

m0l20/kBT = 27.9 ps. The LD

and BD simulations were performed sampling 1 000 - 240 000 trajectories

depending on the chain length.

4.2.1 Minimum energy paths and saddle points

To obtain the escape rate using HTST the initial minimum and the saddle

points of the escape transition needs to be known. The minimum energy

path (MEP) containing the initial minimum and the saddle point of escape

was computed using the Nudged Elastic Band (NEB) method. The MEPs

for chains of length N = {1, 16, 64, 120} as a function of the centre of mass

X0 for the chains with spring constants K = 10 and K = 60 are shown in

the left panel of Fig. 4.6. The barrier height as a function the chain length

N for the chains with spring constant K = 10 and K = 60 is shown in the

right panel of Fig. 4.6.

The height of the energy barrier increases linearly with N until it reaches

a critical value ÑC , where tilde denotes an integer value. The critical

value NC is solved for the continuum chain model in the same external

potential and the value of NC is given by Eq. (2.27). Computed with MEP,

the critical value is ÑC = 8 for the chain with K = 10, and ÑC = 20 for
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Figure 4.6. Left panel: The minimum energy paths (MEP) visualised as a function of the
centre of mass X0 for ideal chains of length N = {1, 16, 64, 120} and harmonic
spring constants K = 10 and K = 60. Right panel: The barrier height along
the MEP as a function of the chain length N . The energy barrier increases
linearly with increasing N until it reaches ÑC after which it saturates. Af-
ter this, the barrier starts to flatten out and the activation energy does not
increase any more.

the chain with K = 60. This is in good agreement with the analytical ex-

pression of Eq. (2.27), which gives NC = 8.11 for K = 10 and NC = 19.86

for K = 60.

For chains of length N < ÑC the saddle point corresponds to a config-

uration where the polymer lies in a coiled state on top of the barrier: all

beads are on top of each other. For the longer chains, N > ÑC , the poly-

mer stretches out and energy barrier quickly saturates to a plateau. In

this region, the negative eigenvalue λ‡
1 of the unstable mode approaches

zero as the barrier along this mode flattens out. This is shown in the left

panel of Fig. 4.7. The smallest positive eigenvalue λ‡
2, whose eigenmode is

responsible of the stretching of the chain, decreases until ÑC after which

it starts to increase. With increasing N > ÑC the eigenvalue λ‡
2 saturates

to a constant value.

The right panel of Fig. 4.7 illustrates the eigenmodes s1 and s2 (eigen-

vectors of the Hessian H‡) at the saddle point for a chain of length N = 56.

The red triangular arrows illustrate the movement of the chain towards

the final state along the eigenmode s1. The blue square arrows show that

the eigenmode s2 causes stretching of the chain.

4.2.2 Dynamical rate and harmonic transition state theory

The escape rate of an ideal harmonic polymer chain from the external

potential of Eq. (2.20) was computed with LD and BD simulations, us-

ing equations of motion (2.3) and (2.4), respectively. The criterion for

the escape event was that the centre of mass of the polymer has reached
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Figure 4.7. Left panel: The two lowest eigenvalues of the Hessian matrix H‡ at the sad-
dle point for chains with harmonic spring constants K = 10 and K = 60. The
negative eigenvalue λ‡

1 corresponding to the unstable mode approaches zero
after ÑC . The smallest positive eigenvalue λ‡

2 decreases until ÑC after which
it starts increasing and saturates to a constant value. The eigenmode corre-
sponding to λ‡

2 is responsible for the chain stretching after ÑC . Right panel:
Visualisation of the two lowest eigenmodes at the saddle point for a chain of
length N = 56 and spring constant of K = 60. The location of the beads at
the saddle point are marked with black dots and the eigenvector s1 is marked
with red triangular arrows and eigenvector s2 with blue square arrows.

Figure 4.8. The escape rate R obtained from BD simulations (circles), LD simulations
(squares), HTST with AHC (diamonds) accompanied with dynamical correc-
tions (stars) computed according to Voter and Doll [29], and Langer’s rate
theory (triangles). The chain with spring constant K = 10 is shown on the
left panel and the chain with spring constant K = 60 is shown on the right
panel. Langer’s theory underestimates the escape rate in the region N > ÑC

where the unstable mode λ‡
1 appearing in the prefactor of Eq. (2.35) ap-

proaches zero as the barrier flattens out. For chains N ≥ 56 with spring
constant K = 10 there is numerical inaccuracy in Langer’s rate, because the
unstable mode λ‡

1 < 10−9 is close to zero.

X0 = a0/2. Using this criterion the escape probability curve was com-

puted according to Eq. (3.1). The actual escape rate was computed using

Eq. (3.2). An example of the Pesc(t) curve of Eq. (3.1) and a linear fit to it

is shown in Fig. 3.1. In the figure, the curve is for a self-avoiding chain,

but it is similar for an ideal chain as well.

The escape rate obtained by MD simulations, using both BD and LD, is

compared with the escape rate by HTST with DC in Fig. 4.8. The HTST
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Figure 4.9. The escape rate calculated for polymers with spring constant of K = 60 as a
function of the chain length N close to the crossover, ÑC . Circles and squares
indicate results obtained from MD simulations using Brownian and Langevin
dynamics, respectively. Triangles indicate HTST rate estimates (Eq. (2.25)),
diamonds estimates from HTST with anharmonic corrections (Eq. (2.29)),
and stars estimates HTST with AHC and DC (Eq. (2.31)). The anharmonic
correction factor g(α), shown in the inset, is given by Eq. (2.28) and it signif-
icantly reduces the diverging peak in the HTST rate estimate.

is corrected with anharmonic corrections (AHC), according to Eq. (2.29),

which reduces the divergence due to the smallest positive eigenvalue ap-

proaching zero at ÑC . The effect of the AHC is shown in Fig. 4.9, where

the divergence at ÑC in the HTST rate of Eq. (2.25) is reduced by the AHC

of Eq. (2.28). The factor g(α) of Eq. (2.28) is shown in the inset, where

it has mostly the value of 1.0, but a sharp peak at NC , which reduces the

divergence in the HTST rate.

The escape rate from HTST of Eq. (2.29) reaches a plateau quickly af-

ter ÑC . This is due to the energy barrier reaching its maximum height

and the polymer at the saddle point taking a stretched configuration as

illustrated in Figs. 4.6 and 4.7. In this region of a flat barrier, the influ-

ence of the DC becomes relevant. The DC here is computed according to

method of Eq. (2.30) by Voter and Doll [29]1. The dynamically corrected

HTST rate reaches good agreement with the rate obtained from LD and

BD simulations within a factor of two.

The escape rate given by the Kramers-Langer Eq. (2.35) significantly

underestimates the escape rate in the region N > ÑC for chains with both

spring constants, K = 10 and K = 60. In Langer’s expression for the

escape rate, there is a prefactor that includes |λ‡1|. For the systems ex-

1Note that in this calculation, the correct Maxwellian-flux distribution for the
perpendicular component of the velocity was not used. Instead, all the velocities
were taken from the Maxwellian distribution. However we have computed the
correct DC using a method based on FFS in Sec. 4.2.3.
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Figure 4.10. The escape rate obtained by LD (stars), by HTST (triangles) accompanied
with DC using FFS (squares) and by solving the escape rate using only FFS
(diamonds). The inset shows the dynamical correction factor κ. HTST with
DC computed using FFS gives excellent agreement with LD simulations as
does the rate computed by FFS only.

hibiting a flat barrier, the eigenvalue of the unstable mode λ‡
1 approaches

zero resulting in a drastic underestimate of the escape rate.

4.2.3 Forward flux sampling

In Publication III, the escape rate of a harmonic ideal polymer in the

external double potential well potential of Eq. (2.20) was also computed

using the Forward Flux Sampling (FFS) methodology described in Sec.

3.4. The escape rate obtained by FFS agrees quantitatively with the rate

obtained from Langevin dynamics simulations as shown in Fig. 4.10.

In addition, we calculated the dynamical correction factor κ for HTST

using the FFS methodology described Sec. 3.4.1. Using the FFS method

the DC factor κ is given by Eg. (3.21). The dynamically corrected HTST

rate agrees quantitatively with the LD simulations.

4.2.4 Efficiency analysis

In Publication III, the computational efficiency of solving the escape rate

of a harmonic ideal polymer chain in the external double well potential

was examined with four methods: molecular dynamics simulations us-

ing LD, FFS, and HTST with DC, where the DC were computed using

methodology by Voter and Doll [29] (VDDC) and FFS type algorithm of

Sec. 3.4.1 (FFDC). To benchmark the computational efficiency, the num-

ber of force function evaluations used in each method was counted. Then

we compared the number of function evaluations used in each method to
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Method ΔR/R # func. eval.

N = 8

Direct LD 6 % 6.4× 109

FFS (10 planes) 6 % 5.0× 108

HTST+VDDC 3 % 8.0× 107

HTST+FFDC 4 % 8.0× 106

N = 64

Direct LD 10 % 3.0× 1013

FFS (10 planes) 17 % 9.0× 1011

FFS (16 planes) 10 % 7.0× 1011

HTST+VDDC 9 % 2.6× 1011

HTST+FFDC 3 % 2.88× 1010

Table 4.1. Relative errors ΔR/R of the escape rate and the number of the force evalua-
tions required for each method for polymers of length N = 8 and N = 64 at
a temperature of T=1.0. The HTST+FFDC converges to an small relative er-
ror with the least computational effort, about an order of magnitude less than
HTST+VDDC which in turn is about an order of magnitude more efficient than
FFS. At this relatively high temperature, the direct Langevin dynamics simu-
lation can be carried out to obtain an estimate of the escape rate and it turns
out to be one to two orders of magnitude less efficient than FFS, depending on
the length of the polymer.

reach the same level of statistical accuracy. The computational cost for

ideal polymers of length N = 8 and N = 64 was evaluated. The statistical

error was computed by repeating calculation several times and then using

the standard deviation divided by
√
Ns as an error estimate (standard er-

ror of the mean), where
√
Ns is the number of independent samples. The

results for N = 8 and N = 64 are shown in Table 4.1 at a temperature

T = 1.0. For FFS with the chains of length N = 8 and N = 64 (16 planes),

the sample size was Ns = 20 with each sample having 10 000 trajectories

fired from each plane. For DC calculations Ns = 10 with 1000 trajectories

fired from each plane.

For both chain lengths studied at the temperature of T = 1.0, FFS is

an order of magnitude faster than direct LD simulations for obtaining the

same level of statistical error, and HTST+VDDC is two orders of mag-

nitude faster than direct LD simulations. HTST+FFDC is two orders of

magnitude faster than direct LD simulations for N = 64 and three orders

of magnitude faster for N = 8.

At the lower temperature of T = 0.5, direct LD simulations become im-

possible. In Table 4.2, the efficiency of FFS is compared with HTST+FFDC
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Method ΔR/R # func. eval.

FFS (20 planes) 20 % 9.3× 1011

HTST+FFDC 3 % 6.0× 1010

Table 4.2. Comparison of computational efficiency of FFS and HTST+FFDC at T = 0.5

for polymers with N = 64. Even with addition of extra hyperplanes in the
small flux region, most of the FFS simulations fail in that at some point none
of the trajectories make it to the next plane. The number of force evaluations
reported here includes only the successful FFS calculations, so it present a
lower bound for the number of function evaluations needed for the this level of
accuracy.

for polymers of length N = 64. HTST+FFDC is an order of magnitude

faster than FFS. At this temperature, most of the FFS simulation runs

fail in that at some point none of the trajectories make it to the next

plane. We optimised the FFS algorithm by adding extra planes to the

region where the forward flux is small. This reduced the number of failed

FFS simulation runs, but still most of the runs failed. The error estimate

is obtained using only successful FFS simulation runs, so the number of

force function evaluations represent the lower bound for required function

evaluations.

According to Refs. 43 and 44 the FFS method can be optimised by ad-

justing the plane positions and by adjusting the number trial runs shot

from each plane. For the chain of length N = 64 we optimised the plane

positions so that six additional planes were positioned in the region where

the forward flux P (λi+1|λi) is small. In this region the potential gradient

uphill is steep (see Fig. 4.6 left) and the majority of the trial runs fail to

reach the next plane when the distance between the planes is large. With

the optimisation procedure a smaller statistical error was obtained with

a smaller number of time steps as is shown in Table 4.1.

The computational cost of HTST+FFDC comprises the cost of finding

the MEP using the NEB method, the equilibration of initial configura-

tions within the transition state hyperplane, and computing the forward

flux for DC. MEP calculations typically took a few thousand time steps

for the polymers, which is negligible here. In the computation of DC, 90

% of the computational cost comes from equilibrating the polymer within

the transition state hyperplane, and the rest 10 % is the cost of computing

the forward flux P (λn|λ0). It is possible that the time needed for equilibra-

tion could be reduced using more efficient algorithms such as stochastic

collisions [45].
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5. Summary and conclusions

The thesis has focused on the canonical polymer escape problem of various

polymer models in two different external potentials. The first system is a

two-dimensional asymmetric potential well with no minimum in the final

state. In this system we have examined ideal and self-avoiding FENE-

LJ polymers. The second system is a one-dimensional bistable external

double well potential, where the harmonic ideal chain has been studied.

We have examined the dynamics of the escape event, mainly the escape

rate, but also the configurations which polymers take during escape have

been studied.

In Publication I the seminal Kramers’ escape problem for one particle

was extended for polymers escaping from a two-dimensional external po-

tential. Similar system has been previously studied by Shin et al. [18, 19].

We computed the escape rate using Path Integral Hyperdynamics (PIHD)

simulations. With a proper choice of the bias potential PIHD produces

numerically exact results with Langevin dynamics (LD). We compared

the PIHD results for the escape rate with the Kramers’ rate. Kramers’

rate was obtained by using one-dimensional effective potentials as a func-

tion of the x-coordinate of the centre of mass, for both the total potential

energy Eeff(xc) and the external potential energy Veff(xc). Kramers’ rate

obtained by using the both effective potentials, Eeff(xc) and Veff(xc), pro-

duces qualitatively correct behaviour of the escape rate as a function of

the chain length N but overestimates the rate for longer polymers.

Kramers’ estimate for the escape rate is better when the polymer chain

is short, so that the polymer is in a coiled state during the escape process.

Longer polymers tend to stretch out at the barrier top during the escape

process. We sampled the two-dimensional effective energy landscapes of

the polymer escape as a function of the x-coordinate of the centre of mass

and the radius of gyration Rg, for the total potential energy Eeff(xc, Rg).
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The two-dimensional energy surfaces show that the energy barrier for the

escape is tilted for the longer polymers as shown in Fig. 4.5. Averaging the

total energy at the barrier top over the tilted energy barrier improves the

rate estimate as shown in Fig. 4.3. This indicates that a one-dimensional

reaction coordinate is not sufficient to describe the dynamics of the poly-

mer escape.

In Publication II a one-dimensional harmonic ideal polymer escaping

from a one-dimensional bistable external double well potential was stud-

ied. The escape rate was computed by molecular dynamics simulations

using Langevin dynamics (LD) and Brownian dynamics (BD). The escape

rate was also calculated using the harmonic transition state theory [31]

(HTST) with dynamical corrections (DC) obtained by the method proposed

by Voter and Doll [29]. The escape rate results from HTST with DC were

compared with MD. HTST with DC produces quantitative agreement in

escape rate with the MD simulations within a factor of two.

In order to obtain the escape rate with HTST, the minimum energy path

(MEP) of escape was determined for different chain lengths N using the

Nudged Elastic Band method. We studied the eigenmodes of the Hes-

sian matrices at the saddle point of the MEP to illustrate the dynamics

of escape. The two lowest eigenmodes at the saddle point describe the

dominant dynamics.

The lowest mode with a negative eigenvalue corresponds to the polymer

moving towards the final state. This eigenvalue approaches zero when

the chain length N increases. With this the energy barrier along the MEP

flattens out, which makes Langer’s estimate [9, 15] for the escape rate

poor, since Langer’s expression for the escape rate includes the negative

mode as a prefactor describing recrossings back to the initial state.

The mode with the second lowest eigenvalue is responsible for the poly-

mer stretching out at the saddle point after the critical length NC . With

increasing N , the eigenvalue of the second lowest mode decreases until

NC after which it starts to increase, saturating to a constant value. At the

critical length NC , the polymer starts to stretch out and the saddle point

bifurcates into two saddle points. This is analogous to the appearance of

an instanton solution in quantum mechanical rate theories based on the

Feynman path integral describing tunnelling process of a particle. At the

critical length NC , the second lowest eigenvalue approaches zero causing

the divergence in the escape rate. This divergence was mostly eliminated

by introducing anharmonic corrections [15].
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In Publication III, we solved the escape rate using forward flux sam-

pling (FFS) and HTST with DC. With these two methods we obtained

quantitative agreement in the escape rate with LD simulations. DC were

computed with a novel method based on FFS, where the DC factor κ is

computed by sampling the dynamics between the planes, placed between

the transition state hyperplane and a hyperplane in the final state. We

compared numerical efficiency of the three methods: LD, FFS, HTST with

DC. To obtain the same level of statistical error, we found that FFS is

an order of magnitude faster than LD and HTST with DC two orders of

magnitude faster than LD.

For the work presented here, one possible future direction is a full tran-

sition state theory (TST) calculation of the rate in the systems studied

here. Another interesting prospect is to extend the problem to more re-

alistic three-dimensional systems. Performing full hydrodynamic calcu-

lation using for example the fluctuating lattice-Boltzmann method [22]

would also make the system more realistic.
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