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Abstract

We present a new Harnack inequality for non-negative discrete supersolutions of
fully nonlinear uniformly elliptic difference equations on rectangular lattices. This
estimate applies to all supersolutions; instead the Harnack constant depends on the
graph distance on lattices. For the proof we modify the proof of the weak Harnack
inequality. Applying the same idea to elliptic equations in a Euclidean space, we also
derive a Harnack type inequality for non-negative viscosity supersolutions.
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1 Introduction

We consider fully nonlinear, non-homogeneous second order equations of the form

F (D2u) = f(x) (1.1)

with a uniformly elliptic operator F . A typical statement of the Harnack inequality is that
there exists a constant C > 0 such that the inequality

max
U

u <= C
{
min
U

u+ ∥f∥Ln(V )

}
(1.2)

holds for every non-negative solution u of (1.1) in V . Here V is a set which is (enough)
larger than U , and n represents the dimension of space. One of well-known proofs of the
Harnack inequality is a combination of a weak Harnack inequality, which asserts that, for
some p > 0,

∥u∥Lp(U) <= C
{
min
U

u+ ∥f∥Ln(V )

}
holds for every non-negative supersolution u, and a local maximum principle (or a mean
value inequality):

max
U

u <= C
{
∥u∥Lq(U) + ∥f∥Ln(V )

}
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for subsolutions u, where q > 0 is arbitrary. These estimates are well-known in the contin-
uum case where (1.1) is studied as a partial differential equation in Rn; for instance, the
reader is referred to [9, Chapter 9] for linear equations and [3, Chapter 4] for fully nonlinear
equations. The corresponding results are also obtained in the discrete case when we study
(1.1) as a difference equation on lattices. In [13] the Harnack inequality for elliptic difference
equations is derived via the weak Harnack inequality and the local maximum principle. See
also [14] for the parabolic case and [15, 16] for general meshes.

The main goal of this paper is to show that, in the discrete case, a modified proof
of the weak Harnack inequality implies a new type of the Harnack inequality for discrete
supersolutions to (1.1) on rectangular lattices (Theorem 4.1). Our proof is direct and simple
in the sense that we do not need the local maximum principle. The resulting estimate is
different from the literature in that it holds for supersolutions which are not necessarily
subsolutions; instead the Harnack constant, C in (1.2), depends on the graph distance
on lattices. Due to this, passing to limits in our Harnack inequality does not imply the
continuum Harnack inequality since the Harnack constant C goes to infinity when the mesh
size tends to 0 (Remark 3.4 and 4.2). Here it is worth to mention that such reconstruction
of the continuum Harnack inequality should not be possible since (1.2) does not hold even
for the Laplace equation if we do not require u to be a subsolution; see Example 5.3 for the
counter-example. We can say that our Harnack inequality is an interesting estimate which
comes at the expense of convergence of discrete schemes.

In the proof of the weak Harnack inequality for fully nonlinear equations of the continuum
case ([2, 3]), we take a radially symmetric and increasing supersolution ϕ of the Pucci
equation

P−(D2ϕ) = −ξ(x). (1.3)

Here P− is a Pucci operator (see (5.2) or (2.2) for definition) and ξ is a non-negative,
continuous function whose support is contained in a small ball centered at the origin. Such
a function ϕ is often called a barrier function. In the discrete case, we are able to construct
the barrier function so that ξ is non-zero only at the origin (Lemma 3.1 and Remark 3.2). In
other words, its support is only one point. This is a crucial difference from the continuous
case, and this enables a pointwise estimate for supersolutions of difference equations. In
our proof of the Harnack inequality, we translate the barrier function so that its minimum
point, which originally lies at the origin, comes to a maximum point of the supersolution u of
(1.1). As a result, we obtain the Harnack inequality without discussing the local maximum
principle.

We apply the same idea involving translation of the barrier function to partial differential
equations in Rn. This gives our another result in this paper (Theorem 5.7). To describe
the result, we first note that (1.2) can be stated equivalently as

u(z) <= C
{
min
U

u+ ∥f∥Ln(V )

}
for all z ∈ U, (1.4)

which is a pointwise estimate and does not hold for supersolutions. Employing the theory
of viscosity solutions, we prove that, for a fixed ε > 0, there exists a constant C > 0
depending on ε such that, for every z ∈ U , the minimum value of u over {|x − z| <= ε} is
dominated by the right-hand side of (1.4). In other words, our Harnack inequality needs
further information of u around z. The barrier function ϕ which we will use in the proof is
chosen so that the support of ξ appearing in (1.3) is contained in {|x| <= ε}. Also, around the
origin, ϕ is defined by using a modulus of continuity (from below) of u near z. The resulting
estimate can be said to be a “very weak Harnack inequality” since the minimum of u over
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{|x − z| <= ε} is controlled by its Lp-norm on U . Thus the method in this paper presents
how a simple estimate is established by a simple argument without the Calderón-Zygmund
decomposition appearing in the literature ([2, 3]).

This paper is organized as follows: Section 2 is devoted to preparation for studies of
difference equations on rectangular lattices. In Section 3 we construct a barrier function ϕ
in (1.3) so that the support of ξ lies only at the origin. Then, in Section 4 we give a proof of
the Harnack inequality for non-negative discrete supersolutions. Section 5 is concerned with
the Harnack inequality in Rn for viscosity supersolutions. We use a similar idea to the one
presented in Section 4. In Appendix A we establish a unique existence of discrete solutions
to Dirichlet problems of fully nonlinear uniformly elliptic difference equations. This unique
solution is needed in Section 4 to derive the Harnack inequality with non-zero f .

2 Preliminaries

In this paper we consider an n-dimensional weighted lattice hZn defined as

hZn := {(h1m1, . . . , hnmn) ∈ Rn | (m1, . . . ,mn) ∈ Zn}.

Here hi is a fixed positive constant which represents a mesh size in the direction of xi. We
set hmax := max{h1, . . . , hn} and hmin := min{h1, . . . , hn}. For Ω ⊂ hZn we define its
closure Ω ⊂ hZn and its boundary ∂Ω ⊂ hZn as

Ω := Ω ∪ {x± hiei | x ∈ Ω, i ∈ {1, . . . , n}}, ∂Ω := Ω \ Ω,

where {ei}ni=1 ⊂ Rn is the standard orthogonal basis of Rn, e.g., e1 = (1, 0, . . . , 0).
We next introduce difference operators. Let u : hZn → R, x ∈ hZn and i ∈ {1, . . . , n}.

We define the second order difference operators as follows:

δ2i u(x) :=
u(x+ hiei) + u(x− hiei)− 2u(x)

h2i
,

δ⃗2u(x) := (δ21u(x), . . . , δ
2
nu(x)).

The difference equation we consider is

F (δ⃗2u(x)) = f(x), (2.1)

where F : Rn → R is uniformly elliptic (Definition 2.2), F (0) = 0 and f : hZn → R.

Definition 2.1. Let Ω ⊂ hZn. We say u : Ω → R is a discrete subsolution (resp. superso-

lution) of (2.1) in Ω if F (δ⃗2u(x)) <= f(x) (resp. >= f(x)) for all x ∈ Ω. If u is both a discrete
sub- and supersolution, it is called a discrete solution.

Throughout this paper we fix ellipticity constants 0 < λ <= Λ. To describe the uniform
ellipticity of F in (2.1) we introduce Pucci operators P± : Rn → R, which are defined as

P+(X⃗) := −λ
∑
Xi>0

Xi − Λ
∑
Xi<0

Xi, P−(X⃗) := −λ
∑
Xi<0

Xi − Λ
∑
Xi>0

Xi (2.2)

for X⃗ = (X1, . . . , Xn) ∈ Rn. An easy computation shows that the Pucci operators satisfy

P−(X⃗ + Y⃗ ) <= P+(X⃗) + P−(Y⃗ ) <= P+(X⃗ + Y⃗ ) for all X⃗, Y⃗ ∈ Rn.
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Definition 2.2. We say F : Rn → R is uniformly elliptic if P−(X⃗ − Y⃗ ) <= F (X⃗)−F (Y⃗ ) <=
P+(X⃗ − Y⃗ ) for all X⃗, Y⃗ ∈ Rn.

Putting Y⃗ = 0, we see that P−(X⃗) <= F (X⃗) <= P+(X⃗) since F (0) = 0.
We next state the ABP maximum principle (ABP estimate). This is a pointwise estimate

for subsolutions and supersolutions of elliptic equations, and it will be used in the proof of
the Harnack inequality. We prepare some notations before stating the estimate. For a ∈ R
we set a± := max{±a, 0} (>= 0). Let Ω ⊂ hZn and u : Ω → R. We define ΓΩ[u], an upper
contact set of u on Ω, as

ΓΩ[u] :=

{
x ∈ Ω

∣∣∣∣ there exists some p ∈ Rn such that
u(y) <= ⟨p, y − x⟩+ u(x) for all y ∈ Ω

}
, (2.3)

where ⟨·, ·⟩ is the standard Euclidean inner product in Rn. The p-norm (p ∈ [1,∞)) of u

over Ω is given as ∥u∥ℓp(Ω) :=
(∑

x∈Ω h
n|u(x)|p

)1/p
, where hn := h1×· · ·×hn. We only use

the case p = n in this paper. The diameter of Ω is diam(Ω) := maxx∈Ω,y∈∂Ω |x − y|. Here
| · | stands for the standard Euclidean norm in Rn.

Theorem 2.3 (ABP maximum principle). Let Ω ⊂ hZn be bounded. There exists a constant
CA = CA(n, λ) > 0 such that, for every discrete subsolution (resp. supersolution) u of (2.1)
in Ω, the estimate

max
Ω

u <= max
∂Ω

u+ + CAdiam(Ω)∥f+∥ℓn(ΓΩ[u+]) (2.4)

(resp. min
Ω
u >= min

∂Ω
(−u−)− CAdiam(Ω)∥f−∥ℓn(ΓΩ[u−])) (2.5)

holds.

We do not give a proof of Theorem 2.3; see [13, Theorem 2.1], [10, Theorem 4.1].

3 Barrier function

In the proof of the Harnack inequality we use a barrier function, which is a radially increasing
supersolution of P− = 0 except at the origin. (See [3, Lemma 4.1] for the continuum case.)

For x ∈ hZn given as x = (h1m1, . . . , hnmn) with (m1, . . . ,mn) ∈ Zn, we define ρ(x) :=
|m1| + · · · + |mn|. This represents the graph distance on hZn between 0 and x, i.e., the
number of edges in a shortest path connecting them. Let k ∈ N ∪ {0}. We define a ball
Bk ⊂ hZn as Bk := {x ∈ hZn | ρ(x) <= k}, which is a diamond-shaped set. Note that the
index k is not the Euclidean distance but the graph distance.

Lemma 3.1 (Barrier function). Let k ∈ N. There exists a function ϕ : Bk → R such that
P−(δ⃗2ϕ) >= 0 in Bk \ {0}, (3.1)

ϕ = 0 on ∂Bk, (3.2)

ϕ <= −1 in Bk. (3.3)

Proof. Let {am}k+1
m=0 ⊂ R. We define ϕ(x) := am if ρ(x) = m ∈ {0, 1, . . . , k + 1} and set

ak+1 = 0, ak = −1. We show that, for given am+1 and am such that am+1 > am, we have

P−(δ⃗2ϕ(x)) >= 0 for x with ρ(x) = m if we take am−1 sufficiently small (i.e., am−1 ≪ −1).
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Fix m ∈ {1, . . . , k} and x = (x1, . . . , xn) ∈ Bk \{0} such that ρ(x) = m. Let us calculate
δ2i ϕ(x). If xi = 0, we observe

δ2i ϕ(x) =
am+1 + am+1 − 2am

h2i
=

2(am+1 − am)

h2i
> 0.

On the other hand, if xi ̸= 0, then

δ2i ϕ(x) =
am+1 + am−1 − 2am

h2i
,

which is negative when am−1 ≪ −1. Thus the definition of P− implies that

P−(δ⃗2ϕ(x)) = −λ
∑
xi ̸=0

δ2i ϕ(x)− Λ
∑
xi=0

δ2i ϕ(x).

Now, there exists at least one index i such that xi ̸= 0 since x ̸= 0. Therefore

P−(δ⃗2ϕ(x)) >= −λam+1 + am−1 − 2am
h2max

− Λ
2(am+1 − am)

h2min

(n− 1)

= − λ

h2max

(
am+1 + am−1 − 2am +

2Λh2max(n− 1)(am+1 − am)

λh2min

)
. (3.4)

This is non-negative if am−1 ≪ −1, and hence (3.1) holds. The conditions (3.2) and (3.3)
are clear by construction.

Remark 3.2. Using the barrier function ϕ in Lemma 3.1, we define

ξ(x) :=

{
−P−(δ⃗2ϕ(0)) if x = 0,

0 if x ̸= 0.

Then ϕ is a supersolution of P− = −ξ in Bk. We also note that ξ(0) > 0 since δ2i ϕ(0) =
2(a1 − a0)/h

2
i > 0 for all i = 1, . . . , n.

Remark 3.3. In view of the proof, we notice that ϕ(0) depends on k, n,Λ/λ and hmax/hmin.
The positive constant −ϕ(0) will appear as the Harnack constant CH in (4.2).

Remark 3.4. The quantity in parentheses of (3.4) is chosen to be non-positive, and so we
have am+1−am < am−am−1 form ∈ {1, . . . , k}. This yields a0 < −k−1 since ak+1−ak = 1.
It thus follows that the value ϕ(0) = a0 goes to −∞ as k → ∞. This implies that we cannot
obtain the continuum Harnack inequality as the limit of our discrete Harnack inequality;
see Remark 4.2.

4 Harnack inequality

We show the Harnack inequality for non-negative discrete supersolutions of

P+(δ⃗2u) = −f−(x). (4.1)

Note that a supersolution of (2.1) is also a supersolution of (4.1).

5



Theorem 4.1 (Harnack inequality). Let r ∈ N. Then there exists a constant CH =
CH(r, n,Λ/λ, hmax/hmin) > 0 such that, for every non-negative discrete supersolution u :
B3r → [0,∞) of (4.1) in B3r, the estimate

max
Br

u <= CH

{
min
Br

u+ CAdiam(B3r)∥f−∥ℓn(B3r)

}
(4.2)

holds, where CA is the constant in Theorem 2.3.

We first prove (4.2) in the case when f− ≡ 0; a crucial difference between the discrete
case and the continuum case appears in this part. We translate ξ in Remark 3.2 so that its
support comes to a maximum point of u and derive the estimate for u at the point. The
proof for a general f is similar to the proof in the continuum case; see, e.g., [1, Proof of
Theorem 1.11]. We employ a solution v of a Pucci equation and study u+ v to apply (4.2)
with f− ≡ 0.

Proof. Case: f− ≡ 0. 1. We take xM , xm ∈ Br such that u(xM ) = maxBr u and u(xm) =
minBr u. Our goal is to derive u(xM ) <= CHu(xm). Let ϕ be the barrier function in Lemma
3.1 with k = 2r. Let β > u(xm) (>= 0). We define ϕ̃(x) := βϕ(x− xM ) and

ξ̃(x) :=

{
−P−(δ⃗2ϕ̃(xM )) if x = xM ,

0 if x ̸= xM .

Set B := xM + B2r. Then Br ⊂ B ⊂ B3r since xM ∈ Br. By virtue of Lemma 3.1 and
Remark 3.2, we have 

P−(δ⃗2ϕ̃) >= −ξ̃ in B, (4.3)

ϕ̃ = 0 on ∂B, (4.4)

ϕ̃ <= −β in B. (4.5)

2. Let us study a function u+ ϕ̃. For every x ∈ B we deduce from (4.3) that

P+(δ⃗2u(x) + δ⃗2ϕ̃(x)) >= P+(δ⃗2u(x)) + P−(δ⃗2ϕ̃(x)) >= 0− ξ̃(x).

Namely, u+ ϕ̃ is a supersolution of P+ = −ξ̃ in B. Applying the ABP maximum principle
(2.5) to u+ ϕ̃, we obtain

min
B

(u+ ϕ̃) >= min
∂B

{−(u+ ϕ̃)−} − CAdiam(B)∥ξ̃∥ℓn(ΓB [(u+ϕ̃)−]). (4.6)

Since u is non-negative and (4.4) holds, we have u+ ϕ̃ >= 0 on ∂B, and thus min∂B{−(u+
ϕ̃)−} = 0. As for the left-hand side of (4.6), using (4.5), we compute

min
B

(u+ ϕ̃) <= min
B

u− β <= min
Br

u− β < 0.

Therefore it follows from (4.6) that 0 > −∥ξ̃∥ℓn(ΓB [(u+ϕ̃)−]). Since ξ̃ is nonzero only at xM
by its definition, we must have

xM ∈ ΓB[(u+ ϕ̃)−]. (4.7)

3. We claim (u + ϕ̃)(xM ) < 0. Suppose by contradiction that (u + ϕ̃)(xM ) >= 0, i.e.,
(u+ ϕ̃)−(xM ) = 0. Then, since (u+ ϕ̃)− = 0 on ∂B, (4.7) implies

(u+ ϕ̃)− = 0 on B. (4.8)
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Indeed, by (4.7) there exists some p = (p1, . . . , pn) ∈ Rn such that

0 <= (u+ ϕ̃)−(y) <= (u+ ϕ̃)−(xM ) + ⟨p, y − xM ⟩ = ⟨p, y − xM ⟩ (4.9)

for all y ∈ B. Fix i ∈ {1, . . . , n} and choose k+, k− ∈ N such that xM ±k±hiei ∈ ∂B. (Such
numbers k± exist since B is bounded.) Taking y = xM ± k±hiei in (4.9), we observe

0 <= ⟨p, k+hiei⟩ = k+hipi, 0 <= ⟨p,−k−hiei⟩ = −k−hipi,

which imply pi = 0. Finally, applying p = 0 to (4.9) yields (4.8). However, at a minimum
point xm we have (u+ ϕ̃)(xm) <= u(xm)− β < 0. This contradicts to (4.8).

By the claim we have u(xM ) < −ϕ̃(xM ) = −βϕ(0), and sending β → u(xm) yields
u(xM ) <= CHu(xm) with CH = −ϕ(0).

Case: f− ̸≡ 0. 1. Let v be the discrete solution of{
P−(δ⃗2v) = f− in B3r,

v = 0 on ∂B3r.

We will prove a unique existence of solutions in Appendix A (Theorem A.4) for more general
Dirichlet problems. By the ABP maximum principles we see that v satisfies

max
B3r

v <= max
∂B3r

v+ + CAdiam(B3r)∥(f−)+∥ℓn(ΓB3r
[v+])

<= 0 + CAdiam(B3r)∥f−∥ℓn(B3r) (4.10)

and

min
B3r

v >= min
∂B3r

(−v−)− CAdiam(B3r)∥(f−)−∥ℓn(ΓB3r
[v−])

= 0− 0. (4.11)

2. We now consider a function u + v. By the non-negativity of u and (4.11), we have
u+ v >= 0 in B3r. Next, for x ∈ B3r we compute

P+(δ⃗2u(x) + δ⃗2v(x)) >= P+(δ⃗2u(x)) + P−(δ⃗2v(x)) >= −f−(x) + f−(x) = 0.

Thus u+ v is a non-negative supersolution of P+ = 0 in B3r. From the Harnack inequality
of the case f− ≡ 0 it follows that

max
Br

(u+ v) <= CH min
Br

(u+ v).

Finally, applying the estimates (4.10) and (4.11) to the right- and the left-hand side respec-
tively, we obtain (4.2).

Remark 4.2. Passing to limits in (4.2) as h → 0 does not imply the Harnack inequality in
the continuum case. Indeed, to derive the continuum Harnack inequality on a bounded set
K ⊂ Rn, one needs to “cover” K by a discrete ball Br ⊂ hZn. When the mesh size goes to
0, the radius r ∈ N must tend to infinity, and thus the value CH = −ϕ(0) goes to infinity
as we observed in Remark 3.4.
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5 Continuum case

We consider elliptic partial differential equations of the form

F (D2u(x)) = f(x), (5.1)

where D2u(x) = (∂2iju(x))ij denotes the Hessian matrix, F ∈ C(Sn) is uniformly elliptic
(Definition 5.2), F (O) = 0 and f ∈ C(Rn). Here Sn is the set of real n × n symmetric
matrices. In this section, applying the idea of the proof of Theorem 4.1, we deduce a Hanack
type inequality for supersolutions of (5.1).

We employ a notion of viscosity solutions to solve (5.1) since it is fully nonlinear.

Definition 5.1. Let Ω ⊂ Rn be open. We say that u ∈ C(Ω) is a viscosity subsolution (resp.
supersolution) of (5.1) in Ω if F (D2ϕ(x)) <= f(x) (resp. >= f(x)) for all (x, ϕ) ∈ Ω × C2(Ω)
such that u− ϕ attains a local maximum (resp. minimum) at x.

For given ellipticity constants 0 < λ <= Λ we define Pucci operators P± : Sn → R as

P+(X) := −λ
∑
µi>0

µi − Λ
∑
µi<0

µi, P−(X) := −λ
∑
µi<0

µi − Λ
∑
µi>0

µi, (5.2)

where µi (i = 1, . . . , n) are the eigenvalues of X ∈ Sn. It is easily seen that these operators
satisfy P−(X + Y ) <= P+(X) + P−(Y ) <= P+(X + Y ) for all X,Y ∈ Sn. We also have

P+(X) = sup{−trace(AX) | A ∈ Sn, λI <= A <= ΛI},
P−(X) = inf{−trace(AX) | A ∈ Sn, λI <= A <= ΛI},

i.e., P± are Bellman type operators. Here I is the identity matrix, and for X,Y ∈ Sn we
write X <= Y if ⟨(Y −X)ξ, ξ⟩ >= 0 for all ξ ∈ Rn.

Definition 5.2. We say F : Sn → R is uniformly elliptic if P−(X − Y ) <= F (X)−F (Y ) <=
P+(X − Y ) for all X,Y ∈ Sn.

Now, we shall give examples showing that the usual Harnack inequality does not hold in
the continuum case if we require u to be only a non-negative supersolution. In this section
Br stands for the open ball {|x| < r} in Rn. The closure of it in Rn is denoted by Br. Also,
set Br(z) := {|x− z| < r}.

Example 5.3. We consider the Laplace equation −∆u = 0 in Rn when n >= 3. Set
u(x) = min{c|x|2−n, 1} with c > 0. As is known, |x|2−n is the fundamental solution of
the Laplace equation while any constant is trivially a solution. Since the minimum of two
supersolutions is still a supersolution ([5, Lemma 4.2]), u is a viscosity supersolution. On the
other hand, u is not a viscosity subsolution. Indeed, letting ϕ(x) = −ε|x|2 for ε > 0 small, we
see that u−ϕ takes a maximum at a point z such that c|z|2−n = 1, but −∆ϕ(z) = 2nε > 0.
Now, let us fix r > 0. We then have maxBr

u = 1 and minBr
u = cr2−n for c small. Thus the

ratio (maxBr
u)/(minBr

u) tends to ∞ as c → 0. This implies that the Harnack inequality
does not hold.

The functions u(x) = min{|x|2−n, M} withM > 0 also show that the Harnack inequality
does not hold by letting M → 0.

We state the ABP maximum principle for viscosity solutions. Let Ω ⊂ Rn be an open
set and u : Ω → R. Similarly to the discrete case, we define a upper contact set ΓΩ[u] by
(2.3). Set ∥u∥Ln(Ω) := (

∫
Ω
|u(x)|ndx)1/n.
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Theorem 5.4 (ABP maximum principle). Let Ω ⊂ Rn be a bounded open set. There exists
a constant CA = CA(n, λ) > 0 such that, for every viscosity subsolution (resp. supersolution)
u ∈ C(Ω) of (5.1) in Ω, the estimate

max
Ω

u <= max
∂Ω

u+ + CAdiam(Ω)∥f+∥Ln(ΓΩ[u+]) (5.3)

(resp. min
Ω
u >= min

∂Ω
(−u−)− CAdiam(Ω)∥f−∥Ln(ΓΩ[u−])) (5.4)

holds.

For the proof see [4, Proposition 2.12, Appendix A] or [11, Proposition 6.2, Section 7.2].
To present a barrier function in the continuum case, we first prepare

Lemma 5.5. Let 0 < ρ < R and define ψ(x) :=M1 −M2|x|−α with

M1 =
R−α

ρ−α −R−α
, M2 =

1

ρ−α −R−α
, α = max

{
1,

(n− 1)Λ

λ
− 1

}
.

Then 
P−(D2ψ) >= 0 in Rn \ {0},
ψ >= 0 in Rn \BR,

ψ <= −1 in Bρ.

(5.5)

Proof. See [3, Lemma 4.1].

Let ε > 0. We say that a function ω : [0, ε] → [0,∞) is a modulus on [0, ε] if ω(0) = 0,
limr→0 ω(r) = 0 and ω is non-decreasing on [0, ε].

Lemma 5.6. Let ω be a modulus on [0, ε]. Let δ > 0. Then there exists a modulus ω0 on
[0, ε] such that ω0 ∈ C2(0, ε), ω0 > ω on (0, ε] and ω0(r) = ω(ε) + δ for all r ∈ [ε/2, ε].

Proof. We set ω1(0) := 0, ω1(ε) = ω1(ε/2) := ω(ε) + δ and ω1(ε/2
j+1) := ω(ε/2j) for

j ∈ N. On each interval [ε/2j , ε/2j−1] we interpolate ω1 by a linear function. Then ω1 is a
modulus such that ω1 >= ω on [0, ε]. We next define ω2(r) := min{2ω1(r), ω(ε) + δ}, which
is again a piecewise linear modulus satisfying ω2 > ω on (0, ε] and ω0(r) = ω(ε) + δ for
all r ∈ [ε/2, ε]. Finally, mollifying ω2 near each corner of the graph, we obtain the desired
C2-function ω0.

A similar technique to make a smooth modulus can be found in [8, Lemma 2.1.9]. Using
the above functions, let us construct a barrier function which will be used in the proof of our
Harnack inequality. Let 0 < ε < ρ < R and ω be a modulus on [0, ε]. We also give positive
constants β, δ > 0. Set Kε := −(M1 − M2ε

−α) > 0, which will appear as the Harnack
constant CH in (5.9). We define

ϕ(x) :=

{
βψ(x) if |x| >= ε,

ω0(|x|)− βKε − 2δ − ω(ε) if |x| <= ε/2.

On {ε/2 <= |x| <= ε} we extend ϕ smoothly so that ϕ ∈ C2(Rn \{0}) and −βKε−δ <= ϕ(x) <=
−βKε if ε/2 <= |x| <= ε; see Figure 1. Then, by Lemma 5.5 and 5.6, the function ϕ possesses
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Figure 1: The graphs of ω0 and ϕ.

the following properties: 
P−(D2ϕ) >= 0 in Rn \Bε,

ϕ >= 0 in Rn \BR,

ϕ <= −β in Bρ

(5.6)

and
ϕ(x)− ϕ(0) > ω(|x|) if 0 < |x| <= ε. (5.7)

Since ϕ is not necessarily a C2-function on the whole space, we next mollify it near the
origin. For j ∈ N we mollify ϕ in Bε/2j so that ϕj ∈ C2(Rn), ϕj <= −β in Bρ and ϕj
converges to ϕ uniformly in Rn as j → ∞. Then each ϕj satisfies the three properties in
(5.6). We next define ξj(x) := |P−(D2ϕj(x))|. It then follows that

P−(D2ϕj) >= −ξj(x) in Rn, supp(ξj) ⊂ Bε.

Here supp(ξj) := {x ∈ Rn | ξj(x) ̸= 0}.
We now derive the Harnack inequality for viscosity supersolutions of

P+(D2u) = −f−(x). (5.8)

A viscosity supersolution of (5.1) is always a supersolution of (5.8).

Theorem 5.7 (Harnack inequality). Let r > 0 and 0 < ε < 2r. Then there exists a
constant CH = CH(r, ε, n,Λ/λ) > 0 such that, for every non-negative viscosity supersolution
u ∈ C(B4r) of (5.8) in B4r, the estimate

min
Bε(z)

u <= CH

{
min
Br

u+ CAdiam(Ω)∥f−∥Ln(B4r)

}
(5.9)

holds for all z ∈ Br, where CA is the constant in Theorem 5.4.

Proof. Case: f− ≡ 0. 1. Fix any z ∈ Br. For t ∈ [0, ε] we define ω(t) := u(z)−min
Bt(z)

u.

It is easily seen that ω is a modulus on [0, ε]. Choose xm as a minimum point of u over
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Br, i.e., u(xm) = minBr
u, and let β > u(xm) (>= 0). We take ϕ, ϕj and ξj as the functions

given after Lemma 5.6 with ρ = 2r and R = 3r, where ω and β are chosen as above. Define
ϕ̃(x) := ϕ(x− z), ϕ̃j(x) := ϕj(x− z) and ξ̃(x) := ξ(x− z). We furthermore set B′ := B2r(z)
and B := B3r(z), so that we have Br ⊂ B′ ⊂ B ⊂ B4r.

By (5.7) we see that u + ϕ̃ attains its strict minimum at z over Bε(z). Indeed, if
0 < |x− z| <= ε, we compute

u(x) + ϕ̃(x) > {u(z)− ω(|x− z|)}+ {ϕ̃(z) + ω(|x− z|)} = u(z) + ϕ̃(z).

We let zj be a minimum point of u+ ϕ̃j over Bε(z). Then, since ϕ̃j uniformly converges to

ϕ̃, it follows that zj → z as j → ∞.

2. We show that u + ϕ̃j is a viscosity supersolution of P+ = −ξ̃j in B. Assume that

u+ ϕ̃j −ψ attains a local minimum at x ∈ B for ψ ∈ C2(B). Since u+ ϕ̃j −ψ = u− (ψ− ϕ̃j)
and u is a viscosity supersolution of (5.8), we observe

0 <= P+(D2ψ(x)−D2ϕ̃j(x)) <= P+(D2ψ(x))− P−(D2ϕ̃j(x))

<= P+(D2ψ(x)) + ξ̃j(x),

which implies the assertion. Therefore the ABP maximum principle (5.4) implies

min
B

(u+ ϕ̃j) >= min
∂B

{−(u+ ϕ̃j)
−} − CAdiam(B)∥ξ̃j∥Ln(ΓB [(u+ϕ̃j)−]).

Similarly to the discrete case, we have min∂B{−(u + ϕ̃j)
−} = 0 and minB(u + ϕ̃j) < 0 by

the properties of ϕ̃j , and hence ∥ξ̃j∥Ln(ΓB [(u+ϕ̃j)−]) > 0. Since supp(ξ̃j) ⊂ Bε(z), we see

that the set Bε(z) ∩ ΓB [(u+ ϕ̃j)
−] is not empty.

3. Choose an arbitrary y ∈ Bε(z) ∩ ΓB[(u + ϕ̃j)
−]. Then we see (u + ϕ̃j)(y) < 0 by a

similar argument to the discrete case. Since u+ ϕ̃j attains its minimum at zj over Bε(z), it
follows that

u(zj) + ϕ̃j(zj) <= u(y) + ϕ̃j(y) < 0.

Letting j → ∞, we have

u(z) <= −ϕ̃(z) = −ϕ(0) = βKε + 2δ + ω(ε).

By the definition of ω, this gives

min
Bε(z)

u <= βKε + 2δ.

Finally, sending β → u(xm) and δ → 0 yield min
Bε(z)

u <= CHu(xm) with CH = Kε.

Case: f− ̸≡ 0. 1. Let {fj}∞j=1 ⊂ C∞(Rn) be a sequence of smooth functions such that

fj >= f− in B4r for all j ∈ N and that fj converges to f− uniformly on B4r as j → ∞. We
consider the Dirichlet problem {

P−(D2vj) = fj in B4r,

vj = 0 on ∂B4r

(5.10)

and denote by vj ∈ C2(B4r) ∩ C(B4r) the solution of (5.10). The existence of smooth
solutions is due to the classical results by Evans-Krylov for convex/concave (or Bellman
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type) equations. See [6, 7, 12] or [11, Section 7.3]. The ABP maximum principles, (5.3) and
(5.4), yield

0 <= vj <= CAdiam(Ω)∥fj∥Ln(B4r) on B4r. (5.11)

2. Now, it is easy to see that u+vj is a viscosity solution of P+ = 0 in B4r. Since u+vj
is non-negative on B4r by (5.11), the Harnack inequality (5.9) with f− ≡ 0 implies

min
Bε(z)

(u+ vj) <= CH min
Br

(u+ vj).

Applying the first and the second inequality in (5.11) to the left- and the right-hand side of
the above estimate respectively, we obtain

min
Bε(z)

u <= CH

{
min
Br

u+ CAdiam(Ω)∥fj∥Ln(B4r)

}
.

Sending j → ∞ gives (5.9).

Remark 5.8. The estimate (5.9) we established can be written as

u(z) <= CH

{
min
Br

u+ CAdiam(Ω)∥f−∥Ln(B4r)

}
+ ω(ε),

which gives a pointwise estimate for u, but the right-hand side involves a modulus of conti-
nuity from below of u around z.

Remark 5.9. The functions in Example 5.3 shows that the Harnack constant CH in (5.9)
must go to infinity when ε → 0. Indeed, the Harnack constant which we selected in the
proof is CH = Kε = −(M1 −M2ε

−α) and this tends to infinity as ε→ 0.
As a byproduct of this observation, we see non-existence of a radially symmetric function

ψ ∈ C(Rn) ∩C2(Rn \ {0}) satisfying the three conditions in (5.5). (Note that the function
ψ in Lemma 5.5 does not belong to C(Rn).) If there were such a ψ, by a similar argument
to the proof of Theorem 5.7 we would have the Harnack inequality (5.9) with CH which is
less than −ψ(0), a contradiction.

Remark 5.10. The result in Theorem 5.7 still holds for Lp-viscosity solutions, although we do
not give the details in this paper. In the theory of Lp-viscosity solutions, f is just assumed
to be in Lp(Ω) and solutions are defined by test functions belonging to W 2,p

loc . In this case,
we do not need to approximate f− by smooth functions fj in the proof of the Harnack
inequality because the Dirichlet problem (5.10) with f− instead of fj admits a solution in

W 2,p
loc . Also, it is not difficult to extend the result to more general equations of the form

P+(D2u) + µ|Du| = −f−(x)

with µ >= 0. See [4] and [11, Section 6 and 7] for the theory of Lp-viscosity solutions and
the above generalized equation.

A A well-posedness of uniformly elliptic equations

We prove that the Dirichlet problem

F (δ⃗2u(x)) = f(x) in Ω, (A.1)

u(x) = g(x) on ∂Ω (A.2)
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has a unique discrete solution. Here Ω ⊂ hZn is a bounded set, F : Rn → R is uniformly
elliptic, F (0) = 0, f : Ω → R and g : ∂Ω → R is a given boundary datum. The uniqueness
easily follows from the ABP maximum principle. The existence of solutions to elliptic
difference equations is more or less known even when the equation is degenerate; for example,
the fixed point theorem is one of powerful tools to show the existence. However, we present
it here to make the paper self-contained and to give the proof based on Perron’s method,
which cannot be found much in discrete problems.

For X⃗, Y⃗ ∈ Rn given as X⃗ = (X1, . . . , Xn) and Y⃗ = (Y1, . . . , Yn), we write X⃗ <= Y⃗ if

Xi <= Yi for all i ∈ {1, . . . , n}. By the uniform ellipticity of F , we have F (X⃗) >= F (Y⃗ ) if

X⃗ <= Y⃗ . This is a degenerate ellipticity ([5, (0.3)]).
From the ABP maximum principle (Theorem 2.3) we immediately deduce a compari-

son principle for a discrete sub- and supersolution of (A.1). This implies a uniqueness of
solutions.

Corollary A.1 (Comparison principle). Let u and v be, respectively, a discrete subsolution
and supersolution of (A.1). If u <= v on ∂Ω, then u <= v in Ω.

Proof. Since F is uniformly elliptic, we observe

P−(δ⃗2u(x)− δ⃗2v(x)) <= F (δ⃗2u(x))− F (δ⃗2v(x)) <= f(x)− f(x) = 0

for all x ∈ Ω. Therefore u− v is a discrete subsolution of the Pucci equation P− = 0 in Ω.
We now apply the ABP maximum principle to obtain maxΩ(u−v) <= max∂Ω(u−v) <= 0.

We turn to an existence problem. To construct discrete solutions, we employ the idea of
Perron’s method for viscosity solutions ([5, Section 4]).

Proposition A.2 (Perron’s method). Let v and V be, respectively, a discrete sub- and
supersolution of (A.1) such that v <= V on Ω. Let

S :=

{
w : Ω → R

∣∣∣∣∣ w is a discrete subsolution of (A.1)
such that v <= w <= V on Ω

}
.

Then u(x) := supw∈S w(x) is a discrete solution of (A.1).

Proof. 1. We first prove that u is a discrete subsolution. Fix x ∈ Ω and ε > 0. By the
definition of u there exists some wε ∈ S such that u(x)−ε <= wε(x) <= u(x). We then observe

δ2i u(x) =
u(x+ hiei) + u(x− hiei)− 2u(x)

h2i

>=
wε(x+ hiei) + wε(x− hiei)− 2(wε(x) + ε)

h2i
= δ2iwε(x)−

2ε

h2i

for each i ∈ {1, . . . , n}. Thus

δ⃗2u(x) >= δ⃗2wε(x)−
2ε

h2min

(1, . . . , 1).
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From the uniform ellipticity of F it follows that

F (δ⃗2u(x)) <= F

(
δ⃗2wε(x)−

2ε

h2min

(1, . . . , 1)

)
<= F (δ⃗2wε(x))− P−

(
2ε

h2min

(1, . . . , 1)

)
= F (δ⃗2wε(x)) + Λ

2εn

h2min

. (A.3)

We now have F (δ⃗2wε(x)) <= f(x) since wε ∈ S. Applying this to (A.3) and then letting

ε→ 0, we obtain F (δ⃗2u(x)) <= f(x). This implies that u is a discrete subsolution.
2. We next show that u is a discrete supersolution. Suppose that this were false. Then

we could find some y ∈ Ω such that

F (δ⃗2u(y)) < f(y). (A.4)

For such y and δ > 0 we define

U(x) :=

{
u(y) + δ if x = y,

u(x) if x ̸= y.

We claim that U ∈ S for a sufficiently small δ > 0. Showing this claim yields a contradiction
since U is strictly larger than u at y.

We first prove u(y) < V (y). Suppose u(y) = V (y). Then, noting that u(x) <= V (x) for

x ̸= y, we would have δ⃗2u(y) <= δ⃗2V (y). Since V is a supersolution, it would follow that

F (δ⃗2u(y)) >= F (δ⃗2V (y)) >= f(y), a contradiction to (A.4). Thus v <= U <= V on Ω if we take
δ <= V (y)− u(y).

Let us show that U is a subsolution. Let x ∈ Ω. It is easily seen that δ⃗2U(x) = δ⃗2u(x)

if x ̸∈ {y} and that δ⃗2U(x) >= δ⃗2u(x) if x ∈ {y} \ {y}. Therefore the ellipticity of F implies

that F (δ⃗2U(x)) <= F (δ⃗2u(x)) <= f(x) for x ̸= y. We next consider the case x = y. Then

δ2iU(y) =
u(y + hiei) + u(y − hiei)− 2(u(y) + δ)

h2i
= δ2i u(y)−

2δ

h2i
,

and so the same calculation as in Step 1 yields

F (δ⃗2U(y)) <= F (δ⃗2u(y)) + Λ
2δn

h2min

= f(y) + Λ
2δn

h2min

− {f(y)− F (δ⃗2u(y))}.

In view of (A.4), it follows that F (δ⃗2U(y)) <= f(y) if δ <= h2min{f(y) − F (δ⃗2u(y))}/(2Λn).
Summarizing the above argument, we conclude that U ∈ S, and hence u is a discrete
supersolution.

The remaining thing is to construct v and V in Proposition A.2 which attain a given
boundary datum on ∂Ω. For this purpose, we prepare quadratic functions on lattices. We
will use these functions to make such v and V .
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Example A.3. Let A = (A1, . . . , An) ∈ Rn. We define a quadratic function q = qA :
hZn → R as q(x) :=

∑n
j=1Ajx

2
j for x = (x1, . . . , xn) ∈ hZn. Then δ2i q is a constant for

each i ∈ {1, . . . , n}. Indeed, we observe

δ2i q(x) =
q(x+ hiei) + q(x− hiei)− 2q(x)

h2i

=
Ai(xi + hi)

2 +Ai(xi − hi)
2 − 2Aix

2
i

h2i
= 2Ai

for all x ∈ hZn. In particular, if we take Ai = −c/(2λn) with c >= 0, then

P−(δ⃗2q(x)) = −λ · −c
λn

· n = c,

i.e., q is a discrete solution of the above Pucci equation in hZn.

Theorem A.4 (Unique solvability). The Dirichlet problem (A.1) and (A.2) admits a unique
discrete solution.

Proof. The uniqueness is a consequence of the comparison principle, Corollary A.1. To show
the existence we construct v and V in the statement of Proposition A.2 such that v = V = g
on ∂Ω; then Proposition A.2 ensures that u := supw∈S w is a discrete solution of (A.1) and
(A.2). To construct such v and V we use quadratic functions in Example A.3. Let qA be
the quadratic function in Example A.3 with Ai = −(maxΩ |f |)/(2λn), so that

P−(δ⃗2qA(x)) = max
Ω

|f | in Ω. (A.5)

Choose k >= 0 such that qA + k >= max∂Ω g on Ω, and define

V (x) :=

{
qA(x) + k if x ∈ Ω,

g(x) if x ∈ ∂Ω.

Then V is a discrete supersolution of (A.1). Indeed, since V <= qA + k on ∂Ω, we have

δ⃗2V (x) <= δ⃗2(qA + k)(x) = δ⃗2qA(x) for x ∈ Ω. Therefore it follows from ellipticity that

F (δ⃗2V (x)) >= F (δ⃗2qA(x)) >= P−(δ⃗2qA(x)). By virtue of (A.5) we conclude that V is a
discrete supersolution of (A.1).

Similarly, using a suitable quadratic function, we are able to construct a discrete subso-
lution v which satisfies v = g on ∂Ω and v <= min∂Ω g in Ω. The proof is now complete since
v <= min∂Ω g <= max∂Ω g <= V in Ω.
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