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Geometry of D4 conformal triality
and singularities of tangent surfaces

Goo ISHIKAWA∗, Yoshinori MACHIDA†and Masatomo TAKAHASHI‡

Abstract

It is well known that the projective duality can be understood in the context of geometry
of An-type. In this paper, as D4-geometry, we construct explicitly a flag manifold, its triple-
fibration and differential systems which have D4-symmetry and conformal triality. Then we
give the generic classification for singularities of the tangent surfaces to associated integral
curves, which exhibits the triality. The classification is performed in terms of the classical
theory on root systems combined with the singularity theory of mappings. The relations
of D4-geometry with G2-geometry and B3-geometry are mentioned. The motivation of the
tangent surface construction in D4-geometry is provided.

1 Introduction

The projective structure and the conformal structure are the most important ones among
various kinds of geometric structures. For the projective structures, we do have an important
notion, the projective duality. Then we can ask the existence of any counterpart to the
projective duality for the conformal structures. Let us try to find it from the view point of
Dynkin diagrams. The projective duality can be understood in the context of geometry of
An-type. In fact, Dynkin diagrams of An-type, which lay under the projective structures,
enjoy the obvious Z2-symmetry. It induces the projective duality after all. On the other
hand, the base of the conformal structures is provided by diagrams of type Bn and Dn. We
observe that only the diagram of type D4 possesses S3-symmetry. In fact, among all simple
Lie algebras, only D4 has S3 as the outer automorphism group.

The triality was first discussed by Cartan ([6], see also [17]). Then algebraic triality was
studied via octonions by Chevelley, Freudenthal, Springer, Jacobson and so on ([19]). The
real geometric triality was studied first by Study [20]. Porteous, in [18], gave a modern
exposition on geometric triality. Note that in [18], the null Grassmannians in Bn- and Dn-
geometry are called “quadric Grassmannians” and the D4 triality is called “quadric triality”.
For relations to representation theory of SO(4, 4) and to mathematical physics, also see
[9][16].

The triality has close relations with singularity theory, in particular, theory of simple
singularities (see [3]). The D4-singularities of function-germs, wavefronts, caustics, etc. have
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the natural S3-symmetry and also the relations of D4-singularities and G2-singularities are
found([2][8][17]).

In general, for each complex semi-simple Lie algebra, to construct geometric homogeneous
models in terms of Borel subalgebras and parabolic subalgebras is known, for instance, in the
classical Tits geometry ([21][22][1]). However it is another non-trivial problem to construct
the explicit real model from an appropriate real form of the complex Lie algebra, with
the detailed analysis on associated canonical geometric structures. Moreover singularities
naturally arising from the geometric model provide new problems. We do treat in this
paper both the realization problem of geometric models and the classification problem of
singularities for D4.

We would like to call a “conformal triality” any phenomenon which arises from this S3-
symmetry of D4. In this paper, we construct an explicit diagram of fibrations, which is called
a tree of fibrations, or a cascade of fibrations or a quiver of fibrations, and associated geometric
structures on it with D4-symmetry. Moreover we show, as one of conformal trialities, the
classification of singularities of surfaces arising from conformal geometry on the explicit tree
of fibrations arising form the D4-diagram. The appearance of singularities often depends on
geometric structure behind. Thus the geometric triality becomes visible via the triality on
the data of singularities.

We provide, as the real geometric model for D4-diagram, the tree of fibrations on null
flag manifolds on the 8-space with (4, 4)-metric in §2. In §3, we recall the structure of
so(4, 4) = o(4, 4), the Lie algebra of the orthogonal group O(4, 4) on R4,4, as a basic structure
of our constructions, and then we describe the canonical geometric structures. In §4, we
give the statement of the main classification result (Theorem 4.3). We describe explicitly
the tree of fibrations of D4 in §5, and the canonical differential system on null flags in §6,
where Theorem 4.3 is proved. In §7, we provide one of motivations for the tangent surface
construction in D4-geometry, introducing the notion of “null frontals”, and a relation to
“bi-Monge-Ampère equations”.

2 Null flag manifolds associated to D4-diagram

Let V = R4,4 and (· | ·) be the inner product of signature (4, 4). A linear subspace W ⊂ V
is called null if (u|v) = 0 for any u, v ∈W . We set

Q0 := {V1 | V1 ⊂ V, dim(V1) = 1, V1 is null} .

Then Q0 is a 6-dimensional quadric in the projective space P 7 = P (V ) = G1(V ). The set of
2-dimensional null subspaces,

M := {V2 | V2 ⊂ V, dim(V2) = 2, V2 is null} ,

is a 9-dimensional submanifold of the Grassmannian G2(V ). The set of 3-dimensional null
subspaces,

R := {V3 | V3 ⊂ V, dim(V3) = 3, V3 is null} ,
is a 9-dimensional submanifold of the Grassmannian G3(V ).

The totality of maximal null subspaces, namely, 4-dimensional null subspaces, form dis-
joint two families Q+ = {V +

4 } and Q− = {V −
4 }, which are both 6-dimensional submanifolds

of the Grassmannian G4(V ).

Remark 2.1 We have diffeomorphisms Q0
∼= Q+

∼= Q− ∼= SO(4) ∼= S3 ×Z2 S
3, where

S3×Z2 S
3 means the quotient by the diagonal action of the Z2-action on S3 by the antipodal

map (see [18][16]).
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For any V +
4 ∈ Q+ and V −

4 ∈ Q− from the two families, we have that dim(V +
4 ∩V

−
4 ) = 1 or

3. We call V +
4 and V −

4 incident if dim(V +
4 ∩ V

−
4 ) = 3. For W,W ′ ∈ Q+ (resp. W,W ′ ∈ Q−)

from one family, we have dim(W ∩W ′) = 0, 2 or 4. For any V3 ∈ R, there exists unique
incident pair V +

4 ∈ Q+, V
−
4 ∈ Q− with V3 = V +

4 ∩ V
−
4 . For null subspaces Vi, Vj ⊂ V of

dimensions i, j respectively with i < j, we call them incident if Vi ⊂ Vj .
Now we consider flags of mutually incident null subspaces in R4,4. We define the 11-

dimensional flag manifold

N := {(V1, V +
4 , V

−
4 ) ∈ Q0 ×Q+ ×Q− | V1 ⊂ V +

4 ∩ V
−
4 , dim(V +

4 ∩ V
−
4 ) = 3.}

= {(V1, V +
4 , V

−
4 ) ∈ Q0 ×Q+ ×Q− | V1, V +

4 , V
−
4 are mutually incident.},

which is diffeomorphic to

N ′ := {(V1, V3) ∈ Q0 ×R | V1 ⊂ V3}.

In fact the map Φ : N → N ′ defined by Φ(V1, V
+
4 , V

−
4 ) = (V1, V

+
4 ∩V

−
4 ) is a diffeomorphism.

Moreover we define the 12-dimensional complete flag manifold

Z := {(V1, V2, V +
4 , V

−
4 ) ∈ Q0 ×M ×Q+ ×Q− | V1 ⊂ V2 ⊂ V +

4 ∩ V
−
4 ,

dim(V +
4 ∩ V

−
4 ) = 3},

which is diffeomorphic to

Z ′ := {(V1, V2, V3) ∈ Q0 ×M ×R | V1 ⊂ V2 ⊂ V3},

by the diffeomorphism (V1, V2, V
+
4 , V

−
4 ) 7→ (V1, V2, V

+
4 ∩ V

−
4 ).

Thus we get the tree of fibrations for the D4-diagram:

P 1 −→ Z12(⊂ N ×M) ←− P 1 × P 1 × P 1

πN ↙ ↘ πM

N11

π′0 ↙ π′+ ↓ π′− ↘

Q6
0 Q6

+ Q6
−

M9

where πN , πM , π
′
0, π

′
+ and π′− are natural projections.

Let O(4, 4) be the orthogonal group of V = R4,4, and g = o(4, 4) its Lie algebra. Note
that O(4, 4) has 4 connected component. Let O(4, 4)e be the identity component of O(4, 4),
and G the universal covering of O(4, 4)e. Then G is a simply connected Lie group having g
as its Lie algebra. Here we consider the Lie group G in order to realize the triality not only
in the level of Lie algebras but also in the level of Lie groups ([16]).

In the above diagram, each flag manifold is in fact G-homogeneous, as well as O(4, 4)-
homogeneous, and each projection is G-equivariant.

The lower left diagram indicates the conformal triality.

3 Gradations to o(4, 4) and geometric structures on

null flag manifolds

We recall the structure of g = o(4, 4), the Lie algebra of the orthogonal group O(4, 4) on
R4,4, that is the split real form of o(8,C). See [10][5][23] for details and for other simple Lie
algebras.
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With respect to a basis e1, . . . , e8 ofR
4,4 with inner products (ei|e9−j) =

1
2δij , 1 ≤ i, j ≤ 8,

we have
o(4, 4) = {A ∈ gl(8,R) | tAK +KA = O},

= {A = (aij) ∈ gl(8,R) | a9−j,9−i = −aij , 1 ≤ i, j ≤ 8},

where K = (kij) is the 8× 8-matrix defined by ki,9−j =
1
2δij . Let

h := g0 = ⟨ εi(Eii − E9−i,9−i) | εi ∈ R, 1 ≤ i ≤ 4 ⟩

be a Cartan subalgebra of g. Then the root system is given by ±εi ± εj , 1 ≤ i < j ≤ 4, and
g is decomposed, over R, into the direct sum of root spaces

gεi−εj = ⟨Ei,j −E9−j,9−i⟩R, gεi+εj = ⟨Ei,9−j − Ej,9−i⟩R,

g−εi+εj = ⟨Ej,i − E9−i,9−j⟩R, g−εi−εj = ⟨E9−j,i − E9−i,j⟩R,

(1 ≤ i < j ≤ 4).
The simple roots are given by

α1 := ε1 − ε2, α2 := ε2 − ε3, α3 := ε3 − ε4, α4 := ε3 + ε4.

(The numbering of simple roots is the same as in [4] and is slightly different from [16].)
By labeling the root just on the left-upper-half part, we illustrate the structure of g:

ε1 α1 α1 + α2 α1 + α2 α1 + α2 α1 + α2 α1 + 2α2 0
+α3 +α4 +α3 + α4 +α3 + α4

−α1 ε2 α2 α2 + α3 α2 + α4 α2 + α3 0
+α4

−α1 − α2 −α2 ε3 α3 α4 0

−α1 − α2 −α2 − α3 −α3 ε4 0
−α3

−α1 − α2 −α2 − α4 −α4 0 −ε4
−α4

−α1 − α2 −α2 − α3 0 −ε3
−α3 − α4 −α4

−α1 − 2α2 0 −ε2
−α3 − α4

0 −ε1

The Borel subalgebra is given by g≥0 = g0 ⊕
∑

α>0 gα, the sum of Cartan subalgebra
h = g0 and positive root spaces gα with respect to the simple root system {α1, α2, α3, α4}.

We take parabolic subalgebras g1, g2, g3, g4, where gi is the sum of g≥0 and all gα for a
negative root α without αi-term. For instance,

g1 = ⟨Eij − E9−j,9−i | 2 ≤ j ≤ 7, 1 ≤ i ≤ 8− j ⟩R + ⟨E11 − E88⟩R.

Moreover we have a parabolic subalgebra

g134 := g1 ∩ g3 ∩ g4 = g≥0 ⊕ g−α2 .

Let Ad : G→ GL(g) denote the adjoint representation, B (resp. Gi) the normalizer in G
under Ad of the subalgebra g≥0 (resp. the subalgebras gi, i = 1, 2, 3, 4). Then B (resp. Gi)
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has g≥0 (resp. gi) as its Lie algebra. The subgroup G134 := G1 ∩G3 ∩G4 has g134 as its Lie
algebra. Then the flag manifolds Z,Q0,M,Q+, Q− and N are G-homogeneous spaces with
isotropy groups B,G1, G2, G3, G4 and G134 respectively. We have

Z = G/B, Q0 = G/G1, M = G/G2, Q+ = G/G3, Q− = G/G4, N = G/G134.

Define the linear isomorphisms σ, τ : h∗ → h∗ on the dual space h∗ = ⟨ε1, ε2, ε3, ε4⟩R =
⟨α1, α2, α3, α4⟩R of the Cartan subalgebra h by

σ(α1) = α3, σ(α2) = α2, σ(α3) = α4, σ(α4) = α1,

and
τ(α1) = α1, τ(α2) = α2, τ(α3) = α4, τ(α4) = α3,

which induce Lie algebra isomorphisms σ, τ : g→ g, expressed by the same letters, satisfying

σ(g±α1) = g±α3 , σ(g±α2) = g±α2 , σ(g±α3) = g±α4 , σ(g±α4) = g±α1 ,

and
τ(g±α1) = g±α1 , τ(g±α2) = g±α2 , τ(g±α3) = g±α4 , τ(g±α4) = g±α3 .

The isomorphisms σ, τ are of order 3, 2 respectively. Thus g has S3-symmetry. Since G,
the universal covering of O(4, 4)e, is simply connected, the S3-symmetry on g lifts to the
S3-symmetry of G. In particular the associated isomorphism σ : G→ G satisfies

σ(B) = B, σ(G1) = G3, σ(G2) = G2, σ(G3) = G4, σ(G4) = G1, σ(G
134) = G134.

Thus, in particular, we have induced diffeomorphisms Q0
∼= Q+

∼= Q−.
The null quadric Q0 ⊂ P (V ) = P (R4,4) has the canonical conformal structure of type

(3, 3). In fact, for each V1 ∈ Q0, consider V
⊥
1 ⊂ V = R4,4. Then the tangent space TV1Q0

is isomorphic to V ⊥
1 /V1, up to similarity transformation. Therefore the metric on V induces

the canonical conformal structure on Q0 of signature (3, 3). In other words, the conformal
structure on Q0 is defined by the quadric tangent cone Cx of the Schubert variety

Sx := {W1 ∈ Q0 |W1 ⊂ V ⊥
1 } = P (V ⊥

1 ) ∩Q0 ⊂ Q0,

for each x = V1 ∈ Q0. Note that Sx = π0π
−1
M πMπ

−1
0 (x), in terms of the tree of fibrations.

Also Q+ (resp. Q−) has a conformal structure of type (3, 3). In fact, for each y = V ±
4 ∈

Q±, the Schubert variety

S±
y := {W4 ∈ Q± |W4 ∩ V ±

4 ̸= {0}} ⊂ Q±

induces invariant quadratic cone field (conformal structure) C±
y onQ± defined by the Pfaffian,

respectively. Note that S±
y = π±π

−1
M πMπ

−1
± (y). The triality Q0

∼= Q+
∼= Q− preserves the

conformal structures.

Now we turn to construct the invariant differential systems on null flag manifolds.
Let

g−1 := g−α1 ⊕ g−α2 ⊕ g−α3 ⊕ g−α4 .

The subspace
g≥−1 = g−1 ⊕ g≥0 = g134 + g2

in g satisfies Ad(G)(g≥−1) = g≥−1 and defines a left invariant distribution Ẽ on G, which
induces the standard differential system E ⊂ TZ with rank 4 and with growth (4, 7, 10, 11, 12)
(see [23]). In fact we can read the growth from the above table. We call E the D4 Engel
distribution on Z.
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Remark 3.1 We would like to call the distribution E “Engel”, simply because it lives on
the top place (heaven) of our real spaces, referring the contributions of the mathematician
Friedrich Engel on the theory of Lie algebras.

The flag manifold M9 has the canonical contact structure DM with growth (8, 9), which
carries a structure of 2×2×2-hyper-matrices. Moreover DM possesses a Lagrange cone field
defined by a decomposable cubic.

In fact we define the subspace

dM := (g−ε1+ε3 ⊕ g−ε2+ε3 ⊕ g−ε1+ε4 ⊕ g−ε2+ε4

⊕ g−ε1−ε4 ⊕ g−ε2−ε4 ⊕ g−ε1−ε3 ⊕ g−ε2−ε3)⊕ g2

= (g−α1−α2 ⊕ g−α2 ⊕ g−α1−α2−α3 ⊕ g−α2−α3

⊕ g−α1−α2−α4 ⊕ g−α2−α4 ⊕ g−α1−α2−α3−α4 ⊕ g−α2−α3−α4)⊕ g2

in g. Then we have that Ad(G2)dM = dM and therefore dM defines the invariant distribution
DM ⊂ TM = T (G/G2) with rank 8, which is a contact structure. We call DM the D4 contact
structure on M .

Define the subalgebra g0M of g by

g0M := g0 ⊕ g±α1 ⊕ g±α3 ⊕ g±α4 .

Then g0M is isomorphic to sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R) ⊕ R and it acts on dM . Thus the
group SL(2,R)×SL(2,R)×SL(2,R)×R× acts on the contact structure DM . We see that
DN has an invariant decomposition

DM = D1
M ⊗D3

M ⊗D4
M

by subbundlesD1
M , D

3
M , D

4
M of rank 2, which means that the distributionDM has a structure

of 2 × 2 × 2-hyper-matrices. By the diagonal action of SL(2,R) we have a Lagrange cone
field in DM , which we call the D4 Monge cone structure on M .

The flag manifold N11 has a distribution DN with growth (6, 9, 11) with a direct sum
decomposition into three subbundles of rank two. We define the subspace

dN := (g−ε1+ε2 ⊕ g−ε1+ε3)⊕ (g−ε2+ε4 ⊕ g−ε3+ε4)⊕ (g−ε2−ε4 ⊕ g−ε3−ε4)⊕ g134

= (g−α1 ⊕ g−α1−α2)⊕ (g−α2−α3 ⊕ g−α3)⊕ (g−α2−α4 ⊕ g−α4)⊕ g134

of g. Then we have thatAd(G134)dN = dN , and therefore dN defines the invariant distribution
DN ⊂ TN = T (G/G134) with rank 6. Define the subalgebra g0M := g0 ⊕ g±α2 of g. Then
g0M is isomorphic to sl(2,R) ⊕ R ⊕ R ⊕ R and acts on dN . Then we have an invariant
decomposition

DN = D1
N ⊕D3

N ⊕D4
N ,

into subbundles D1
N , D

3
N , D

4
N of rank 2. We call DN the D4 Cartan distribution.

Remark 3.2 We can compare the above mentioned facts with G2-diagram: We consider
the purely imaginary split octonions ImO′ with the inner product of type (3, 4) and consider
the null projective space N5 (resp. the null Grassmannian M5, the flag manifold Z6) which
consists of 1-dimensional null subalgebras (resp. 2-dimensional null subalgebras, the incident
pairs of 1-dimensional null subalgebras and 2-dimensional null subalgebras) for the multipli-
cation on the split octonions O′. The flag manifold Z has the Engel distribution with growth
(2, 3, 4, 5, 6), N5 has a distribution with growth (2, 3, 5), and the null projective space M5

has a contact structure with growth (4, 5) with a cubic Lagrange cone field ([14])．
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4 D4-triality and singularities of null tangent sur-

faces

We consider the canonical projections

π0 = π′0 ◦ πN : Z −→ Q0, π+ = π′+ ◦ πN : Z −→ Q+, π− = π′− ◦ πN : Z −→ Q−,

and the diagram

Z12 πM−−−−→ M9

π0 ↙ π+ ↓ π− ↘

Q6
0 Q6

+ Q6
−

induced by D4 Dynkin diagram.
The D4 Engel distribution E on Z is described from the tree of fibrations, by

E = (kerπ0∗ ∩ kerπ+∗ ∩ kerπ−∗)⊕ kerπM∗ ⊂ TZ,

which is of rank 4. See the definition of E as the standard differential system for o(4, 4) in
§3.

A curve f : I → Z on Z is called E-integral if it is tangent to E, namely, if f∗(TI) ⊂
E(⊂ TZ).

Definition 4.1 For the given (indefinite) conformal structure {Cx}x∈Q0 on Q0, we call a
curve γ : I → Q0 a null curve if

γ′(t) ∈ Cγ(t), (t ∈ I).

A geodesic on Q0 is called a null geodesic if it is a null curve.
A surface F : U → Q0 is called a null surface if

F∗(TuU) ⊂ CF (u), (u ∈ U).

The same definition is applied also to Q±.

Proposition 4.2 (Guillemin-Sternberg [9]) The null geodesics on Q0 for the conformal
structure on Q0 are given by null lines, namely, projective lines on Q0 ⊂ P (V ) = P (R4,4).

We will take null geodesics, namely, null lines as “tangent lines” for null curves in Q0.
Note that any null line in Q0 is given by π0(π

−1
M (V2)) for some V2 ∈M . Then we are naturally

led to consider tangent surfaces of null curves in Q0, Q+ and Q−. For Q± we take, as the
family of “lines” in Q±,

π±(π
−1
M (V2)) = {W4 ∈ Q± | V2 ⊂W4}, V2 ∈M.

If we consider a special class of null curves which are projections of E-integral curves
f : I → Z to Q0, Q+ or Q−, then their tangent surfaces turn to be null surfaces in Q0, Q+

or Q− in the above sense. In fact we show later more strict results (Proposition 7.4).
For M , we regard

πM (π−1
0 (V1) ∩ π−1

+ (V +
4 ) ∩ π−1

− (V −
4 )) = {W2 | V1 ⊂W2 ⊂ V +

4 ∩ V
−
4 }, (V1, V

+
4 , V

−
4 ) ∈ N,

as lines in M .
We will give the explicit classification of singularities of “tangent surfaces” in the view-

point of geometry of D4-triality:
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Theorem 4.3 (Triality of singularities.) For a generic E-integral curve f : I −→ Z, the
singularities of tangent surfaces, to the curves γ0 = π0 ◦ f, γ+ = π+ ◦ f, γ− = π− ◦ f, γM =
πM ◦ f on Q0, Q+, Q−,M,

Tan(γ0) = π0π
−1
M πMf(I)(⊂ Q0),

Tan(γ+) = π+π
−1
M πMf(I)(⊂ Q+), Tan(γ−) = π−π

−1
M πMf(I)(⊂ Q−),

Tan(γM ) = πM (π−1
0 π0f(I) ∩ π−1

+ π+f(I) ∩ π−1
− π−f(I))(⊂M),

at any point t ∈ I is classified, up to local diffeomorphisms, as follows:

Tan(γ0) Tan(γ+) Tan(γ−) Tan(γM )

CE CE CE CE
OSW CE CE CE
CE OSW CE CE
CE CE OSW CE
OM OM OM OSW

Here CE (resp. OSW, OM) means the cuspidal edge (resp. open swallowtail, open Mond
surface).

The cuspidal edge (resp. open swallowtail, open Mond surface) is defined as a diffeomor-
phism class of the tangent surface-germ to a curve of type (1, 2, 3, · · · ) (resp. (2, 3, 4, 5, · · · ),
(1, 3, 4, 5, · · · )) in an affine space. The type of a curve is the strictly increasing sequence of
orders (degrees of initial terms) of components in an appropriate system of linear coordinates.
Their normal forms are given as follows:

CE : (u, t) 7→ (u, t2 − 2ut, 2t3 − 3ut2, 0, 0, 0), (R2, 0)→ (R6, 0),
(u, t) 7→ (u, t2 − 2ut, 2t3 − 3ut2, 0, 0, 0, 0, 0, 0), (R2, 0)→ (R9, 0),

OSW : (u, t) 7→ (u, t3 − 3ut, t4 − 2ut2, 3t5 − 5ut3, 0, 0), (R2, 0)→ (R6, 0),
(u, t) 7→ (u, t3 − 3ut, t4 − 2ut2, 3t5 − 5ut3, 0, 0, 0, 0, 0), (R2, 0)→ (R9, 0),

OM : (u, t) 7→ (u, 2t3 − 3ut2, 3t4 − 4ut3, 4t5 − 5ut4, 0, 0), (R2, 0)→ (R6, 0),

cuspidal edge open Mond surfaceopen swallowtail

The classification is performed in terms of the classical theory on root systems combined
with the singularity theory of mappings. From the root system which defines the flag man-
ifolds, we have the type of an appropriate projection of the E-integral curve and we can
determine the normal forms of tangent surfaces.

We have the following sequence of diagrams from the D4-diagram by “foldings” and
“removings”:

D4

↙ ↓

A3 = D3←B3

↙ ↓ ↙ ↓

A2←C2 = B2←G2.
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In fact for each Dynkin diagram P we can associate an explicit tree of fibrations TP . A folding
of Dynkin diagram P → Q corresponds to an embedding TQ → TP of tree of fibrations, and
a removing R→ S corresponds to a local projection from TR → TS .

From this perspective on Dynkin diagrams, we can observe relations between geometry,
singularity and differential equations arising from diagrams of fibrations.

For example, in G2-diagram, the singularities of tangent surfaces to projections of a
generic E-integral curve on Z6 to N5,M5 respectively has the duality

CE ←→ CE,
OM ←→ OSW,

OGFP ←→ OS.

Here OGFP (resp. OS) means the open generic folded pleat (resp. open Shcherbak surface)
which is the tangent surface to a generic curve of type (2, 3, 5, 7, 8) (resp. a curve of type
(1, 3, 5, 7, 8)) ([14])．For the cases C2 = B2 and A2, see [13] and [14].

5 Fibrations via flag coordinates

Let (V1, V2, V3) ∈ Z ′ = Z ′(D4) or (V1, V2, V
+
4 , V

−
4 ) ∈ Z = Z(D4) with V3 = V +

4 ∩ V
−
4 . Then

the flag is completed into the multiple double flag:

V1 ⊂ V2 ⊂ V3
⊂ V +

4 ⊂
⊂ V −

4 ⊂ V ⊥
3 ⊂ V ⊥

2 ⊂ V ⊥
1 ⊂ V = R4,4,

combined with the intermediate V +
4 , V

−
4 , the unique pair of 4-null subspaces containing V3,

which are contained in V ⊥
3 . Then there exists a basis e1, e2, e3, e4, e5, e6, e7, e8 of V = R4,4

such that

V 0
1 = ⟨e1⟩R, V 0

2 = ⟨e1, e2⟩R, V 0
3 = ⟨e1, e2, e3⟩R,

V 0+
4 = ⟨e1, e2, e3, e4⟩R, V 0−

4 = ⟨e1, e2, e3, e5⟩R, V 0⊥
3 = ⟨e1, e2, e3, e4, e5⟩R,

V 0⊥
2 = ⟨e1, e2, e3, e4, e5, e6⟩R, V 0⊥

1 = ⟨e1, e2, e3, e4, e5, e6, e7⟩R

and with inner products

(e1|e8) = 1
2 , (e2|e7) =

1
2 , (e3|e6) =

1
2 , (e4|e5) =

1
2 ,

other pairings being null. Such a basis e1, e2, e3, e4, e5, e6, e7, e8 of V = R4,4 is called an
adapted basis for (V1, V2, V3) ∈ Z ′ = Z ′(D4) or (V1, V2, V

+
4 , V

−
4 ) ∈ Z = Z(D4). Then the

metric on V is expressed via the coordinates x1, . . . , x8 associated to the above basis by
ds2 = dx1dx8 + dx2dx7 + dx3dx6 + dx4dx5.

For any curve f : I → Z, we can take a moving frame f : I → O(4, 4) such that f(t) is
an adapted basis for f(t), which is called an adapted frame for f .

Remark 5.1 If we set

Z̃ :=
{
(V1, V2, V3, V4) | V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ R4,4, dim(Vi) = i, Vi is null, i = 1, 2, 3, 4

}
,

then the projection π : Z̃ → Z ′, π(V1, V2, V3, V4) = (V1, V2, V3) is a trivial double covering.
In fact, if we set

Z± :=
{
(V1, V2, V3, V4) ∈ Z̃ | V4 ∈ Q±

}
,

then Z̃ = Z+ ∪ Z−, disjoint union, and π|Z± : Z± → Z ′ is a diffeomorphism. As is seen as

above, we have an embedding Z̃ into the complete flag manifold F1,2,3,4,5,6,7(R
4,4).
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Let us give local charts on Z ′, Z and Q0. Take another flag defined by

W 0
1 = ⟨e8⟩R, W 0

2 = ⟨e8, e7⟩R, W 0
3 = ⟨e8, e7, e6⟩R,

W 0+
4 = ⟨e8, e7, e6, e5⟩R, W 0−

4 = ⟨e8, e7, e6, e4⟩R, W 0⊥
3 = ⟨e8, e7, e6, e5, e4⟩R,

W 0⊥
2 = ⟨e8, e7, e6, e5, e4, e3⟩R, W 0⊥

1 = ⟨e8, e7, e6, e5, e4, e3, e2⟩R,

and take the open neighborhood

U ′ = {(V1, V2, V3) ∈ Z ′ | V1 ∩W 0⊥
1 = {0}, V2 ∩W 0⊥

2 = {0}, V3 ∩W 0⊥
3 = {0}}

of (V 0
1 , V

0
2 , V

0
3 ) in Z ′. Then, for any (V1, V2, V3) ∈ U ′, there exist unique f1, f2, f3 ∈ V3

such that f1 forms a basis of V1, f1, f2 form a basis of V2 and f1, f2, f3 form a basis of V3
respectively and they are of form

f1 = e1 + x21e2 + x31e3 + x41e4 + x51e5 + x61e6 + x71e7 + x81e8
f2 = e2 + x32e3 + x42e4 + x52e5 + x62e6 + x72e7 + x82e8
f3 = e3 + x43e4 + x53e5 + x63e6 + x73e7 + x83e8

for some xij ∈ R. Then we have

(f1|f1) = x81 + x21x71 + x31x61 + x41x51 = 0,
2(f1|f2) = x82 + x21x72 + x31x62 + x41x52 + x51x42 + x61x32 + x71 = 0,
2(f1|f3) = x83 + x21x73 + x31x63 + x41x53 + x51x43 + x61 = 0,
(f2|f2) = x72 + x32x62 + x42x52 = 0,

2(f2|f3) = x73 + x32x63 + x42x53 + x52x43 + x62 = 0,
(f3|f3) = x63 + x43x53 = 0.

Therefore we see that

(x21, x31, x41, x51, x61, x71, x32, x42, x52, x62, x43, x53)

is a chart on U ′ ⊂ Z ′.
Moreover we take

f4 = e4 + x54e5 + x64e6 + x74e7 + x84e8,

from V +
4 so that f1, f2, f3, f4 form a basis of V +

4 , and take

f5 = x45e4 + e5 + x65e6 + x75e7 + x85e8,

from V −
4 so that f1, f2, f3, f5 form a basis of V −

4 . We have

2(f1|f4) = x84 + x21x74 + x31x64 + x41x54 + x51 = 0,
2(f2|f4) = x74 + x32x64 + x42x54 + x52 = 0,
2(f3|f4) = x64 + x43x54 + x53 = 0,
(f4|f4) = x54 = 0,
2(f1|f5) = x85 + x21x75 + x31x65 + x41 + x51x45 = 0,
2(f2|f5) = x75 + x32x65 + x42 + x52x45 = 0,
2(f3|f5) = x65 + x43 + x53x45 = 0,
(f4|f5) = x45 = 0.

We set

U := {(V1, V2, V +
4 , V

−
4 ) ∈ Z | V1 ∩W 0⊥

1 = {0}, V2 ∩W 0⊥
2 = {0}, V ±

4 ∩W
0±
4 = {0}, }
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Consider the diffeomorphism Φ : Z → Z ′ defined by Φ(V1, V2, V
+
4 , V

−
4 ) = (V1, V2, V

+
4 ∩

V −
4 )(= (V1, V2, V3)). Then Φ(U) = U ′. After replacing x43, x53 by x64, x65, we have a chart

(x21, x31, x41, x51, x61, x71, x32, x42, x52, x62, x64, x65)

on U = Φ−1(U ′) ⊂ Z and the mapping Φ is locally given by just x53 = −x64, x43 = −x65. In
fact other components are calculated as follows:

x81 = −x71x21 − x61x31 − x51x41,
x72 = −x62x32 − x52x42,
x82 = x62(x32x21 − x31) + x52(x42x21 − x41)− x51x42 − x61x32 − x71,
x43 = −x65,
x53 = −x64,
x63 = −x65x64,
x73 = x65x64x32 + x64x42 + x65x52 − x62,
x83 = x65x64(x31 − x32x21) + x64(x41 − x42x21) + x65(x51 − x52x21)− x61 + x62x21,
x74 = −x64x32 − x52,
x84 = x64(x32x21 − x31) + x52x21 − x51,
x75 = −x65x32 − x42,
x85 = x65(x32x21 − x31) + x42x21 − x41.

Now we will explicitly describe π0, π+, π− and πM locally on U ⊂ Z.
It is easy to describe π0 in terms of our charts: Consider the open neighborhood of

V 0
1 ∈ Q0:

U0 := {V1 ∈ Q0 | V1 ∩W 0⊥
1 = {0}}.

Then, using the above notations, (x21, x31, x41, x51, x61, x71) provides a chart on U0 ⊂ Q0.
Moreover π0 : U → U0 is given by

(x21, x31, x41, x51, x61, x71, x32, x42, x52, x62, x64, x65) 7→ (x21, x31, x41, x51, x61, x71).

Remark 5.2 We have the description of the conformal structure on Q0 using the local
coordinates: The Schubert variety Sx = P (V ⊥

1 ) ∩Q0, x = V1 ∈ Q0 (see §3) is given in U0 by

{X ∈ U0 | (X21 − x21)(X71 − x71) + (X31 − x31)(X61 − x61) + (X41 − x41)(X51 − x51) = 0}.

Then the null cone filed C ⊂ TQ0 of the conformal structure on Q0 is given, in our local
coordinates, by

dx21dx71 + dx31dx61 + dx41dx51 = 0,

in terms of the symmetric two tensor.

Next we describe πM . Set

UM := {V2 ∈M | V2 ∩W 0⊥
2 = {0}},

and take a basis of V2 ∈M of form{
h1 = e1 +z31e3 + z41e4 + z51e5 + z61e6 + z71e7 + z81e8,
h2 = e2 +z32e3 + z42e4 + z52e5 + z62e6 + z72e7 + z82e8.

Then we have a chart on UM ⊂M by

(z31, z41, z51, z61, z71, z32, z42, z52, z62).
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Using the modification h1 = f1 − x21f2, h2 = f2, we have that the projection πM : U → UM

is given by

z31 = x31 − x32x21, z41 = x41 − x42x21, z51 = x51 − x52x21, z61 = x61 − x62x21,
z71 = x71 + x62x32x21 + x52x42x21, z32 = x32, z42 = x42, z52 = x52, z62 = x62.

To describe π+, we set

U+ := {V +
4 ∈ Q+ | V +

4 ∩W
0+
4 = {0}}.

and take a basis of V +
4 ∈ U+ of form

g1 = e1 +y51e5 +y61e6 +y71e7,
g2 = e2 +y52e5 +y62e6 −y71e8,
g3 = e3 −y64e5 −y62e7 −y61e8,
g4 = e4 +y64e6 −y52e7 −y51e8.

Then we have a chart on U+ by

(y51, y61, y71, y52, y62, y64).

We use the modifications
g1 = f1 − x21f2 − (x31 − x32x21)f3 − (x41 − x42x21 − x43(x31 − x32x21))f4,
g2 = f2 − x32f3 − (x42 − x43x32)f4,
g3 = f3 − x43f4.

Then the projection π+ : U → U+ is described in terms of our charts, by

y51 = x51 − x52x21 + x64(x31 − x32x21),
y61 = x61 − x62x21 − x64(x41 − x42x21),
y71 = x71 + x62x31 + x52x41 − x64(x42x31 − x41x32),
y52 = x52 + x64x32,
y62 = x62 − x64x42,
y64 = x64.

To describe π−, similarly we set

U− := {V −
4 ∈ Q− | V −

4 ∩W
0−
4 = {0}},

and take a basis of V −
4 ∈ U−:

g1 = e1 +y41e4 +y61e6 +y71e7,
g2 = e2 +y42e4 +y62e6 −y71e8,
g3 = e3 −y65e4 −y62e7 −y61e8,
g5 = +e5 +y65e6 −y42e7 −y41e8.

Then a chart on U− is given by

(y41, y61, y71, y42, y62, y65).

Use the modifications
g1 = f1 − x21f2 − (x31 − x32x21)f3 − (x51 − x52x21 − x53(x31 − x32x21))f5,
g2 = f2 − x32f3 − (x52 − x53x32)f5,
g3 = f3 − x53f5.
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Then the projection π− : U → U− is given by

y41 = x41 − x42x21 + x65(x31 − x32x21),
y61 = x61 − x62x21 − x65(x51 − x52x21),
y71 = x71 + x62x31 + x51x42 − x65(x51x32 − x52x31),
y42 = x42 + x65x32,
y62 = x62 − x65x52,
y65 = x65.

Remark 5.3 We have also the description of the conformal structure on Q± using the local
coordinates: The Schubert variety Sy = {W ∈ Q± |W ∩ V ±

4 ̸= {0}}, y = V ±
4 ∈ Q± (see §3),

is given in U+ (resp. in U−) by

{Y ∈ U+ | (Y51 − y51)(Y62 − y62)− (Y61 − y61)(Y52 − y52)− (Y71 − y71)(Y64 − y64) = 0},

(resp. {Y ∈ U− | (Y41−y41)(Y62−y62)−(Y61−y61)(Y42−y42)−(Y71−y71)(Y65−y65) = 0} ).

Then the null cone field C ⊂ TQ+ (resp. TQ−) of the conformal structure on Q+ (resp. Q−)
is given locally by

dy51dy62 − dy61dy52 − dy71dy64 = 0, (resp. dy41dy62 − dy61dy42 − dy71dy65 = 0 ),

in terms of two tensors.

6 The Engel system via flag coordinates

Recall that
E = (kerπ0∗ ∩ kerπ+∗ ∩ kerπ−∗)⊕ kerπM∗ ⊂ TZ.

First we show

Lemma 6.1 Let f = (V1, V2, V
+
4 , V

−
4 ) ∈ Z and e = (e1, e2, e3, e4, e5, e6, e7, e8) be an adapted

basis for f (see §5). For each tangent vector v ∈ TfZ, the following conditions are equivalent
to each other:
(1) The tangent vector v belongs to Ef .
(2) There exists a representative c : (R, 0)→ (Z, f), c(t) = (V1(t), V2(t), V

+
4 (t), V −

4 (t)) of the
tangent vector v, with a framing

V1(t) = ⟨f1(t)⟩R, V2(t) = ⟨f1(t), f2(t)⟩R,
V +
4 (t) = ⟨f1(t), f2(t), f3(t), f4(t)⟩R, V −

4 (t) = ⟨f1(t), f2(t), f3(t), f5(t)⟩R,

by a curve-germ f : (R, 0)→ GL(R4,4),

f(t) = (f1(t), f2(t), f3(t), f4(t), f5(t), f6(t), f7(t), f8(t)),

with f(0) = e, which satisfies that f ′1(0) ∈ V2, f ′2(0) ∈ V
+
4 ∩ V

−
4 .

(3) The tangent vector v satisfies that

π0∗v ∈ TV1(G1(V2)) and πM∗v ∈ TV2(G2(V
+
4 ∩ V

−
4 )).
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Proof . (1) ⇒ (2): Let v = w+ u,w ∈ kerπ0∗ ∩ kerπ+∗ ∩ kerπ−∗, u ∈ kerπM∗. Take a frame

g(t) = (g1(t), g2(t), g3(t), g4(t), g5(t), g6(t), g7(t), g8(t))

of V such that g(t) defines the tangent vector u at t = 0 and that ⟨g1(t), g2(t)⟩R = V2. Take
a frame

h(t) = (h1(t), h2(t), h3(t), h4(t), h5(t), h6(t), h7(t), h8(t)))

such that h(t) defines the tangent vector w at t = 0 and that

⟨h1(t)⟩R = V1, ⟨h1(t), h2(t), h3(t), h4(t)⟩R = V +
4 , ⟨h1(t), h2(t), h3(t), h5(t)⟩R = V −

4

with g(0) = h(0) = e. Then the curve f(t) := g(t) + h(t) − g(0) represents v. Moreover
f ′1(0) = g′1(0) + h′1(0) ∈ V2, f ′2(0) = g′2(0) + h′2(0) ∈ V

+
4 ∩ V

−
4 .

The assertion (2) ⇒ (3) is clear.
(3) ⇒ (1): We take a frame f(t) = (f1(t), f2(t), f3(t), f4(t), f5(t)) for v such that f1(t) ∈
V2, f2(t) ∈ V3 = V +

4 ∩ V
−
4 . Write

f1 = e1 + x21e2,
f2 = e2 + x32e3,
f3 = e3 − x65e4 − x64e5 + x63e6 + x73e7 + x83e8,
f4 = e4 + x64e6 + x74e7 + x84e8,
f5 = e5 + x65e6 + x75e7 + x85e8,

with functions xij = xij(t) with xij(0) = 0. Then we have x83 = −x21x73, x84 = −x21x74, x85 =
−x21x75, x73 = −x32x63, x74 = −x32x64, x75 = −x32x65. Therefore x′83(0) = 0, x′84(0) =
0, x′85(0) = 0, x′73(0) = 0, x′74(0) = 0, x′75(0) = 0. We define g(t) and h(t) by

g1 = e1,
g2 = e2 + x32e3,
g3 = e3,
g4 = e4,
g5 = e5,

and 
h1 = e1 + x21e2,
h2 = e2,
h3 = e3 − x65e4 − x64e5 + x63e6,
h4 = e4 + x64e6,
h5 = e5 + x65e6.

Let w ∈ TfZ (resp. u ∈ TfZ) be tangent vectors defined by the curve g(t) (resp. h(t))
at t = 0. Then w (resp. u) belongs to kerπ0∗ ∩ kerπ+∗ ∩ kerπ−∗ (resp. to kerπM∗). Set
k(t) = g(t) + h(t) − g(0). Then we see that f ′(0) = k′(0) = g′(0) + h′(0). Thus we have
that v = w + u ∈ (kerπ0∗ ∩ kerπ+∗ ∩ kerπ−∗)⊕ kerπM∗. 2

Regarding Lemma 6.1, the differential system E ⊂ TZ is given by the condition f ′1 ∈
⟨f1, f2⟩R, f ′2 ∈ ⟨f1, f2.f3⟩R. In terms of component functions xij , the condition is given by

(x′21, x
′
31, x

′
41, x

′
51, x

′
61, x

′
71, x

′
81) = p(1, x32, x42, x52, x62, x72, x82)

and
(x′32, x

′
42, x

′
52, x

′
62, x

′
72, x

′
82) = q(1, x43, x53, x63, x73, x83),
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for some p, q ∈ R. Then p = x′21, q = x′32. Therefore we have that the differential system
E ⊂ TZ on our coordinate neighborhood U is given by

dxi1 = xi2dx21(3 ≤ i ≤ 8), dxj2 = xj3dx32(4 ≤ j ≤ 8).

We introduce a weight wij ∈ R on each component xij . From the above equations for E,
we impose the relations

wi1 = wi2 + w21(3 ≤ i ≤ 8), wj2 = wj3 + w32(4 ≤ j ≤ 8).

Then the weights of all components xij are well-defined and they are explicitly expressed by
w21, w32, w65 and w64. Moreover we have

Lemma 6.2 (Triality of weights.) The projection π0, π+, π− and πM are weighted homo-
geneous mappings respectively. The weights of components of the projections π0, π+, π− to
Q0, Q+, Q− are given by the following table:

Q0 Q+ Q−
w21 w65 w64

w32 + w21 w65 + w32 w64 + w32

w64 + w32 + w21 w65 + w32 + w21 w64 + w32 + w21

w65 + w32 + w21 w65 + w64 + w32 w65 + w64 + w32

w65 + w64 + w32 + w21 w65 + w64 + w32 + w21 w65 + w64 + w32 + w21

w65 + w64 + 2w32 + w21 w65 + w64 + 2w32 + w21 w65 + w64 + 2w32 + w21

The weights of components of the projection πM to M are given by

w32, w32 + w21, w65 + w32, w64 + w32,
w65 + w32 + w21, w64 + w32 + w21, w65 + w64 + w32,
w65 + w64 + w32 + w21, w65 + w64 + 2w32 + w21.

Remark 6.3 We observe that the formula of weights coincides with the formula of neg-
ative (or positive) roots of D4 (see [4] for example). In fact, given a simple root system
α1, α2, α3, α4, we identify −α1,−α2,−α3,−α4 with w21, w32, w65, w64. Then the weight w of
a component for a negative root α is given by w = m1w21 +m2w32 +m3w65 +m4w64 if α =
−m1α1−m2α2−m3α3−m4α4. See the following D4 diagram with weights w21, w32, w65, w64

at appropriate positions:
w65

�
w21 —– w32

�
w64

Then we have the orders of flag coordinates for generic E-integral curves, and normal
forms of singularities appeared in tangent surfaces.
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Lemma 6.4 Let f : I → Z be a generic E-integral curve. Then, for any t0 ∈ I and for any
flag chart (xij) on Z centered at f(t0), the sets of orders on components for the projections
π0f, π+f, π−f, πMf are given as in the following table:

(w21, w65, w64, w32) π0f π+f π−f πMf

(1, 1, 1, 1) 1, 2, 3, 3, 4, 5∗ 1, 2, 3, 3, 4, 5∗ 1, 2, 3, 3, 4, 5∗ 1, 2, 2, 2, 3, 3, 3, 4, 5∗

(2, 1, 1, 1) 2, 3, 4, 4, 5, 6 1, 2, 4, 3, 5, 6 1, 2, 4, 3, 5, 6 1, 3, 2, 2, 4, 4, 3, 5, 6
(1, 2, 1, 1) 1, 2, 3, 4, 5, 6 2, 3, 4, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 2, 4, 3, 4, 5, 6
(1, 1, 2, 1) 1, 2, 4, 3, 5, 6 1, 2, 3, 4, 5, 6 2, 3, 4, 4, 5, 6 1, 2, 2, 3, 3, 4, 4, 5, 6
(1, 1, 1, 2) 1, 3, 4, 4, 5, 7 1, 3, 4, 4, 5, 7 1, 3, 4, 4, 5, 7 2, 3, 3, 3, 4, 4, 4, 5, 7

where 5∗ means 5 or 6 on an isolated points.

Remark 6.5 From the formula on weights of components, we can estimate the orders of
component functions of E-integral curves. However it is possible that the orders of some
components become higher than expected by accidental cancelings of leading terms. Therefore,
in order to determine the exact order of each component of generic curves, we need the explicit
local expressions of the projections π0, π+, π−, πM and the differential system E ⊂ TZ.

Proof of Lemma 6.4. As we have seen in the above arguments, all components of π0 ◦ f
(resp. π+ ◦ f, π− ◦ f, πM ◦ f) are obtained just from the four components x21 ◦ f, x65 ◦
f, x64 ◦ f, x32 ◦ f by differentiations, multiplications, summations and integrations. We can
spell out, from the explicit expression of components obtained in §5, which component may
have higher order than expected. For example, since (x52 ◦ f)′ = (x53 ◦ f)(x32 ◦ f)′, we see
x52 ◦ f =

∫
(x53 ◦ f)(x32 ◦ f)′dt. Therefore ord(x52 ◦ f) = ord(x53 ◦ f) + ord(x32 ◦ f). As

another example, for the component z31 ◦ f = (x31 − x32x21) ◦ f of πM , we have (z31 ◦ f)′ =
{(x31 − x32x21) ◦ f}′ = −(x32 ◦ f)′(x21 ◦ f). Therefore z31 ◦ f = −

∫
(x32 ◦ f)′(x21 ◦ f)dt and

ord(z31 ◦ f) = ord((x32 ◦ f) + ord(x21 ◦ f).
By the ordinary transversality theorem, we have, generically, just four cases where (ord(x21◦

f), ord(x65 ◦ f), ord(x64 ◦ f), ord(x32 ◦ f)) is equal to

(1, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2),

respectively. The last four cases occur just on isolated points, where the orders of all compo-
nents are equal to the weights of components. In the first case, the order of one component
may increase by one from the weight of the component accidentally on an isolated points.
Thus we have the above table. 2

Proof of Theorem 4.3: We use several results proved in [11]. If the set of orders contains
1, 2, 3 (resp. 2, 3, 4, 5, 1, 3, 4, 5), then the tangent surface to the projection of the Engel
integral curve is locally diffeomorphic to the cuspidal edge (resp. the open swallowtail, the
open Mond surface) in (R6, 0) or (R9, 0). This is proved essentially by the versality of the
cuspidal edge (resp. the open swallowtail, the open Mond surface) as an “opening” of the
fold map (resp. the Whitney’s cusp, the beak-to beak map) (R2, 0)→ (R2, 0). For example,
we show one case where the set of orders of components is given by {1, 2, 3, 3, 4, 5}. Then
the projection of the Engel integral curve is locally expressed by c : (R, 0) → (R6, 0) with
components 

x1(t) = a1t+ · · · ,
x2(t) = a2t

2 + · · · ,
x3(t) = a3t

3 + · · · ,
x4(t) = a4t

3 + · · · ,
x5(t) = a5t

4 + · · · ,
x6(t) = a6t

5 + · · · .
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where ai ̸= 0, 1 ≤ i ≤ 6 and · · · means higher order terms. Then, by a local diffeomorphism
on (R, 0) and a linear transformation on (R6, 0) the curve is transformed into a curve c̃ :
(R, 0)→ (R6, 0) with components

x1(t) = t, x2(t) = t2 + φ2(t), x3(t) = t3 + φ3(t),
x4(t) = t3 + φ4(t), x5(t) = t4 + φ5(t), x6(t) = t5 + φ6(t),

where ord(φ2) ≥ 3, ord(φ3) ≥ 4, ord(φ4) ≥ 4, ord(φ5) ≥ 5, ord(φ6) ≥ 6. The tangent surface
of c̃ is parametrized by F (t, s) = c̃(t) + sc̃′(t), namely,

x1(t, s) = t+ s, x2(t, s) = t2 + 2st+ φ2(t) + sφ′
2(t),

x3(t, s) = t3 + 3st2 + φ3(t) + sφ′
3(t), x4(t, s) = t3 + 3st2 + φ4(t) + sφ′

4(t),
x5(t, s) = t4 + 4st3 + φ5(t) + sφ′

5(t), x6(t, s) = t5 + 5st4 + φ6(t) + sφ′
6(t).

If we put u = t+s, then we have that F is diffeomorphic to a map-germ G : (R2, 0)→ (R6, 0)
with components

x1(t, u) = u, x2(t, u) = −t2 + 2ut+ ψ2(t, u),
x3(t, u) = −2t3 + 3ut2 + ψ3(t, u), x4(t, u) = −2t3 + 3ut2 + ψ4(t, u),
x5(t, u) = −3t4 + 4ut3 + ψ5(t, u), x6(t, u) = −4t5 + 5ut4 + ψ3(t, u),

where ψi(t, u) = φi(t)+(u− t)φ′
i(t). Now consider the set R of functions h(t, u) such that ∂h

∂t
is a functional multiple of u− t. All components of G belong to R. We define g, g̃ : (R2, 0)→
(R2, 0), by g(t, u) = (u,−t2 + 2ut+ ψ2(t, u)) and g̃(t, u) = (u,−t2 + 2ut), both of which are
diffeomorphic to the fold map. Then R coincides with Rg, the totality of h : (R2, 0) → R
such that dh is a functional linear combination of du and d(−t2 + 2ut+ ψ2(t, u)), and with
Rg̃ which is similarly defined. In this situation, we say that G is an opening of g. We can
show that any h ∈ R is a function on

G̃ = (u,−t2 + 2ut,−2t3 + 3ut2),

which is a versal opening of g̃. Thus we see, in fact, that there exist functions

Φ2,Φ3,Φ4,Φ5,Φ6 : (R
3, 0)→ (R, 0)

on (R3, 0) with coordinates y1, y2, y3 such that

x1(t, u) = u, x2(t, u) = −t2 + 2ut+Φ2 ◦ G̃,
x3(t, u) = −2t3 + 3ut2 +Φ3 ◦ G̃, x4(t, u) = −2t3 + 3ut2 +Φ4 ◦ G̃,
x5(t, u) = Φ5 ◦ G̃, x6(t, u) = Φ6 ◦ G̃.

Then we see necessarily that ∂Φ2
∂y2

(0) = 0, ∂Φ3
∂y3

(0) = 0. Define a map-germ τ : (R6, 0) →
(R6, 0) by

τ(y1, y2, y3, y4, y5, y6) = (y1, y2 +Φ2(y1, y2, y3), y3 +Φ3(y1, y2, y3),
y3 + y4 +Φ4(y1, y2, y3), y5 +Φ5(y1, y2, y3), y6 +Φ6(y1, y2, y3)) .

Then we have that τ is a diffeomorphism-germ of (R6, 0) and G = τ ◦ (G̃, 0, 0, 0). Thus F is
diffeomorphic to (G̃, 0, 0, 0), which is diffeomorphic to

(u, v) 7→ (u, v2, v3, 0, 0, 0),

the cuspidal edge in R6. Note that (G̃, 0, 0, 0) provides a normal form among tangent map-
pings.

On the notions of openings and versal openings, and related results, see [11]. We can
treat other cases similarly using Lemma 6.4. Thus we have Theorem 4.3. 2
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7 D4 Cartan distributions and null frontals

We have defined in §3 the distribution DN ⊂ TN on the flag manifold N .

Definition 7.1 A mapping F : U → Q0 (resp. F : U → Q+, F : U → Q−) from a 2-
dimensional manifold U is called a null frontal if there exists a DN -integral lift F̃ : U → N of
F , i.e. which satisfies F̃∗(TxU) ⊂ (DN )

F̃ (x)
and π′0(F̃ (x)) = F (x) (resp. π′+(F̃ (x)) = F (x),

π′−(F̃ (x)) = F (x)), for any x ∈ U .

Remark 7.2 In the above definition, if we can take F̃ an immersion, then we call F a null
front.

Recall that Q0, Q1, Q2 are endowed with conformal structures of type (3, 3) and we have
defined the notion of null surfaces (Definition 4.1).

Proposition 7.3
(1) If F : U → Q0 ( resp. F : U → Q+, F : U → Q−) is a regular (immersive) null surface,
then F is a null frontal.
(2) If F : U → Q0 ( resp. F : U → Q+, F : U → Q−) is a null frontal, then F is a null
surface.

As is mentioned in §4, we have the following:

Proposition 7.4 Let f : I → Z be an E-integral curve. Consider the projections γ0 =
π0 ◦ f : I → Q0, γ+ = π+ ◦ f : I → Q+ and γ− = π− ◦ f : I → Q−. Then the tangent surfaces
F0 = Tan(γ0), F+ = Tan(γ+) and F− = Tan(γ−) are null frontals. In fact, there exists a

DN -integral lifting F̃0 of F0 (resp. F̃+ of F+, F̃− of F−) such that π+ ◦ F̃0 and π− ◦ F̃0 (resp.

π− ◦ F̃+ and π0 ◦ F̃+, π0 ◦ F̃− and π+ ◦ F̃−) are constant along tangent lines.

Note that DN is described, in terms of tree of fibrations, by

(kerπ′+∗ ∩ kerπ′−∗)⊕ (kerπ′0∗ ∩ kerπ′−∗)⊕ (kerπ′0∗ ∩ kerπ′+∗) ⊂ TN.

To show Propositions 7.3 and 7.4, we need the following Lemma 7.5 which gives the
equivalent descriptions of DN in different forms.

Lemma 7.5 Let f = (V1, V
+
4 , V

−
4 ) ∈ N . For each tangent vector v ∈ TfN , the following

conditions are equivalent to each other:
(1) The tangent vector v belongs to (DN )f .
(2) There exists a representative c : (R, 0) → (N, f), c(t) = (V1(t), V

+
4 (t), V −

4 (t)) of the
tangent vector v, with a framing

V1(t) = ⟨f1(t)⟩R, V +
4 (t) ∩ V −

4 (t) = ⟨f1(t), f2(t), f3(t)⟩R,
V +
4 (t) = ⟨f1(t), f2(t), f3(t), f4(t)⟩R, V −

4 (t) = ⟨f1(t), f2(t), f3(t), f5(t)⟩R,

by a curve-germ f : (R, 0)→ GL(R4,4),

f(t) = (f1(t), f2(t), f3(t), f4(t), f5(t), f6(t), f7(t), f8(t)),

which satisfies that f(0) is an adapted basis for some flag in π−1
N (f) ⊂ Z, and that f ′1(0) ∈

V +
4 ∩ V

−
4 , f

′
2(0), f

′
3(0) ∈ (V +

4 ∩ V
−
4 )⊥.
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To show Lemma 7.5, we give local coordinates of N ′ and of N . First fix a complete flag
as before

W 0
1 ⊂W 0

2 ⊂W 0
3

⊂ W 0+
4 ⊂

⊂ W 0−
4 ⊂

W 0⊥
3 ⊂W 0⊥

2 ⊂W 0⊥
1 ⊂ V = R4,4,

and take the open neighborhood

Ω′ = {(V1, V3) ∈ N ′ | V1 ∩W 0⊥
1 = {0}, V3 ∩W 0⊥

3 = {0}}

of (V 0
1 , V

0
3 ) in N

′. Then, for any (V1, V3) ∈ Ω′, there exist unique f1, f2, f3 ∈ V3 such that f1
forms a basis of V1, and f1, f2, f3 form a basis of V3 respectively and they are of form

f1 = e1+ x21e2 +x31e3 +x41e4 + x51e5 + x61e6 + x71e7 + x81e8,
f2 = e2 +x42e4 + x52e5 + x62e6 + x72e7 + x82e8,
f3 = e3 +x43e4 + x53e5 + x63e6 + x73e7 + x83e8,

for some xij ∈ R. Then we have

(f1|f1) = x81 + x21x71 + x31x61 + x41x51 = 0,
2(f1|f2) = x82 + x21x72 + x31x62 + x41x52 + x51x42 + x71 = 0,
2(f1|f3) = x83 + x21x73 + x31x63 + x41x53 + x51x43 + x61 = 0,
(f2|f2) = x72 + x42x52 = 0,

2(f2|f3) = x73 + x32x63 + x42x53 + x52x43 + x62 = 0,
(f3|f3) = x63 + x43x53 = 0.

Therefore we see that

(x21, x31, x41, x51, x61, x71, x42, x52, x62, x43, x53)

is a chart on Ω′ ⊂ N ′. We take

f4 = e4 + x54e5 + x64e6 + x74e7 + x84e8,

from V +
4 so that f1, f2, f3, f4 form a basis of V +

4 , and take

f5 = x45e4 + e5 + x65e6 + x75e7 + x85e8,

from V −
4 so that f1, f2, f3, f5 form a basis of V −

4 . Then we have a local chart for N :

(x21, x31, x41, x51, x61, x71, x42, x52, x62, x64, x65).

Note that the calculations of coordinates for N ′ and N go similarly to that for Z ′ and Z,
and we obtain the local forms of π′0, π

′
+, π

′
− from those for π0, π+, π− in §5, by just putting

x32 = 0. In fact, we have the coordinate expressions for the projection π′0 : N → Q0,

(x21, x31, x41, x51, x61, x71, x42, x52, x62, x64, x65) 7→ (x21, x31, x41, x51, x61, x71),

for π′+ : N → Q+, 

y51 = x51 − x52x21 + x64x31,
y61 = x61 − x62x21 − x64(x41 − x42x21),
y71 = x71 + x62x31 + x52x41 − x64x42x31,
y52 = x52,
y62 = x62 − x64x42,
y64 = x64,
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and for π′− : N → Q−,

y41 = x41 − x42x21 + x65x31,
y61 = x61 − x62x21 − x65(x51 − x52x21),
y71 = x71 + x62x31 + x51x42 + x65x52x31,
y42 = x42,
y62 = x62 − x65x52,
y65 = x65.

Proof of Lemma 7.5:
(1) ⇒ (2) : Let v ∈ (DN )f . Decompose v = v1 + v3 + v4 into v1 ∈ kerπ′+∗ ∩ kerπ′−∗, v3 ∈
kerπ′0∗∩kerπ′−∗ and v4 ∈ kerπ′0∗∩kerπ′+∗. We take representatives g(t),h(t),k(t) of v1, v3, v4
at 0 respectively, such that g(0) = h(0) = k(0) is an adapted frame for f , and

⟨g1(t), g2(t), g3(t), g4(t)⟩R = V +
4 , ⟨g1(t), g2(t), g3(t), g5(t)⟩R = V −

4 ,
⟨h1⟩R = V1, ⟨h1(t), h2(t), h3(t), h5(t)⟩R = V −

4 ,
⟨k1⟩R = V1, ⟨k1(t), k2(t), k3(t), k4(t)⟩R = V +

4 ,

for any t near 0. Set f(t) = g(t) + h(t) + k(t)− 2g(0). Then we have

f ′1(0) = g′1(0) + h′1(0) + k′1(0) = g′1(0) ∈ V +
4 ∩ V

−
4 ,

and
f ′2(0) = g′2(0) + h′2(0) + k′2(0) ∈ V +

4 + V −
4 = (V +

4 ∩ V
−
4 )⊥.

(2) ⇒ (1) : Write down the first five components of f(t) as
f1 = e1 +x21e2 +x31e3 +x41e4 +x51e5 +x61e6 +x71e7 +x81e8,
f2 = e2 +x42e4 +x52e5 +x62e6 +x72e7 +x82e8,
f3 = e3 −x65e4 −x64e5 +x63e6 +x73e7 +x83e8,
f4 = e4 +x64e6 +x74e7 +x84e8,
f5 = e5 +x65e6 +x75e7 +x85e8,

where xij = xij(t) with xij(0) = 0. Then, by the condition (2), we have x′ij(0) = 0, except for
the components x21, x31, x42, x52, x64, x65, x74, x75, and x

′
74(0) = −x′52(0), x′75(0) = −x′42(0).

Then we take curves g(t),h(t),k(t) satisfying
g1 = e1 +x21e2 +x31e3,
g2 = e2,
g3 = e3,
g4 = e4,
g5 = e5,
h1 = e1,
h2 = e2 +x42e4,
h3 = e3 −x65e4,
h4 = e4,
h5 = e5 +x65e6 −x42e7,
k1 = e1,
k2 = e2 +x52e5,
k3 = e3 −x64e5,
k4 = e4 +x64e6 −x52e7,
k5 = e5.
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Let g : I → N,h : I → N, k : I → N be curves with the frame g(t),h(t),k(t) respectively.
Let v1, v3, v4 ∈ TfN be tangent vectors defined by g, h, k respectively. Then v = v1+v2+v3.
Since π′+ ◦g and π′− ◦g are constant (resp. π′0 ◦h and π′− ◦h are constant, π′0 ◦k and π′+ ◦k are
constant), we have v1 ∈ v1 ∈ kerπ′+∗ ∩ kerπ′−∗, v3 ∈ kerπ′0∗ ∩ kerπ′−∗, v4 ∈ kerπ′0∗ ∩ kerπ′+∗.

2

Proof of Proposition 7.3:
(1) Regarding F (u, v) as a 1-dimensional subspace in V , we take a frame f(u, v) of F (u, v).
Since F is regular,

f(u, v),
∂f

∂u
(u, v),

∂f

∂v
(u, v)

are linearly independent and

V3(u, v) := ⟨f,
∂f

∂u
,
∂f

∂v
⟩R

is a null 3 space in V = R4,4, for any (u, v) ∈ U . Then by the partial differentiations with
respect to u, v of the equalities

(f |∂f
∂u

) = 0, (f |∂f
∂v

) = 0, (
∂f

∂u
|∂f
∂u

) = 0, (
∂f

∂u
|∂f
∂v

) = 0, (
∂f

∂v
|∂f
∂v

) = 0,

we have that
∂2f

∂u2
,
∂2f

∂u∂v
,
∂2f

∂v2
∈ V3(u, v)⊥.

We set V1(u, v) = ⟨f(u, v)⟩R ⊂ V , and take the unique null 4-spaces V +
4 (u, v), V −

4 (u, v) such

that V3(u, v) = V +
4 (u, v) ∩ V −

4 (u, v). Then we have that F̃ : U → N defined by

F̃ (u, v) = (V1(u, v), V
+
4 (u, v), V−(u, v))

is DN -integral by Lemma 7.4, and that π′0 ◦ F̃ = F . Therefore F is a null frontal. By triality
we have the same result also for regular null surfaces in Q±.
(2) Let v ∈ TxU . Suppose F∗(v) ̸= 0. Then we have F̃∗(v) ∈ (DN )

F̃ (x)
. Take a curve

(V1(t), V
+
4 (t), V −

4 (t)) on N which represents, at t = 0, the tangent vector F̃∗(v) at F̃ (x).
Then f ′1(0) ∈ V

+
4 (0) ∩ V −

4 (0). The vector f ′1(0) corresponds to F∗(v). Therefore

F∗(v) ∈ TF (x)(P (V
+
4 (0) ∩ V −

4 (0))) ⊂ TF (x)(P (V1(0))
⊥ ∩Q0) = CF (x),

and F is a null surface. By triality we have the same result also null frontals in Q±. 2

Proof of Proposition 7.4:
Let f : I → Z, f(t) = (V1(t), V2(t), V

+
4 (t), V −

4 (t)) be an E-integral curve. Take a frame
f1(t) of V1(t), f1(t), f2(t) of V2(t), f1(t), f2(t), f3(t), f4(t) of V

+
4 (t) and f1(t), f2(t), f3(t), f5(t)

of V −
4 (t). Then the curve γ0(t) is defined by the family V1(t). Consider, for each t ∈ I,

V1(t, s) = f1(t) + sf2(t), which can be regarded a projective line. By the condition f ′1(t) ∈
V2(t), V1(t, s) gives the tangent line to γ at t, even when f1(t), f

′
1(t) are linearly dependent.

Then F0 = Tan(γ0(t)) is given by F0(t, s) = V1(t, s) and s is the parameter of tangent lines.

We define the lift F̃0 of F0 to N by

F̃0(t, s) := (V1(t, s), V
+
4 (t), V −

4 (t)).

We have that

∂

∂t
(f1(t) + sf2(t)) = f ′1(t) + sf ′2(t) ∈ V +

4 (t) ∩ V −
4 (t),

∂

∂s
(f1(t) + sf2(t)) = f2(t) ∈ V2(t) ⊂ V +

4 (t) ∩ V −
4 (t),

21



and that
∂

∂t
f3(t) ∈ (V +

4 (t)∩ V −
4 (t))⊥,

∂

∂s
f3(t) = 0. Thus we have that F̃0 is DN -integral by

Lemma 7.5. Therefore we have that F0 is a null frontal. Moreover (π+ ◦ F̃0)(t, s) = V +
4 (t)

and (π− ◦ F̃0)(t, s) = V −
4 (t) do not depend on s.

By the triality, we have the results also for F+ = Tan(γ+(t)) and F− = Tan(γ−(t)).

In fact, under the diffeomorphism Φ : N → N ′,Φ(V1, V
+
4 , V

−
4 ) = (V1, V

+
4 ∩ V

−
4 ), Φ ◦ F̃+ :

I → N ′ is given by

Φ ◦ F̃+(t) = (V1(t), V3(t, s)), V3(t, s) := ⟨f1(t), f2(t), f3(t) + sf5(t)⟩R, (t, s) ∈ I ×R,

and Φ ◦ F̃− : I → N ′ is given by

Φ ◦ F̃−(t) = (V1(t), V3(t, s)), V3(t, s) := ⟨f1(t), f2(t), f3(t) + sf4(t)⟩R, (t, s) ∈ I ×R.

If we arrange to take an adapted frame f : I → O(4, 4),

f(t) = (f1(t), f2(t), f3(t), f4(t), f5(t), f6(t), f7(t), f8(t)),

for the Engel integral curve f : I → Z (see §5), then we may write

F̃+(t, s) = (V1(t), V
+
4 (t, s), V −

4 (t)), V +
4 (t, s) := ⟨f1(t), f2(t), f3(t) + sf5(t), f3(t)− sf6(t)⟩R,

and

F̃−(t, s) = (V1(t), V
+
4 (t), V −

4 (t, s)), V −
4 (t, s) := ⟨f1(t), f2(t), f3(t) + sf4(t), f3(t)− sf6(t)⟩R,

for any (t, s) ∈ I ×R. Therefore F+ (resp. F−) has a DN -integral lift F̃+ (resp. F̃−) such

that π− ◦ F̃+ and π0 ◦ F̃+ (resp. π0 ◦ F̃− and π+ ◦ F̃−) do not depend on s 2

Let us describe DN in coordinates. By Lemma 7.5, we pose the condition on a frame
f(t) = (f1(t), f2(t), f3(t), f4(t), f5(t), f6(t), f7(t), f8(t)) such that

f ′1(0) ∈ ⟨f1(0), f2(0), f3(0)⟩R, f ′2(0) ∈ ⟨f1(0), f2(0), f3(0), f4(0), f5(0)⟩R,

f ′3(0) ∈ ⟨f1(0), f2(0), f3(0), f4(0), f5(0)⟩R.

Then there exist pi, qi ∈ R, i = 1, 2, 3 such that

f ′1(0) = p1f2(0) + q1f3(0), f ′2(0) = p2f4(0) + q2f5(0), f ′3(0) = p3f4(0) + q3f5(0).

Then we have the differential system DN ′ on N ′ of rank 6:
dx41 − x42dx21 − x43dx31 = 0,
dx51 − x52dx21 − x53dx31 = 0,
dx61 − x62dx21 + x43x53dx31 = 0,
dx71 + x42x52dx21 + (x42x53 + x43x52 + x62)dx31 = 0,
dx62 + x53dx42 + x43dx52 = 0.

The integrability condition is given by
dx42 ∧ dx21 + dx43 ∧ dx31 = 0,
dx52 ∧ dx21 + dx53 ∧ dx31 = 0,
dx53 ∧ dx42 + dx43 ∧ dx52 = 0.
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By replacing x43, x53 by −x65,−x64, we have the integrability condition for DN :
dx42 ∧ dx21 − dx65 ∧ dx31 = 0,
dx52 ∧ dx21 − dx64 ∧ dx31 = 0,
dx64 ∧ dx42 + dx65 ∧ dx52 = 0.

Thus we observe that the problem on the local construction of DN -integral surfaces and
null frontals is reduced to the construction of isotropic surface-germs for a kind of “tri-
symplectic” structure on R6 as above.

Moreover we observe that, by Proposition 7.4, the tangent surfaces of π0-projections of
E-integral curves satisfy, in addition to the above system,

dx42 ∧ dx65 = 0, dx52 ∧ dx64 = 0.

To make the situation clear, we consider R6 with coordinates x1, x2, x3, x4, x5, x6 with
three 2-forms: 

ω1 = dx3 ∧ dx1 + dx4 ∧ dx2,
ω2 = dx5 ∧ dx1 + dx6 ∧ dx2,
ω3 = dx6 ∧ dx3 + dx4 ∧ dx5.

Let us consider an integral surface of the differential system ω1 = ω2 = ω3 = 0 which
projects to (x1, x2) regularly. Then, from ω1 = ω2 = 0, it is written locally

x3 =
∂f

∂x1
, x4 =

∂f

∂x2
, x5 =

∂g

∂x1
, x6 =

∂g

∂x2

for some functions f = f(x1, x2), g = g(x1, x2). Then from ω3 = 0, we have the second order
bilinear partial differential equation on f = f(x1, x2), g = g(x1, x2),

∂2f

∂x21

∂2g

∂x22
+

∂2f

∂x22

∂2g

∂x21
− 2

∂2f

∂x1∂x2

∂2g

∂x1∂x2
= 0.

This equation is regarded as an orthogonality condition of Lagrange-Gauss mapping of two
Lagrange immersions defined by f and g.

Remark 7.6 Similarly to above, the calculations in B3 geometry, namely geometry of
O(3, 4), lead us to the differential system

ω1 = dx3 ∧ dx1 + dx4 ∧ dx2 = 0, ω2 = dx3 ∧ dx4 = 0,

on R4 with coordinates x1, x2, x3, x4, which is expressed as the Monge-Ampère equation

∂2f

∂x21

∂2f

∂x22
−

(
∂2f

∂x1∂x2

)2

= 0

on “developable surfaces” (see [15][12]). We observe that the Monge-Ampère equation is
obtained by the reduction g = f or x5 = x3, x6 = x4 from the D4 case to the B3 case.

Returning to D4 case, consider the differential system on R6,

ω1 = 0, ω2 = 0, ω3 = 0, Ω1 := dx3 ∧ dx4 = 0, Ω2 := dx5 ∧ dx6 = 0,
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which we call a “bi-Monge-Ampère system”. Then the differential system is expressed by
the system of equations

∂2f

∂x21

∂2g

∂x22
+

∂2f

∂x22

∂2g

∂x21
− 2

∂2f

∂x1∂x2

∂2g

∂x1∂x2
= 0,

∂2f

∂x21

∂2f

∂x22
−

(
∂2f

∂x1∂x2

)2

= 0,
∂2g

∂x21

∂2g

∂x22
−

(
∂2g

∂x1∂x2

)2

= 0.

We conclude that the tangent surface construction in D4-geometry offers geometric solutions
with singularities of the above bi-Monge-Ampère system of equations.
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